Optimization of Spray Drying Process Parameters for the Preparation of Inhalable Mannitol-Based Microparticles Using a Box-Behnken Experimental Design
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
MUNI/A/1140/2021
Masaryk University
PubMed
36839819
PubMed Central
PMC9960250
DOI
10.3390/pharmaceutics15020496
PII: pharmaceutics15020496
Knihovny.cz E-resources
- Keywords
- Box–Behnken design, inhalation, large porous particles, mannitol, microparticles’ properties, multiple linear regression, process parameters, spray drying,
- Publication type
- Journal Article MeSH
Inhalation is used for local therapy of the lungs and as an alternative route for systemic drug delivery. Modern powder inhalation systems try to target the required site of action/absorption in the respiratory tract. Large porous particles (LPPs) with a size >5 μm and a low mass density (usually measured as bulk or tapped) of <0.4 g/cm3 can avoid protective lung mechanisms. Their suitable aerodynamic properties make them perspective formulations for deep lung deposition. This experiment studied the effect of spray-drying process parameters on LPP properties. An experimental design of twelve experiments with a central point was realized using the Box-Behnken method. Three process parameters (drying temperature, pump speed, and air speed) were combined on three levels. Particles were formed from a D-mannitol solution, representing a perspective material for lung microparticles. The microparticles were characterized in terms of physical size (laser diffraction), aerodynamic diameter (aerodynamic particle sizer), morphology (SEM), and densities. The novelty and main goal of this research were to describe how the complex parameters of the spray-drying process affect the properties of mannitol LPPs. New findings can provide valuable data to other researchers, leading to the easy tuning of the properties of spray-dried particles by changing the process setup.
See more in PubMed
Labiris N.R., Dolovich M.B. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. Brit. J. Clin. Pharmaco. 2003;56:588–599. doi: 10.1046/j.1365-2125.2003.01892.x. PubMed DOI PMC
Bahrainian S., Mirmoeini M.S., Gilani Z., Gilani K. Engineering of levodopa inhalable microparticles in combination with leucine and dipalmitoylphosphatidylcholine by spray drying technique. Eur. J. Pharm. Sci. 2021;167:106008. doi: 10.1016/j.ejps.2021.106008. PubMed DOI
Karas J., Vetchý D., Gajdziok J. Práškové částice pro plicní podání. Chem. Listy. 2022;116:28–34. doi: 10.54779/chl20220028. DOI
Hoppentocht M., Hagendoorn P., Frijlink H.W., De Boer A.H. Technological and practical challenges of dry powder inhalers and formulations. Adv. Drug Deliver. Rev. 2014;75:18–31. doi: 10.1016/j.addr.2014.04.004. PubMed DOI
Silva D., Jacinto T. Inhaled β2-agonists in asthma management: An evolving story. Breathe. 2016;12:375–377. doi: 10.1183/20734735.017116. PubMed DOI PMC
Gentile D.A., Skoner D.P. New asthma drugs: Small molecule inhaled corticosteroids. Curr. Opin. Pharmacol. 2010;10:260–265. doi: 10.1016/j.coph.2010.06.001. PubMed DOI
Barnett A.H. Exubera inhaled insulin: A review. Int. J. Clin. Prac. 2004;58:394–401. doi: 10.1111/j.1368-5031.2004.00178.x. PubMed DOI
Mishra M., Mishra B. Formulation optimization and characterization of spray dried microparticles for inhalation delivery of doxycycline hyclate. Yakugaku Zasshi. 2011;131:1813–1825. doi: 10.1248/yakushi.131.1813. PubMed DOI
Elversson J., Millqvist-Fureby A., Alderborn G., Elofsson U. Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray drying. J. Pharm. Sci. 2003;92:900–910. doi: 10.1002/jps.10352. PubMed DOI
Rahimpour Y., Kouhsoltani M., Hamishehkar H. Alternative carriers in dry powder inhaler formulations. Drug Discov. Today. 2014;19:618–626. doi: 10.1016/j.drudis.2013.11.013. PubMed DOI
Nelson H.S. Inhalation devices, delivery systems, and patient technique. Ann. Allerg. Asthma Immunol. 2016;117:606–612. doi: 10.1016/j.anai.2016.05.006. PubMed DOI
Edwards D.A., Hanes J., Caponetti G., Hrkach J., Ben-Jebria A., Eskew M.L., Mintzes J., Deaver D., Lotan N., Langer R. Large porous particles for pulmonary drug delivery. Science. 1997;276:1868–1871. doi: 10.1126/science.276.5320.1868. PubMed DOI
Heyder J., Gebhart J., Rudolf G., Schiller C.F., Stahlhofen W. Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. J. Aerosol Sci. 1986;17:811–825. doi: 10.1016/0021-8502(86)90035-2. DOI
Cryan S.A., Ssivadas N., Garcia-Contreras L. In vivo animal models for drug delivery across the lung mucosal barrier. Adv. Drug Deliver. Rev. 2007;59:1133–1151. doi: 10.1016/j.addr.2007.08.023. PubMed DOI
Musante C.J., Schroeter J.D., Rosati J.A., Crowder T.M., Hickey A.J., Martonen T.B. Factors affecting the deposition of inhaled porous drug particles. J. Pharm. Sci. 2002;91:1590–1600. doi: 10.1002/jps.10152. PubMed DOI
Geller D.E., Weers J., Heuerding S. Development of an inhaled dry-powder formulation of tobramycin using PulmoSphereTM technology. J. Aerosol Med. Pulm. Drug Deliv. 2011;24:175. doi: 10.1089/jamp.2010.0855. PubMed DOI PMC
Hersey J.A. Ordered mixing: A new concept in powder mixing practice. Powder Technol. 1975;11:41–44. doi: 10.1016/0032-5910(75)80021-0. DOI
Thalberg K., Papathanasiou F., Fransson M., Nicholas M. Controlling the performance of adhesive mixtures for inhalation using mixing energy. Int. J. Pharm. 2021;592:120055. doi: 10.1016/j.ijpharm.2020.120055. PubMed DOI
Islam N., Stewart P., Larson I., Hartley P. Effect of carrier size on the dispersion of salmeterol xinafoate from interactive mixtures. J. Pharm. Sci. 2004;93:1030–1038. doi: 10.1002/jps.10583. PubMed DOI
Rasenack N., Steckel H., Müller B.W. Micronization of anti-inflammatory drugs for pulmonary delivery by a controlled crystallization process. J. Pharm. Sci. 2003;92:35–44. doi: 10.1002/jps.10274. PubMed DOI
Karner S., Urbanetz N.A. The impact of electrostatic charge in pharmaceutical powders with specific focus on inhalation-powders. J. Aerosol Sci. 2011;42:428–445. doi: 10.1016/j.jaerosci.2011.02.010. DOI
Chougule M.B., Padhi B.K., Jinturkar K.A., Misra A. Development of dry powder inhalers. Recent Pat. Drug Deliv. Formul. 2008;1:11–21. doi: 10.2174/187221107779814159. PubMed DOI
Gradon L., Sosnowski T.R. Formation of particles for dry powder inhalers. Adv. Powder Technol. 2014;25:43–55. doi: 10.1016/j.apt.2013.09.012. DOI
Kailay W., Nokhodchi A. Freeze-dried mannitol for superior pulmonary drug delivery via dry powder inhaler. Pharm. Res. 2013;30:458–477. doi: 10.1007/s11095-012-0892-4. PubMed DOI
Van Drooge D.J., Hinrichs W.L.J., Dickhoff B.H.J., Elli M.N.A., Visser M.R., Zijlstra G.S., Ffrijlink H.W. Spray freeze drying to produce a stable Delta(9)-tetrahydrocannabinol containing inulin-based solid dispersion powder suitable for inhalation. Eur. J. Pharm. Sci. 2005;26:231–240. doi: 10.1016/j.ejps.2005.06.007. PubMed DOI
Moura C., Casimiro T., Costa E., Aguiar-Ricardo A. Optimization of supercritical CO2-assisted spray drying technology for the production of inhalable composite particles using quality-by-design principles. Powder Technol. 2019;357:387–397. doi: 10.1016/j.powtec.2019.08.090. DOI
Du Z., Guan Y.X., Yao S.J., Zhu Z.Q. Supercritical fluid assisted atomization introduced by an enhanced mixer for micronization of lysozyme: Particle morphology, size and protein stability. Int. J. Pharm. 2011;421:258–268. doi: 10.1016/j.ijpharm.2011.10.002. PubMed DOI
Cal K., Sollohub K. Spray drying technique. I: Hardware and process parameters. J. Pharm. Sci. 2010;99:575–586. doi: 10.1002/jps.21886. PubMed DOI
Santos D., Maurício A.C., Sencadas V., Santos J.D., Fernandes M.H., Gomes P.S. Spray drying: An overview. In: Pignatello R., editor. Biomaterials-Physics and Chemistry-New Edition. IntechOpen; London, UK: 2018. pp. 9–35.
Broadhead J., Edmond Rouan S.K., Rhodes C.T. The spray drying of pharmaceuticals. Drug Dev. Ind. Pharm. 1992;18:1169–1206. doi: 10.3109/03639049209046327. DOI
Ameri M., Maa Y.F. Spray drying of biopharmaceuticals: Stability and process considerations. Dry. Technol. 2006;24:763–768. doi: 10.1080/03602550600685275. DOI
Hertel N., Birk G., Scherliess R. Particle engineered mannitol for carrier-based inhalation–A serious alternative? Int. J. Pharm. 2020;577:118901. doi: 10.1016/j.ijpharm.2019.118901. PubMed DOI
Grangeia H.B., Silva C., Simões S.P., Reis M.S. Quality by design in pharmaceutical manufacturing: A systematic review of current status, challenges and future perspectives. Eur. J. Pharm. Biopharm. 2020;147:19–37. doi: 10.1016/j.ejpb.2019.12.007. PubMed DOI
Box G.E.P., Behnken D.W. Some new three level designs for the study of quantitative variables. Technometrics. 1960;2:455–475. doi: 10.1080/00401706.1960.10489912. DOI
Littringer E.M., Mescher A., Eckhard S., Schröttner H., Langes C., Fries M., Griesser U., Walzel P., Urbanetz N.A. Spray drying of mannitol as a drug carrier—The impact of process parameters on product properties. Dry. Technol. 2011;30:114–124. doi: 10.1080/07373937.2011.620726. DOI
Kramek-Romanowska K., Odziomek M., Sosnowski T.R., Gradoń L. Effects of process variables on the properties of spray-dried mannitol and mannitol/disodium cromoglycate powders suitable for drug delivery by inhalation. Ind. Eng. Chem. Res. 2011;50:13922–13931. doi: 10.1021/ie2006998. DOI
Li X., Vogt F.G., Hayes D., Mansour H.M. Design, characterization, and aerosol dispersion performance modeling of advanced spray-dried microparticulate/nanoparticulate mannitol powders for targeted pulmonary delivery as dry powder inhalers. J. Aerosol Med. Pulm. Drug Deliv. 2014;27:81–93. doi: 10.1089/jamp.2013.1078. PubMed DOI PMC
Guimarães T.F., Lanchote A.D., Da Costa J.S., Viçosa A.L., De Freitas L.A.P. A multivariate approach applied to quality on particle engineering of spray-dried mannitol. Adv. Powder Technol. 2015;26:1094–1101. doi: 10.1016/j.apt.2015.05.004. DOI
Laser Diffraction Particle Size Analyzer LA-960-HORIBA. [(accessed on 10 November 2022)]. Available online: https://static.horiba.com/fileadmin/Horiba/Products/Scientific/Particle_Characterization/LA/LA-960.pdf.
Model 3321 Aerodynamic Particle Sizer® Spectrometer Instruction Manual. [(accessed on 10 November 2022)]. Available online: http://www.lisa.u-pec.fr/~formenti/Tools/Manuals/APS-3321-manual.pdf.
European Pharmacopoeia Commision . European Pharmacopoeia. 9th ed. Deutscher Apotheker Verlag; Stuttgart, Germany: 2017.
Farkas Á., Lízal F., Jedelský J., Elcner J., Karas J., Bělka M., Mišík O., Jícha M. The role of the combined use of experimental and computational methods in revealing the differences between the micron-size particle deposition patterns in healthy and asthmatic subjects. J. Aerosol Sci. 2020;147:105582. doi: 10.1016/j.jaerosci.2020.105582. DOI
The R Project for Statistical Computing. [(accessed on 10 November 2022)]. Available online: https://www.r-project.org/
Broadhead J., Rouan S.K.E., Hau I., Rhodes C.T. The effect of process and formulation variables on the properties of dpray-dried β-galactosidase. J. Pharm. Pharmacol. 1994;46:458–467. doi: 10.1111/j.2042-7158.1994.tb03828.x. PubMed DOI
Ståhl K., Claesson M., Lilliehorn P., Lindén H., Bäckström K. The effect of process variables on the degradation and physical properties of spray dried insulin intended for inhalation. Int. J. Pharm. 2002;233:227–237. doi: 10.1016/S0378-5173(01)00945-0. PubMed DOI
Maltesen M.J., Bjessegaard S., Hovgaard L., Havelund S., Van Da Weert M. Quality by design–Spray drying of insulin intended for inhalation. Eur. J. Pharm. Biopharm. 2008;70:828–838. doi: 10.1016/j.ejpb.2008.07.015. PubMed DOI
Chew N.Y.K., Chan H.-K. Effect of powder polydispersity on aerosol generation. J. Pharm. Pharm. Sci. 2002;5:162–168. PubMed
Schiavone H., Palakodaty S., Clark A., York P., Tzannis S.T. Evaluation of SCF-engineered particle-based lactose blends in passive dry powder inhalers. Int. J. Pharm. 2004;281:55–66. doi: 10.1016/j.ijpharm.2004.05.029. PubMed DOI
Vanbever R., Mintzes J.D., Wang J., Nice J., Chen D., Batycky R., Langer R., Edwards D.A. Formulation and physical characterization of large porous particles for inhalation. Pharm. Res. 1999;16:1735–1742. doi: 10.1023/A:1018910200420. PubMed DOI