Recovery of 197 eukaryotic bins reveals major challenges for eukaryote genome reconstruction from terrestrial metagenomes

. 2023 Jul ; 23 (5) : 1066-1076. [epub] 20230320

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36847735

Grantová podpora
460129525 Deutsche Forschungsgemeinschaft
VH-NG-1248 Micro' Big Data' Helmholtz-Gemeinschaft

As most eukaryotic genomes are yet to be sequenced, the mechanisms underlying their contribution to different ecosystem processes remain untapped. Although approaches to recovering Prokaryotic genomes have become common in genome biology, few studies have tackled the recovery of eukaryotic genomes from metagenomes. This study assessed the reconstruction of microbial eukaryotic genomes using 6000 metagenomes from terrestrial and some transition environments using the EukRep pipeline. Only 215 metagenomic libraries yielded eukaryotic bins. From a total of 447 eukaryotic bins recovered 197 were classified at the phylum level. Streptophytes and fungi were the most represented clades with 83 and 73 bins, respectively. More than 78% of the obtained eukaryotic bins were recovered from samples whose biomes were classified as host-associated, aquatic, and anthropogenic terrestrial. However, only 93 bins were taxonomically assigned at the genus level and 17 bins at the species level. Completeness and contamination estimates were obtained for a total of 193 bins and consisted of 44.64% (σ = 27.41%) and 3.97% (σ = 6.53%), respectively. Micromonas commoda was the most frequent taxon found while Saccharomyces cerevisiae presented the highest completeness, probably because more reference genomes are available. Current measures of completeness are based on the presence of single-copy genes. However, mapping of the contigs from the recovered eukaryotic bins to the chromosomes of the reference genomes showed many gaps, suggesting that completeness measures should also include chromosome coverage. Recovering eukaryotic genomes will benefit significantly from long-read sequencing, development of tools for dealing with repeat-rich genomes, and improved reference genomes databases.

Zobrazit více v PubMed

Alexander, H., Hu, S. K., Krinos, A. I., Pachiadaki, M., Tully, B. J., Neely, C. J., & Reiter, T. (2022). Eukaryotic genomes from a global metagenomic dataset illuminate trophic modes and biogeography of ocean plankton. bioRxiv. https://doi.org/10.1101/2021.07.25.453713

Alneberg, J., Bjarnason, B. S., de Bruijn, I., Schirmer, M., Quick, J., Ijaz, U. Z., Lahti, L., Loman, N. J., Andersson, A. F., & Quince, C. (2014). Binning metagenomic contigs by coverage and composition. Nature Methods, 11(11), 1144-1146. https://doi.org/10.1038/nmeth.3103

Amarasinghe, S. L., Su, S., Dong, X., Zappia, L., Ritchie, M. E., & Gouil, Q. (2020). Opportunities and challenges in long-read sequencing data analysis. Genome Biology, 21(1), 30. https://doi.org/10.1186/s13059-020-1935-5

Aslani, F., Geisen, S., Ning, D., Tedersoo, L., & Bahram, M. (2022). Towards revealing the global diversity and community assembly of soil eukaryotes. Ecology Letters, 25(1), 65-76. https://doi.org/10.1111/ele.13904

Baldrian, P., Kolařík, M., Stursová, M., Kopecký, J., Valášková, V., Větrovský, T., Zifčáková, L., Snajdr, J., Rídl, J., Vlček, C., & Voříšková, J. (2012). Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. The ISME Journal, 6(2), 248-258. https://doi.org/10.1038/ismej.2011.95

Baldrian, P., Větrovský, T., Lepinay, C., & Kohout, P. (2021). High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Diversity, 114, 539-547. https://doi.org/10.1007/s13225-021-00472-y

Bao, W., Kojima, K. K., & Kohany, O. (2015). Repbase update, a database of repetitive elements in eukaryotic genomes. Mobile DNA, 6(1), 11. https://doi.org/10.1186/s13100-015-0041-9

Besemer, J., Lomsadze, A., & Borodovsky, M. (2001). GeneMarkS: A self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Research, 29(12), 2607-2618.

Bik, H. M., Porazinska, D. L., Creer, S., Caporaso, J. G., Knight, R., & Thomas, W. K. (2012). Sequencing our way towards understanding global eukaryotic biodiversity. Trends in Ecology and Evolution, 27(4), 233-243. https://doi.org/10.1016/j.tree.2011.11.010

Bulan, D. E., Wilantho, A., Tongsima, S., Viyakarn, V., Chavanich, S., & Somboonna, N. (2018). Microbial and small eukaryotes associated with reefs in the upper gulf of Thailand. Frontiers in Marine Science, 5, 436. https://doi.org/10.3389/fmars.2018.00436

Buttigieg, P. L., Morrison, N., Smith, B., Mungall, C. J., & Lewis, S. E. (2013). The environment ontology: Contextualising biological and biomedical entities. Journal of Biomedical Semantics, 4, 43. https://doi.org/10.1186/2041-1480-4-43

Carradec, Q., Pelletier, E., da Silva, C., Alberti, A., Seeleuthner, Y., Blanc-Mathieu, R., Lima-Mendez, G., Rocha, F., Tirichine, L., Labadie, K., Kirilovsky, A., Bertrand, A., Engelen, S., Madoui, M. A., Méheust, R., Poulain, J., Romac, S., Richter, D. J., Yoshikawa, G., … Wincker, P. (2018). A global ocean atlas of eukaryotic genes. Nature Communications, 9(1), 373. https://doi.org/10.1038/s41467-017-02342-1

Chen, W., Pan, Y., Yu, L., Yang, J., & Zhang, W. (2017). Patterns and processes in marine microeukaryotic community biogeography from Xiamen coastal waters and intertidal sediments, Southeast China. Frontiers in Microbiology, 8, 1912. https://doi.org/10.3389/fmicb.2017.01912

Collado-Fabbri, S., Vaulot, D., & Ulloa, O. (2011). Structure and seasonal dynamics of the eukaryotic picophytoplankton community in a wind-driven coastal upwelling ecosystem. Limnology and Oceanography, 56(6), 2334-2346. https://doi.org/10.4319/lo.2011.56.6.2334

Corrêa, F. B., Saraiva, J. P., Stadler, P. F., & da Rocha, U. N. (2020). TerrestrialMetagenomeDB: A public repository of curated and standardized metadata for terrestrial metagenomes. Nucleic Acids Research, 48(D1), D626-D632. https://doi.org/10.1093/nar/gkz994

Cuvelier, M. L., Guo, J., Ortiz, A. C., van Baren, M. J., Tariq, M. A., Partensky, F., & Worden, A. Z. (2017). Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress. PLoS One, 12(3), e0172135. https://doi.org/10.1371/journal.pone.0172135

De Bustos, A., Cuadrado, A., & Jouve, N. (2016). Sequencing of long stretches of repetitive DNA. Scientific Reports, 6(1), 36665. https://doi.org/10.1038/srep36665

de Gruyter, J., Weedon, J. T., Bazot, S., Dauwe, S., Fernandez-Garberí, P. R., Geisen, S., de la Motte, L. G., Heinesch, B., Janssens, I. A., Leblans, N., Manise, T., Ogaya, R., Löfvenius, M. O., Peñuelas, J., Sigurdsson, B. D., Vincent, G., & Verbruggen, E. (2020). Patterns of local, intercontinental and interseasonal variation of soil bacterial and eukaryotic microbial communities. FEMS Microbiology Ecology, 96(3), fiaa018. https://doi.org/10.1093/femsec/fiaa018

del Campo, J., Bass, D., & Keeling, P. J. (2020). The eukaryome: Diversity and role of microeukaryotic organisms associated with animal hosts. Functional Ecology, 34(10), 2045-2054. https://doi.org/10.1111/1365-2435.13490

Delmont, T. O., & Eren, A. M. (2016). Identifying contamination with advanced visualization and analysis practices: Metagenomic approaches for eukaryotic genome assemblies. PeerJ, 4, e1839. https://doi.org/10.7717/peerj.1839

Dröge, J., Gregor, I., & McHardy, A. C. (2015). Taxator-tk: Precise taxonomic assignment of metagenomes by fast approximation of evolutionary neighborhoods. Bioinformatics (Oxford, England), 31(6), 817-824. https://doi.org/10.1093/bioinformatics/btu745

Gao, S., Bertrand, D., Chia, B. K. H., & Nagarajan, N. (2016). OPERA-LG: Efficient and exact scaffolding of large, repeat-rich eukaryotic genomes with performance guarantees. Genome Biology, 17(1), 102. https://doi.org/10.1186/s13059-016-0951-y

Holt, C., & Yandell, M. (2011). MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics, 12(1), 491. https://doi.org/10.1186/1471-2105-12-491

Kaltenegger, E., Leng, S., & Heyl, A. (2018). The effects of repeated whole genome duplication events on the evolution of cytokinin signaling pathway. BMC Evolutionary Biology, 18(1), 76. https://doi.org/10.1186/s12862-018-1153-x

Kanehisa, M., Sato, Y., & Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. Journal of Molecular Biology, 428(4), 726-731. https://doi.org/10.1016/j.jmb.2015.11.006

Kasmanas, J. C., Bartholomäus, A., Corrêa, F. B., Tal, T., Jehmlich, N., Herberth, G., von Bergen, M., Stadler, P. F., Carvalho, A. C. P. L. F., & Nunes da Rocha, U. (2021). HumanMetagenomeDB: A public repository of curated and standardized metadata for human metagenomes. Nucleic Acids Research, 49(D1), D743-D750. https://doi.org/10.1093/nar/gkaa1031

Keeling, P. J. (2019). Combining morphology, behaviour and genomics to understand the evolution and ecology of microbial eukaryotes. Philosophical Transactions of the Royal Society, B: Biological Sciences, 374(1786), 20190085. https://doi.org/10.1098/rstb.2019.0085

Kieft, B., Li, Z., Bryson, S., Crump, B. C., Hettich, R., Pan, C., Mayali, X., & Mueller, R. S. (2018). Microbial community structure-function relationships in Yaquina Bay estuary reveal spatially distinct carbon and nitrogen cycling capacities. Frontiers in Microbiology, 9, 1282. https://doi.org/10.3389/fmicb.2018.01282

Kittelmann, S., Devente, S. R., Kirk, M. R., Seedorf, H., Dehority, B. A., & Janssen, P. H. (2015). Phylogeny of intestinal ciliates, including Charonina ventriculi, and comparison of microscopy and 18S rRNA gene pyrosequencing for rumen ciliate community structure analysis. Applied and Environmental Microbiology, 81(7), 2433-2444. https://doi.org/10.1128/AEM.03697-14

Laforest-Lapointe, I., & Arrieta, M. C. (2018). Microbial eukaryotes: A missing link in gut microbiome studies. MSystems, 3(2), e00201-e00217. https://doi.org/10.1128/mSystems.00201-17

Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics (Oxford, England), 34(18), 3094-3100. https://doi.org/10.1093/bioinformatics/bty191

Lind, A. L., & Pollard, K. S. (2021). Accurate and sensitive detection of microbial eukaryotes from whole metagenome shotgun sequencing. Microbiome, 9(1), 58. https://doi.org/10.1186/s40168-021-01015-y

Loeffler, C., Karlsberg, A., Martin, L. S., Eskin, E., Koslicki, D., & Mangul, S. (2020). Improving the usability and comprehensiveness of microbial databases. BMC Biology, 18, 37. https://doi.org/10.1186/s12915-020-0756-z

Matsubayashi, M., Shimada, Y., Li, Y. Y., Harada, H., & Kubota, K. (2017). Phylogenetic diversity and in situ detection of eukaryotes in anaerobic sludge digesters. PLoS One, 12(3), e0172888. https://doi.org/10.1371/journal.pone.0172888

Miga, K. H., Koren, S., Rhie, A., Vollger, M. R., Gershman, A., Bzikadze, A., Brooks, S., Howe, E., Porubsky, D., Logsdon, G. A., Schneider, V. A., Potapova, T., Wood, J., Chow, W., Armstrong, J., Fredrickson, J., Pak, E., Tigyi, K., Kremitzki, M., … Phillippy, A. M. (2020). Telomere-to-telomere assembly of a complete human X chromosome. Nature, 585(7823), 79-84. https://doi.org/10.1038/s41586-020-2547-7

Nata'ala, M., Avila Santos, A. P., Coelho Kasmanas, J., Bartholomäus, A., Saraiva, J. P., Godinho Silva, S., Keller-Costa, T., Costa, R., Gomes, N. C. M., Ponce de Leon Ferreira de Carvalho, A. C., Stadler, P. F., Sipoli Sanches, D., & Nunes da Rocha, U. (2022). MarineMetagenomeDB: A public repository for curated and standardized metadata for marine metagenomes. Environmental Microbiome, 17(1), 57. https://doi.org/10.1186/s40793-022-00449-7

Nayfach, S., Roux, S., Seshadri, R., Udwary, D., Varghese, N., Schulz, F., Wu, D., Paez-Espino, D., Chen, I. M., Huntemann, M., Palaniappan, K., Ladau, J., Mukherjee, S., Reddy, T. B. K., Nielsen, T., Kirton, E., Faria, J. P., Edirisinghe, J. N., Henry, C. S., … Eloe-Fadrosh, E. A. (2020). A genomic catalog of Earth's microbiomes. Nature Biotechnology, 1-11, 499-509. https://doi.org/10.1038/s41587-020-0718-6

Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S., & Kyrpides, N. C. (2019). New insights from uncultivated genomes of the global human gut microbiome. Nature, 568(7753), 505-510. https://doi.org/10.1038/s41586-019-1058-x

Nguyen, U. T., & Kalan, L. R. (2022). Forgotten fungi: The importance of the skin mycobiome. Current Opinion in Microbiology, 70, 102235. https://doi.org/10.1016/j.mib.2022.102235

Nurk, S., Koren, S., Rhie, A., Rautiainen, M., Bzikadze, A. V., Mikheenko, A., Vollger, M. R., Altemose, N., Uralsky, L., Gershman, A., Aganezov, S., Hoyt, S. J., Diekhans, M., Logsdon, G. A., Alonge, M., Antonarakis, S. E., Borchers, M., Bouffard, G. G., Brooks, S. Y., … Phillippy, A. M. (2022). The complete sequence of a human genome. Science, 376(6588), 44-53. https://doi.org/10.1126/science.abj6987

Nurk, S., Meleshko, D., Korobeynikov, A., & Pevzner, P. A. (2017). metaSPAdes: A new versatile metagenomic assembler. Genome Research, 27(5), 824-834. https://doi.org/10.1101/gr.213959.116

O'Leary, N. A., Wright, M. W., Brister, J. R., Ciufo, S., Haddad, D., McVeigh, R., Rajput, B., Robbertse, B., Smith-White, B., Ako-Adjei, D., Astashyn, A., Badretdin, A., Bao, Y., Blinkova, O., Brover, V., Chetvernin, V., Choi, J., Cox, E., Ermolaeva, O., … Pruitt, K. D. (2016). Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Research, 44(D1), D733-D745. https://doi.org/10.1093/nar/gkv1189

Parfrey, L. W., Walters, W. A., & Knight, R. (2011). Microbial eukaryotes in the human microbiome: Ecology, evolution, and future directions. Frontiers in Microbiology, 2, 153. https://doi.org/10.3389/fmicb.2011.00153

Parks, D. H., Rinke, C., Chuvochina, M., Chaumeil, P. A., Woodcroft, B. J., Evans, P. N., Hugenholtz, P., & Tyson, G. W. (2017). Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nature Microbiology, 2(11), 1533-1542. https://doi.org/10.1038/s41564-017-0012-7

Pawlowski, J., Audic, S., Adl, S., Bass, D., Belbahri, L., Berney, C., Bowser, S. S., Cepicka, I., Decelle, J., Dunthorn, M., Fiore-Donno, A. M., Gile, G. H., Holzmann, M., Jahn, R., Jirků, M., Keeling, P. J., Kostka, M., Kudryavtsev, A., Lara, E., … de Vargas, C. (2012). CBOL protist working group: Barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biology, 10(11), e1001419. https://doi.org/10.1371/journal.pbio.1001419

Pearman, W. S., Freed, N. E., & Silander, O. K. (2020). Testing the advantages and disadvantages of short- and long-read eukaryotic metagenomics using simulated reads. BMC Bioinformatics, 21(1), 220. https://doi.org/10.1186/s12859-020-3528-4

Peng, X., Wilken, S. E., Lankiewicz, T. S., Gilmore, S. P., Brown, J. L., Henske, J. K., Swift, C. L., Salamov, A., Barry, K., Grigoriev, I. V., Theodorou, M. K., Valentine, D. L., & O'Malley, M. A. (2021). Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nature Microbiology, 6(4), 499-511. https://doi.org/10.1038/s41564-020-00861-0

Piwosz, K., Shabarova, T., Pernthaler, J., Posch, T., Šimek, K., Porcal, P., & Salcher, M. M. (2020). Bacterial and eukaryotic small-subunit amplicon data do not provide a quantitative picture of microbial communities, but they are reliable in the context of ecological interpretations. MSphere, 5(2), e00052-20. https://doi.org/10.1128/mSphere.00052-20

Pronk, L. J. U., & Medema, M. H. (2022). Whokaryote: Distinguishing eukaryotic and prokaryotic contigs in metagenomes based on gene structure. Microbiology Society, 8, mgen000823. https://doi.org/10.1099/mgen.0.000823

Rodriguez, R. J., Jr., White, J. F., Jr., Arnold, A. E., & Redman, R. S. (2009). Fungal endophytes: Diversity and functional roles. New Phytologist, 182(2), 314-330.

Rotmistrovsky, K., & Agarwala, R. (2011). BMTagger: Best Match Tagger for removing human reads from metagenomics datasets. Ftp://Ftp.Ncbi.Nlm.Nih.Gov/Pub/Agarwala/Bmtagger/

Roy, S. W., & Penny, D. (2007). Intron length distributions and gene prediction. Nucleic Acids Research, 35(14), 4737-4742. https://doi.org/10.1093/nar/gkm281

Saary, P., Mitchell, A. L., & Finn, R. D. (2020). Estimating the quality of eukaryotic genomes recovered from metagenomic analysis with EukCC. Genome Biology, 21(1), 244. https://doi.org/10.1186/s13059-020-02155-4

Santi, I., Kasapidis, P., Karakassis, I., & Pitta, P. (2021). A comparison of DNA metabarcoding and microscopy methodologies for the study of aquatic microbial eukaryotes. Diversity, 13(5), 180. https://doi.org/10.3390/d13050180

Sapp, M., Ploch, S., Fiore-Donno, A. M., Bonkowski, M., & Rose, L. E. (2018). Protists are an integral part of the Arabidopsis thaliana microbiome. Environmental Microbiology, 20(1), 30-43. https://doi.org/10.1111/1462-2920.13941

Sevim, V., Lee, J., Egan, R., Clum, A., Hundley, H., Lee, J., Everroad, R. C., Detweiler, A. M., Bebout, B. M., Pett-Ridge, J., Göker, M., Murray, A. E., Lindemann, S. R., Klenk, H. P., O'Malley, R., Zane, M., Cheng, J. F., Copeland, A., Daum, C., … Woyke, T. (2019). Shotgun metagenome data of a defined mock community using Oxford Nanopore, PacBio and Illumina technologies. Scientific Data, 6, 285. https://doi.org/10.1038/s41597-019-0287-z

Sweetlove, L. (2011). Number of species on earth tagged at 8.7 million. Nature, 23. https://doi.org/10.1038/news.2011.498

Tamazian, G., Dobrynin, P., Krasheninnikova, K., Komissarov, A., Koepfli, K. P., & O'Brien, S. J. (2016). Chromosomer: A reference-based genome arrangement tool for producing draft chromosome sequences. GigaScience, 5(1), 38. https://doi.org/10.1186/s13742-016-0141-6

Torres, P. J., Edwards, R. A., & McNair, K. A. (2017). PARTIE: A partition engine to separate metagenomic and amplicon projects in the sequence read archive. Bioinformatics, 33(15), 2389-2391. https://doi.org/10.1093/bioinformatics/btx184

Trench-Fiol, S., & Fink, P. (2020). Metatranscriptomics from a small aquatic system: Microeukaryotic community functions through the diurnal cycle. Frontiers in Microbiology, 11, 1006. https://doi.org/10.3389/fmicb.2020.01006

Tully, B. J., Graham, E. D., & Heidelberg, J. F. (2018). The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Scientific Data, 5, 170203. https://doi.org/10.1038/sdata.2017.203

Uritskiy, G. V., DiRuggiero, J., & Taylor, J. (2018). MetaWRAP-A flexible pipeline for genome-resolved metagenomic data analysis. Microbiome, 6(1), 158. https://doi.org/10.1186/s40168-018-0541-1

von Meijenfeldt, F. A. B., Arkhipova, K., Cambuy, D. D., Coutinho, F. H., & Dutilh, B. E. (2019). Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biology, 20(1), 217. https://doi.org/10.1186/s13059-019-1817-x

Wang, G., Wang, S., Chai, X., Zhang, J., Yang, W., Jiang, C., Chen, K., Miao, W., & Xiong, J. (2021). A strategy for complete telomere-to-telomere assembly of ciliate macronuclear genome using ultra-high coverage nanopore data. Computational and Structural Biotechnology Journal, 19, 1928-1932. https://doi.org/10.1016/j.csbj.2021.04.007

Waterhouse, R. M., Seppey, M., Simão, F. A., Manni, M., Ioannidis, P., Klioutchnikov, G., Kriventseva, E. V., & Zdobnov, E. M. (2017). BUSCO applications from quality assessments to gene prediction and phylogenomics. Molecular Biology and Evolution, 35, 543-548. https://doi.org/10.1093/molbev/msx319

West, P. T., Probst, A. J., Grigoriev, I. V., Thomas, B. C., & Banfield, J. F. (2018). Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Research, 28(4), 569-580. https://doi.org/10.1101/gr.228429.117

Zahedi, A., Greay, T. L., Paparini, A., Linge, K. L., Joll, C. A., & Ryan, U. M. (2019). Identification of eukaryotic microorganisms with 18S rRNA next-generation sequencing in wastewater treatment plants, with a more targeted NGS approach required for cryptosporidium detection. Water Research, 158, 301-312. https://doi.org/10.1016/j.watres.2019.04.041

Zhang, L., Zhou, X., Weng, Z., & Sidow, A. (2020). De novo diploid genome assembly for genome-wide structural variant detection. NAR Genomics and Bioinformatics, 2(1), lqz018. https://doi.org/10.1093/nargab/lqz018

Zhu, Q., Mai, U., Pfeiffer, W., Janssen, S., Asnicar, F., Sanders, J. G., Belda-Ferre, P., al-Ghalith, G. A., Kopylova, E., McDonald, D., Kosciolek, T., Yin, J. B., Huang, S., Salam, N., Jiao, J. Y., Wu, Z., Xu, Z. Z., Cantrell, K., Yang, Y., … Knight, R. (2019). Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains bacteria and archaea. Nature Communications, 10(1), 5477. https://doi.org/10.1038/s41467-019-13443-4

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Long-read sequencing sheds light on key bacteria contributing to deadwood decomposition processes

. 2024 Dec 03 ; 19 (1) : 99. [epub] 20241203

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...