• This record comes from PubMed

Optimization of Spray Drying Process Parameters for the Preparation of Inhalable Mannitol-Based Microparticles Using a Box-Behnken Experimental Design

. 2023 Feb 02 ; 15 (2) : . [epub] 20230202

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
MUNI/A/1140/2021 Masaryk University

Links

PubMed 36839819
PubMed Central PMC9960250
DOI 10.3390/pharmaceutics15020496
PII: pharmaceutics15020496
Knihovny.cz E-resources

Inhalation is used for local therapy of the lungs and as an alternative route for systemic drug delivery. Modern powder inhalation systems try to target the required site of action/absorption in the respiratory tract. Large porous particles (LPPs) with a size >5 μm and a low mass density (usually measured as bulk or tapped) of <0.4 g/cm3 can avoid protective lung mechanisms. Their suitable aerodynamic properties make them perspective formulations for deep lung deposition. This experiment studied the effect of spray-drying process parameters on LPP properties. An experimental design of twelve experiments with a central point was realized using the Box-Behnken method. Three process parameters (drying temperature, pump speed, and air speed) were combined on three levels. Particles were formed from a D-mannitol solution, representing a perspective material for lung microparticles. The microparticles were characterized in terms of physical size (laser diffraction), aerodynamic diameter (aerodynamic particle sizer), morphology (SEM), and densities. The novelty and main goal of this research were to describe how the complex parameters of the spray-drying process affect the properties of mannitol LPPs. New findings can provide valuable data to other researchers, leading to the easy tuning of the properties of spray-dried particles by changing the process setup.

See more in PubMed

Labiris N.R., Dolovich M.B. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. Brit. J. Clin. Pharmaco. 2003;56:588–599. doi: 10.1046/j.1365-2125.2003.01892.x. PubMed DOI PMC

Bahrainian S., Mirmoeini M.S., Gilani Z., Gilani K. Engineering of levodopa inhalable microparticles in combination with leucine and dipalmitoylphosphatidylcholine by spray drying technique. Eur. J. Pharm. Sci. 2021;167:106008. doi: 10.1016/j.ejps.2021.106008. PubMed DOI

Karas J., Vetchý D., Gajdziok J. Práškové částice pro plicní podání. Chem. Listy. 2022;116:28–34. doi: 10.54779/chl20220028. DOI

Hoppentocht M., Hagendoorn P., Frijlink H.W., De Boer A.H. Technological and practical challenges of dry powder inhalers and formulations. Adv. Drug Deliver. Rev. 2014;75:18–31. doi: 10.1016/j.addr.2014.04.004. PubMed DOI

Silva D., Jacinto T. Inhaled β2-agonists in asthma management: An evolving story. Breathe. 2016;12:375–377. doi: 10.1183/20734735.017116. PubMed DOI PMC

Gentile D.A., Skoner D.P. New asthma drugs: Small molecule inhaled corticosteroids. Curr. Opin. Pharmacol. 2010;10:260–265. doi: 10.1016/j.coph.2010.06.001. PubMed DOI

Barnett A.H. Exubera inhaled insulin: A review. Int. J. Clin. Prac. 2004;58:394–401. doi: 10.1111/j.1368-5031.2004.00178.x. PubMed DOI

Mishra M., Mishra B. Formulation optimization and characterization of spray dried microparticles for inhalation delivery of doxycycline hyclate. Yakugaku Zasshi. 2011;131:1813–1825. doi: 10.1248/yakushi.131.1813. PubMed DOI

Elversson J., Millqvist-Fureby A., Alderborn G., Elofsson U. Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray drying. J. Pharm. Sci. 2003;92:900–910. doi: 10.1002/jps.10352. PubMed DOI

Rahimpour Y., Kouhsoltani M., Hamishehkar H. Alternative carriers in dry powder inhaler formulations. Drug Discov. Today. 2014;19:618–626. doi: 10.1016/j.drudis.2013.11.013. PubMed DOI

Nelson H.S. Inhalation devices, delivery systems, and patient technique. Ann. Allerg. Asthma Immunol. 2016;117:606–612. doi: 10.1016/j.anai.2016.05.006. PubMed DOI

Edwards D.A., Hanes J., Caponetti G., Hrkach J., Ben-Jebria A., Eskew M.L., Mintzes J., Deaver D., Lotan N., Langer R. Large porous particles for pulmonary drug delivery. Science. 1997;276:1868–1871. doi: 10.1126/science.276.5320.1868. PubMed DOI

Heyder J., Gebhart J., Rudolf G., Schiller C.F., Stahlhofen W. Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. J. Aerosol Sci. 1986;17:811–825. doi: 10.1016/0021-8502(86)90035-2. DOI

Cryan S.A., Ssivadas N., Garcia-Contreras L. In vivo animal models for drug delivery across the lung mucosal barrier. Adv. Drug Deliver. Rev. 2007;59:1133–1151. doi: 10.1016/j.addr.2007.08.023. PubMed DOI

Musante C.J., Schroeter J.D., Rosati J.A., Crowder T.M., Hickey A.J., Martonen T.B. Factors affecting the deposition of inhaled porous drug particles. J. Pharm. Sci. 2002;91:1590–1600. doi: 10.1002/jps.10152. PubMed DOI

Geller D.E., Weers J., Heuerding S. Development of an inhaled dry-powder formulation of tobramycin using PulmoSphereTM technology. J. Aerosol Med. Pulm. Drug Deliv. 2011;24:175. doi: 10.1089/jamp.2010.0855. PubMed DOI PMC

Hersey J.A. Ordered mixing: A new concept in powder mixing practice. Powder Technol. 1975;11:41–44. doi: 10.1016/0032-5910(75)80021-0. DOI

Thalberg K., Papathanasiou F., Fransson M., Nicholas M. Controlling the performance of adhesive mixtures for inhalation using mixing energy. Int. J. Pharm. 2021;592:120055. doi: 10.1016/j.ijpharm.2020.120055. PubMed DOI

Islam N., Stewart P., Larson I., Hartley P. Effect of carrier size on the dispersion of salmeterol xinafoate from interactive mixtures. J. Pharm. Sci. 2004;93:1030–1038. doi: 10.1002/jps.10583. PubMed DOI

Rasenack N., Steckel H., Müller B.W. Micronization of anti-inflammatory drugs for pulmonary delivery by a controlled crystallization process. J. Pharm. Sci. 2003;92:35–44. doi: 10.1002/jps.10274. PubMed DOI

Karner S., Urbanetz N.A. The impact of electrostatic charge in pharmaceutical powders with specific focus on inhalation-powders. J. Aerosol Sci. 2011;42:428–445. doi: 10.1016/j.jaerosci.2011.02.010. DOI

Chougule M.B., Padhi B.K., Jinturkar K.A., Misra A. Development of dry powder inhalers. Recent Pat. Drug Deliv. Formul. 2008;1:11–21. doi: 10.2174/187221107779814159. PubMed DOI

Gradon L., Sosnowski T.R. Formation of particles for dry powder inhalers. Adv. Powder Technol. 2014;25:43–55. doi: 10.1016/j.apt.2013.09.012. DOI

Kailay W., Nokhodchi A. Freeze-dried mannitol for superior pulmonary drug delivery via dry powder inhaler. Pharm. Res. 2013;30:458–477. doi: 10.1007/s11095-012-0892-4. PubMed DOI

Van Drooge D.J., Hinrichs W.L.J., Dickhoff B.H.J., Elli M.N.A., Visser M.R., Zijlstra G.S., Ffrijlink H.W. Spray freeze drying to produce a stable Delta(9)-tetrahydrocannabinol containing inulin-based solid dispersion powder suitable for inhalation. Eur. J. Pharm. Sci. 2005;26:231–240. doi: 10.1016/j.ejps.2005.06.007. PubMed DOI

Moura C., Casimiro T., Costa E., Aguiar-Ricardo A. Optimization of supercritical CO2-assisted spray drying technology for the production of inhalable composite particles using quality-by-design principles. Powder Technol. 2019;357:387–397. doi: 10.1016/j.powtec.2019.08.090. DOI

Du Z., Guan Y.X., Yao S.J., Zhu Z.Q. Supercritical fluid assisted atomization introduced by an enhanced mixer for micronization of lysozyme: Particle morphology, size and protein stability. Int. J. Pharm. 2011;421:258–268. doi: 10.1016/j.ijpharm.2011.10.002. PubMed DOI

Cal K., Sollohub K. Spray drying technique. I: Hardware and process parameters. J. Pharm. Sci. 2010;99:575–586. doi: 10.1002/jps.21886. PubMed DOI

Santos D., Maurício A.C., Sencadas V., Santos J.D., Fernandes M.H., Gomes P.S. Spray drying: An overview. In: Pignatello R., editor. Biomaterials-Physics and Chemistry-New Edition. IntechOpen; London, UK: 2018. pp. 9–35.

Broadhead J., Edmond Rouan S.K., Rhodes C.T. The spray drying of pharmaceuticals. Drug Dev. Ind. Pharm. 1992;18:1169–1206. doi: 10.3109/03639049209046327. DOI

Ameri M., Maa Y.F. Spray drying of biopharmaceuticals: Stability and process considerations. Dry. Technol. 2006;24:763–768. doi: 10.1080/03602550600685275. DOI

Hertel N., Birk G., Scherliess R. Particle engineered mannitol for carrier-based inhalation–A serious alternative? Int. J. Pharm. 2020;577:118901. doi: 10.1016/j.ijpharm.2019.118901. PubMed DOI

Grangeia H.B., Silva C., Simões S.P., Reis M.S. Quality by design in pharmaceutical manufacturing: A systematic review of current status, challenges and future perspectives. Eur. J. Pharm. Biopharm. 2020;147:19–37. doi: 10.1016/j.ejpb.2019.12.007. PubMed DOI

Box G.E.P., Behnken D.W. Some new three level designs for the study of quantitative variables. Technometrics. 1960;2:455–475. doi: 10.1080/00401706.1960.10489912. DOI

Littringer E.M., Mescher A., Eckhard S., Schröttner H., Langes C., Fries M., Griesser U., Walzel P., Urbanetz N.A. Spray drying of mannitol as a drug carrier—The impact of process parameters on product properties. Dry. Technol. 2011;30:114–124. doi: 10.1080/07373937.2011.620726. DOI

Kramek-Romanowska K., Odziomek M., Sosnowski T.R., Gradoń L. Effects of process variables on the properties of spray-dried mannitol and mannitol/disodium cromoglycate powders suitable for drug delivery by inhalation. Ind. Eng. Chem. Res. 2011;50:13922–13931. doi: 10.1021/ie2006998. DOI

Li X., Vogt F.G., Hayes D., Mansour H.M. Design, characterization, and aerosol dispersion performance modeling of advanced spray-dried microparticulate/nanoparticulate mannitol powders for targeted pulmonary delivery as dry powder inhalers. J. Aerosol Med. Pulm. Drug Deliv. 2014;27:81–93. doi: 10.1089/jamp.2013.1078. PubMed DOI PMC

Guimarães T.F., Lanchote A.D., Da Costa J.S., Viçosa A.L., De Freitas L.A.P. A multivariate approach applied to quality on particle engineering of spray-dried mannitol. Adv. Powder Technol. 2015;26:1094–1101. doi: 10.1016/j.apt.2015.05.004. DOI

Laser Diffraction Particle Size Analyzer LA-960-HORIBA. [(accessed on 10 November 2022)]. Available online: https://static.horiba.com/fileadmin/Horiba/Products/Scientific/Particle_Characterization/LA/LA-960.pdf.

Model 3321 Aerodynamic Particle Sizer® Spectrometer Instruction Manual. [(accessed on 10 November 2022)]. Available online: http://www.lisa.u-pec.fr/~formenti/Tools/Manuals/APS-3321-manual.pdf.

European Pharmacopoeia Commision . European Pharmacopoeia. 9th ed. Deutscher Apotheker Verlag; Stuttgart, Germany: 2017.

Farkas Á., Lízal F., Jedelský J., Elcner J., Karas J., Bělka M., Mišík O., Jícha M. The role of the combined use of experimental and computational methods in revealing the differences between the micron-size particle deposition patterns in healthy and asthmatic subjects. J. Aerosol Sci. 2020;147:105582. doi: 10.1016/j.jaerosci.2020.105582. DOI

The R Project for Statistical Computing. [(accessed on 10 November 2022)]. Available online: https://www.r-project.org/

Broadhead J., Rouan S.K.E., Hau I., Rhodes C.T. The effect of process and formulation variables on the properties of dpray-dried β-galactosidase. J. Pharm. Pharmacol. 1994;46:458–467. doi: 10.1111/j.2042-7158.1994.tb03828.x. PubMed DOI

Ståhl K., Claesson M., Lilliehorn P., Lindén H., Bäckström K. The effect of process variables on the degradation and physical properties of spray dried insulin intended for inhalation. Int. J. Pharm. 2002;233:227–237. doi: 10.1016/S0378-5173(01)00945-0. PubMed DOI

Maltesen M.J., Bjessegaard S., Hovgaard L., Havelund S., Van Da Weert M. Quality by design–Spray drying of insulin intended for inhalation. Eur. J. Pharm. Biopharm. 2008;70:828–838. doi: 10.1016/j.ejpb.2008.07.015. PubMed DOI

Chew N.Y.K., Chan H.-K. Effect of powder polydispersity on aerosol generation. J. Pharm. Pharm. Sci. 2002;5:162–168. PubMed

Schiavone H., Palakodaty S., Clark A., York P., Tzannis S.T. Evaluation of SCF-engineered particle-based lactose blends in passive dry powder inhalers. Int. J. Pharm. 2004;281:55–66. doi: 10.1016/j.ijpharm.2004.05.029. PubMed DOI

Vanbever R., Mintzes J.D., Wang J., Nice J., Chen D., Batycky R., Langer R., Edwards D.A. Formulation and physical characterization of large porous particles for inhalation. Pharm. Res. 1999;16:1735–1742. doi: 10.1023/A:1018910200420. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...