Long-term stability in the circumpolar foraging range of a Southern Ocean predator between the eras of whaling and rapid climate change

. 2023 Mar 07 ; 120 (10) : e2214035120. [epub] 20230227

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36848574

Assessing environmental changes in Southern Ocean ecosystems is difficult due to its remoteness and data sparsity. Monitoring marine predators that respond rapidly to environmental variation may enable us to track anthropogenic effects on ecosystems. Yet, many long-term datasets of marine predators are incomplete because they are spatially constrained and/or track ecosystems already modified by industrial fishing and whaling in the latter half of the 20th century. Here, we assess the contemporary offshore distribution of a wide-ranging marine predator, the southern right whale (SRW, Eubalaena australis), that forages on copepods and krill from ~30°S to the Antarctic ice edge (>60°S). We analyzed carbon and nitrogen isotope values of 1,002 skin samples from six genetically distinct SRW populations using a customized assignment approach that accounts for temporal and spatial variation in the Southern Ocean phytoplankton isoscape. Over the past three decades, SRWs increased their use of mid-latitude foraging grounds in the south Atlantic and southwest (SW) Indian oceans in the late austral summer and autumn and slightly increased their use of high-latitude (>60°S) foraging grounds in the SW Pacific, coincident with observed changes in prey distribution and abundance on a circumpolar scale. Comparing foraging assignments with whaling records since the 18th century showed remarkable stability in use of mid-latitude foraging areas. We attribute this consistency across four centuries to the physical stability of ocean fronts and resulting productivity in mid-latitude ecosystems of the Southern Ocean compared with polar regions that may be more influenced by recent climate change.

Biology Department University of New Mexico Albuquerque NM 87131 0001

British Antarctic Survey Cambridge CB3 0ET United Kingdom

Centre for Coastal Studies Provincetown MA 02657

Collégial International Sainte Anne Montreal QC H8S 2M8 Canada

Consejo Nacional de Investigaciones Científicas y Técnicas Laboratorio de Ecología Evolutiva Humana Facultad de Ciencias Sociales de la Universidad Nacional del Centro de la Provincia de Buenos Aires 7631 Buenos Aires Argentina

Cooperative Institute for Climate Ecosystem and Ocean Studies University of Washington and Marine Mammal Laboratory Alaska Fisheries Science Center National Oceanic and Atmospheric Administration Seattle WA 98112

Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava 701 03 Czech Republic

Department of Biology University of Florida Gainesville FL 32611

Department of Environment Land Water and Planning Warrnambool VIC 3280 Australia

Department of Fisheries Wildlife and Conservation Sciences Oregon State University Corvallis OR 97365

Department of Natural History NTNU University Museum Norwegian University of Science and Technology 7491 Trondheim Norway

Department of Natural Resources and Environment Tasmania Hobart 7001 Australia

Department of Zoology Faculty of Science Charles University Prague 116 36 Czech Republic

Diversidad Biológica 4 Universidad Nacional de Córdoba Córdoba X5000HUA Argentina

Dyer Island Conservation Trust Great White House Kleinbaai Van Dyks Bay 7220 South Africa

Ecological Marine Services Pty Ltd Bundaberg 4670 QLD Australia

Environmental Law Initiative Wellington 6011 Aotearoa New Zealand

Geomar Helmholtz Centre for Ocean Research Kiel 24148 Kiel Germany

Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul Torres RS 95560 000 Brazil

Institute for Marine and Antarctic Studies University of Tasmania Hobart TAS 7005 Australia

Instituto Australis Imbituba SC 88780 000 Brazil

Instituto de Conservación de Ballenas Ing Maschwitz 1623 Buenos Aires Argentina

Ivanhoe Sea Safaris Gansbaai 7220 South Africa

Laboratório de Ecologia de Mamίferos Universidade do Vale do Rio dos Sinos Sao Leopoldo RS 93022 750 Brazil

Laboratorio de Macroecología Marina Centro de Investigación Científica y Educación Superior de Ensenada Unidad La Paz 23050 La Paz BCS México

Mammal Research Institute Department of Zoology and Entomology University of Pretoria Pretoria 0002 South Africa

Marine Ecology and Telemetry Research and Cascadia Research Collective Seabeck WA 98380

Marine Evolution and Conservation Group Groningen Institute of Evolutionary Life Sciences University of Groningen 9747 AG Groningen The Netherlands

Marine Mammal Institute Oregon State University Newport OR 97365

New Zealand Department of Conservation Te Papa Atawhai Wellington 6011 Aotearoa New Zealand

Núcleo de Gestão Integrada ICMBio Florianópolis Instituto Chico Mendes de Conservação da Biodiversidade Ministério do Meio Ambiente Florianópolis 88053 700 Brazil

Ocean Alliance Gloucester MA 01930

School of Biological Sciences University of Auckland Waipapa Taumata Rau Auckland 1010 Aotearoa New Zealand

School of Biological Sciences University of Utah Salt Lake City UT 84112 0840

School of Earth and Environmental Sciences University of Adelaide Adelaide SA 5064 Australia

School of Natural Sciences Macquarie University Sydney NSW 2000 Australia

South Australian Research and Development Institute Primary Industries and Regions South Australia Adelaide SA 5064 Australia

Stable Isotope Biogeochemistry Laboratory Department of Earth Sciences Durham University Durham DH1 3LE United Kingdom

Unité Mixte de Recherche Entropie French Institute of Research for Sustainable Development Nouméa 98848 New Caledonia

Universidade Estadual do Rio Grande do Sul Osório RS 95520 000 Brazil

Zobrazit více v PubMed

Chapman C. C., Lea M. A., Meyer A., Sallée J. B., Hindell M., Defining Southern Ocean fronts and their influence on biological and physical processes in a changing climate. Nat. Clim. Chang. 10, 209–219 (2020).

Tulloch V. J. D., Plagányi É. E., Brown C., Richardson A. J., Matear R., Future recovery of baleen whales is imperiled by climate change. Glob. Chang. Biol. 25, 1263–1281 (2019). PubMed PMC

Nicol S., Foster J., Kawaguchi S., The fishery for Antarctic krill - recent developments. Fish 13, 30–40 (2012).

McBride M., et al. , Antarctic krill Euphausia superba: Spatial distribution, abundance, and management of fisheries in a changing climate. Mar. Ecol. Prog. Ser. 668, 185–214 (2021).

Dawson J., Holsman K., Mustonen T., Piepenburg D., Rost B., Cross-Chapter Paper 6: Polar Regions. IPCC WGII Sixth Assess. Rep., 1–66 (2021).

Montes-Hugo M., et al. , Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science 323, 1470–1473 (2009). PubMed

Atkinson A., et al. , Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Chang. 9, 142–147 (2019).

Kawaguchi S., et al. , Will krill fare well under Southern Ocean acidification? Biol. Lett. 7, 288–291 (2011). PubMed PMC

Weimerskirch H., Inchausti P., Guinet C., Barbraud C., Trends in bird and seal populations as indicators of a system shift in the Southern Ocean. Antarct. Sci. 15, 249–256 (2003).

Hindell M. A., et al. , Tracking of marine predators to protect Southern Ocean ecosystems. Nature 580, 87–92 (2020). PubMed

Hazen E. L., et al. , Marine top predators as climate and ecosystem sentinels. Front. Ecol. Environ. 17, 565-574 (2019).

Descamps S., Strøm H., As the Arctic becomes boreal: Ongoing shifts in a high-Arctic seabird community. Ecology 102, e03485 (2021). PubMed

Erauskin-Extramiana M., et al. , Large-scale distribution of tuna species in a warming ocean. Glob. Chang. Biol. 25, 2043–2060 (2019). PubMed

Hammerschlag N., et al. , Ocean warming alters the distributional range, migratory timing, and spatial protections of an apex predator, the tiger shark (Galeocerdo cuvier). Glob. Chang. Biol. 28, 1990–2005 (2022). PubMed PMC

Davis G. E., et al. , Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data. Glob. Chang. Biol. 26, 4812–4840 (2020). PubMed PMC

Bull J. C., et al. , Climate causes shifts in grey seal phenology by modifying age structure. Proc. R. Soc. B Biol. Sci. 288, 1–10 (2021). PubMed PMC

van den Berg G. L., et al. , Decadal shift in foraging strategy of a migratory southern ocean predator. Glob. Chang. Biol. 27, 1052–1067 (2021). PubMed

Hückstädt L. A., McCarthy M. D., Koch P. L., Costa D. P., What difference does a century make? Shifts in the ecosystem structure of the Ross Sea, Antarctica, as evidenced from a sentinel species, the weddell seal. Proc. R. Soc. B Biol. Sci. 284, 20170927 (2017). PubMed PMC

Carpenter-Kling T., et al. , Gentoo penguins as sentinels of climate change at the sub-Antarctic Prince Edward Archipelago, Southern Ocean. Ecol. Indic. 101, 163–172 (2019).

Bestley S., et al. , Marine Ecosystem Assessment for the Southern Ocean: Birds and Marine Mammals in a Changing Climate. Front. Ecol. Evol. 8, 566936 (2020).

Chambault P., et al. , Future seasonal changes in habitat for Arctic whales during predicted ocean warming. Sci. Adv. 8, 1–10 (2022). PubMed PMC

Smith T. D., Reeves R. R., Josephson E., Lund J. N., Spatial and seasonal distribution of American whaling and whales in the age of sail. PLoS One 7, e34905 (2012). PubMed PMC

Tormosov D., et al. , Soviet catches of Southern right whales Eubalaena australis 1951–1971. Biol. Conserv. 86, 185–197 (1998).

Torres L. G., et al. , From exploitation to conservation: Habitat models using whaling data predict ditribution patterns and threat exposure of an endangered whale. Divers. Distrib. 19, 1138–1152 (2013).

González Carman V., Piola A., O’Brien T. D., Tormosov D. D., Acha E. M., Circumpolar frontal systems as potential feeding grounds of Southern Right whales. Prog. Oceanogr. 176, 102123 (2019).

Jackson J. A., Patenaude N. J., Carroll E. L., Baker C. S., How few whales were there after whaling? Inference from contemporary mtDNA diversity. Mol. Ecol. 17, 236–251 (2008). PubMed

Harcourt R., van der Hoop J., Kraus S., Carroll E. L., Future directions in Eubalaena spp.: Comparative research to inform conservation. Front. Mar. Sci. 5, 530 (2019).

Best P., Payne R., Rowntree V. J., Palazzo J., Both M., Long-range movements of South Atlantic right whales Eubalaena australis. Mar. Mammal Sci. 9, 227–234 (1993).

Zerbini A. N., Satellite tracking of Southern right whales (Eubalaena australis) from Golfo San Matías, Rio Negro Province, Argentina. Rep. SC/67b/CMP17 to Sci. Comm. Int. Whal. Comm. Cambridge, UK. Available from https//iwc.int (2018).

Graham B. S., Koch L., Paul S. D., Newsome K. W., McMahon D. Aurioles., “Chapter 14: Using isoscapes to trace the movements and foraging behavior of top predators in oceanic ecosystems” in Isoscapes: Understanding Movement, Pattern, and Process on Earth Through Isotope Mapping, West J. B., Ed. (Springer Science & Business Media, 2010), pp. 299–318.

Ramos R., González-Solís J., Trace me if you can: The use of intrinsic biogeochemical markers in marine top predators. Front. Ecol. Environ. 10, 258–266 (2012).

Newsome S., Clementz M., Koch P., Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mammal Sci. 26, 509–572 (2010).

Busquets-Vass G., et al. , Estimating blue whale skin isotopic incorporation rates and baleen growth rates: Implications for assessing diet and movement patterns in mysticetes. PLoS One 12, e0177880. (2017). PubMed PMC

Valenzuela L. O., Rowntree V. J., Sironi M., Seger J., Stable isotopes in skin reveal diverse food sources used by southern right whales (Eubalaena australis). Mar. Ecol. Prog. Ser. 603, 243–255 (2018).

Magozzi S., Yool A., Vander Zanden H. B., Wunder M. B., Trueman C. N., Using ocean models to predict spatial and temporal variation in marine carbon isotopes. Ecosphere 8 (5), e01763 (2017).

Somes C. J., et al. , Simulating the global distribution of nitrogen isotopes in the ocean. Global Biogeochem. Cycles 24, 1–16 (2010).

Somes C. J., Schmittner A., Muglia J., Oschlies A., A three-dimensional model of the marine nitrogen cycle during the last glacial maximum constrained by sedimentary isotopes. Front. Mar. Sci. 4, 1–24 (2017).

Mackay A. I., et al. , Satellite derived offshore migratory movements of southern right whales (Eubalaena australis) from Australian and New Zealand wintering grounds. PLoS One 15, 1–20 (2020). PubMed PMC

Mate B. R., Best P. B., Lagerquist B. A., Winsor M. H., Coastal, offshore, and migratory movements of South African right whales revealed by satellite telemetry. Mar. Mammal Sci. 27, 455–476 (2011).

Seyboth E., et al. , Southern Right Whale (Eubalaena australis) reproductive success is influenced by krill (Euphausia superba) density and climate. Sci. Rep. 6, 1–8 (2016). PubMed PMC

Leaper R., et al. , Global climate drives southern right whale (Eubalaena australis) population dynamics. Biol. Lett. 2, 289–292 (2006). PubMed PMC

Agrelo M., et al. , Ocean warming threatens southern right whale population recovery. Sci. Adv. 7, eabh2823 (2021). PubMed PMC

Stamation K., Watson M., Moloney P., Charlton C., Bannister J., Population estimate and rate of increase of southern right whales Eubalaena australis in Southeastern Australia. Endanger. Species Res. 41, 373–383 (2020).

Schmittner A., Somes C. J., Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean’s soft-tissue biological pump. Paleoceanography 31, 669–693 (2016).

Carroll E. L., et al. , Incorporating non-equilibrium dynamics into demographic history inferences of a migratory marine species. Heredity (Edinb). 122, 53–68 (2019). PubMed PMC

Carroll E. L., et al. , Genetic diversity and connectivity of southern right whales (Eubalaena australis) found in the Brazil and Chile-Peru wintering grounds and the South Georgia (Islas Georgias del Sur) feeding ground. J. Hered. 111, 263–276 (2020). PubMed PMC

Carroll E. L., et al. , Population structure and individual movement of southern right whales around New Zealand and Australia. Mar. Ecol. Prog. Ser. 432, 257–268 (2011).

Vander Zanden H. B., et al. , Determining origin in a migratory marine vertebrate: A novel method to integrate stable isotopes and satellite tracking. Ecol. Appl. 25, 320–335 (2015). PubMed

Brennan S. R., Schindler D. E., Linking otolith microchemistry and dendritic isoscapes to map heterogeneous production of fish across river basins: Ecol. Appl. 27, 363–377 (2017). PubMed

Trueman C. N., MacKenzie K. M., K. St John Glew, Stable isotope-based location in a shelf sea setting: Accuracy and precision are comparable to light-based location methods. Methods Ecol. Evol. 8, 232–240 (2017).

Friedlaender A., et al. , Sympatry and resource partitioning between the largest krill consumers around the Antarctic Peninsula. Mar. Ecol. Prog. Ser. 669, 1–16 (2021).

Herr H., et al. , Horizontal niche partitioning of humpback and fin whales around the West Antarctic Peninsula: Evidence from a concurrent whale and krill survey. Polar Biol. 39, 799–818 (2016).

Riekkola L., Andrews-Goff V., Friedlaender A., Constantine R., Zerbini A. N., Environmental drivers of humpback whale foraging behavior in the remote Southern Ocean. J. Exp. Mar. Bio. Ecol. 517, 1–12 (2019).

Veytia D., et al. , Circumpolar projections of Antarctic krill growth potential. Nat. Clim. Chang. 10, 568–575 (2020).

Yang G., et al. , Changing circumpolar distributions and isoscapes of Antarctic krill: Indo-Pacific habitat refuges counter long-term degradation of the Atlantic sector. Limnol. Oceanogr. 66, 272–287 (2021).

Meredith M. P., King J. C., Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. 32, 1–5 (2005).

Atkinson A., Siegel V., Pakhomov E., Rothery P., Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004). PubMed

Atkinson A., et al. , Stepping stones towards Antarctica: Switch to southern spawning grounds explains an abrupt range shift in krill. Glob. Chang. Biol. 28, 1359–1375 (2022). PubMed

Hückstädt L. A., et al. , Projected shifts in the foraging habitat of crabeater seals along the Antarctic Peninsula. Nat. Clim. Chang. 10, 472–477 (2020).

Nicol S., Pauly T., Bindoff N. L., Strutton P. G., “BROKE” a biological/oceanographic survey off the coast of East Antarctica (80–150°E) carried out in January-March 1996. Deep. Res. Part II Top. Stud. Oceanogr. 47, 2281–2297 (2000).

Nicol S., Kitchener J., King R., Hosie G., De la Mare W. K., Population structure and condition of Antarctic krill (Euphausia superba) off East Antarctica (80–150°E) during the Austral summer of 1995/1996. Deep. Res. Part II Top. Stud. Oceanogr. 47, 2489–2517 (2000).

Bost C. A., et al. , The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J. Mar. Syst. 78, 363–376 (2009).

Tarling G. A., Ward P., Thorpe S. E., Spatial distributions of Southern Ocean mesozooplankton communities have been resilient to long-term surface warming. Glob. Chang. Biol. 24, 132–142 (2018). PubMed

Carpenter-Kling T., et al. , A critical assessment of marine predator isoscapes within the southern Indian Ocean. Mov. Ecol. 8, 1–18 (2020). PubMed PMC

Georges J. Y., Bonadonna F., Guinet C., Foraging habitat and diving activity of lactating Subantarctic fur seals in relation to sea-surface temperatures at Amsterdam Island. Mar. Ecol. Prog. Ser. 196, 291–304 (2000).

Garcia-Rojas M. I., et al. , Environmental evidence for a pygmy blue whale aggregation area in the Subtropical Convergence Zone south of Australia. Mar. Mammal Sci. 34, 901–923 (2018).

Finucci B., et al. , Ghosts of the deep – Biodiversity, fisheries, and extinction risk of ghost sharks. Fish Fish. 22, 391–412 (2021).

Caccavo J. A., et al. , Productivity and change in fish and squid in the Southern Ocean. Front. Ecol. Evol. 9 (2021).

Thavar T., Assessing the nutritional state of southern right whales (Eubalaena australis) through measurements of body volume and blubber glucocorticoids levels, and investigating the relation to reproductive success. Master thesis Zool. Univ. Pretoria 98 (2021).

Vermeulen E., Wilkinson C., Germishuizen M., “Report of the southern right whale aerial surveys – 2019” (Rep. Present. to Sci. Comm. Int. Whal. Comm. Cambridge, UK. Available https//iwc.int/en/, 2022).

Charlton C., et al. , Southern right whale (Eubalaena australis) population demographics at major calving ground Head of Bight, South Australia, 1991–2016. Aquat. Conserv. Mar. Freshw. Ecosyst. 32, 671–686 (2022).

Christiansen F., et al. , Population comparison of right whale body condition reveals poor state of the North Atlantic right whale. Mar. Ecol. Prog. Ser. 640, 1–16 (2020).

Carroll E. L., et al. , Accounting for female reproductive cycles in a superpopulation capture-recapture framework. Ecol. Appl. 23, 1677–1690 (2013). PubMed

Torres L. G., et al. , Range-wide comparison of gray whale body condition reveals contrasting sub-population health characteristics and vulnerability to environmental change. Front. Mar. Sci. 9, 1–13 (2022). PubMed

Reisinger R. R., et al. , Combining regional habitat selection models for large-scale prediction: Circumpolar habitat selection of southern ocean humpback whales. Remote Sens. 13, 2074 (2021).

Vighi M., et al. , Stable isotopes indicate population structuring in the Southwest Atlantic population of right whales (Eubalaena australis). PLoS One 9 (2014). PubMed PMC

Valenzuela L. O., Sironi M., Rowntree V. J., Seger J., Isotopic and genetic evidence for culturally inherited site fidelity to feeding grounds in southern right whales (Eubalaena australis). Mol. Ecol. 18, 782–791 (2009). PubMed

Brakes P., et al. , A deepening understanding of animal culture suggests lessons for conservation. Proc. R. Soc. B Biol. Sci. 288, 20202718 (2021). PubMed PMC

Clapham P. J., Aguilar A., Hatch L. T., Determining spatial and temporal scales for management: Lessons from whaling. Mar. Mammal Sci. 24, 183–201 (2008).

Meyer-Gutbrod E. L., Greene C. H., Davies K. T. A., Johns D. G., Ocean regime shift is driving collapse of the north atlantic right whale population. Oceanography 34, 22–31 (2021).

St K., et al. , Sympatric Atlantic puffins and razorbills show contrasting responses to adverse marine conditions during winter foraging within the North Sea. Mov. Ecol. 7, 1–14 (2019). PubMed PMC

Borrell A., Abad-Oliva N., Gõmez-Campos E., Giménez J., Aguilar A., Discrimination of stable isotopes in fin whale tissues and application to diet assessment in cetaceans. Rapid Commun. Mass Spectrom. 26, 1596–1602 (2012). PubMed

Lorrain A., et al. , Trends in tuna carbon isotopes suggest global changes in pelagic phytoplankton communities. Glob. Chang. Biol. 26, 458–470 (2020). PubMed

Mestre J., et al. , Decadal changes in blood δ13C values, at-sea distribution, and weaning mass of southern elephant seals from Kerguelen Islands. Proc. R. Soc. B Biol. Sci. 287, 20201544 (2020). PubMed PMC

Todd S., Ostrom P., Lien J., Abrajano J., Use of biopsy samples of humpback whale (Megaptera novaeangliae) skin for stable isotope (δ13C) determination. J. Northwest Atl. Fish. Sci. 22, 71–76 (1997).

Somes C. J., et al. , Constraining Global Marine Iron Sources and Ligand-Mediated Scavenging Fluxes With GEOTRACES Dissolved Iron Measurements in an Ocean Biogeochemical Model. Global Biogeochem. Cycles 35, e2021GB006948 (2021).

Verwega M. T., et al. , Description of a global marine particulate organic carbon-13 isotope data set. Earth Syst. Sci. Data 13, 4861–4880 (2021).

St John Glew K., et al., Isoscape Models of the Southern Ocean: Predicting Spatial and Temporal Variability in Carbon and Nitrogen Isotope Compositions of Particulate Organic Matter. Global Biogeochem. Cycles 35, e2020GB006901 (2021).

Vanderklift M. A., Ponsard S., Sources of variation in consumer-diet δ15N enrichment: A meta-analysis. Oecologia 136, 169–182 (2003). PubMed

McCutchan J. H., Lewis W. M., Kendall C., McGrath C. C., Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).

Mompeán C., Bode A., Gier E., McCarthy M. D., Bulk vs. amino acid stable N isotope estimations of metabolic status and contributions of nitrogen fixation to size-fractionated zooplankton biomass in the subtropical N Atlantic. Deep. Res. Part I Oceanogr. Res. Pap. 114, 137–148 (2016).

Caut S., Angulo E., Courchamp F., Variation in discrimination factors (Δ15N and Δ13C): The effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 46, 443–453 (2009).

Tiselius P., Fransson K., Daily changes in δ15N and δ13C stable isotopes in copepods: Equilibrium dynamics and variations of trophic level in the field. J. Plankton Res. 38, 751–761 (2016).

Carroll E. L., Satellite tracking and genetic evidence of changing migratory traditions after exploitation. prep.

Kennedy A., Photo-ID and satellite tracking connects South Georgia (Islas Georgias del Sur) southern right whales with multiple feeding and calving grounds in the southwest Atlantic Ocean. ar. Mammal Sci.

Kennedy A. S., “Whales return to the epicentre of whaling ? Preliminary results from the 2020 cetacean survey at South Georgia (Islas Georgias del Sur)” (Rep. SC/68B/CMP/22 Present. to Sci. Comm. Int. Whal. Comm. Cambridge, UK, 2020).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...