Broadband Mueller ellipsometer as an all-in-one tool for spectral and temporal analysis of mutarotation kinetics

. 2023 Feb 21 ; 13 (10) : 6582-6592. [epub] 20230227

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36860536

Spectroscopic Mueller matrix ellipsometry is becoming increasingly routine across physical branches of science, even outside optics. The highly sensitive tracking of the polarization-related physical properties offers a reliable and non-destructive analysis of virtually any sample at hand. If coupled with a physical model, it is impeccable in performance and irreplaceable in versatility. Nonetheless, this method is rarely adopted interdisciplinarily, and when it is, it often plays a supporting role, which does not take benefit of its full potential. To bridge this gap, we present Mueller matrix ellipsometry in the context of chiroptical spectroscopy. In this work, we utilize a commercial broadband Mueller ellipsometer to analyze the optical activity of a saccharides solution. We verify the correctness of the method in the first place by studying the well-known rotatory power of glucose, fructose, and sucrose. By employing a physically meaningful dispersion model, we obtain 2π-unwrapped absolute specific rotations. Besides that, we demonstrate the capability of tracing the glucose mutarotation kinetics from just one set of measurements. Coupling the Mueller matrix ellipsometry with the proposed dispersion model ultimately leads to the precisely determined mutarotation rate constants and spectrally and temporally resolved gyration tensor of individual glucose anomers. In this view, Mueller matrix ellipsometry may stand as an offbeat yet equal technique to those considered classical chiroptical spectroscopy techniques, which may help open new opportunities for broader polarimetric applications in biomedicine and chemistry.

Zobrazit více v PubMed

He C. He H. Chang J. Chen B. Ma H. Booth M. J. Light: Sci. Appl. 2021;10:1–20. doi: 10.1038/s41377-020-00435-z. PubMed DOI PMC

Rodríguez-Núñez O. Schucht P. Hewer E. Novikova T. Pierangelo A. Biomed. Opt. Express. 2021;12:6674–6685. doi: 10.1364/BOE.439754. PubMed DOI PMC

Kupinski M. Boffety M. Goudail F. Ossikovski R. Pierangelo A. Rehbinder J. Vizet J. Novikova T. Biomed. Opt. Express. 2018;9:5691–5702. doi: 10.1364/BOE.9.005691. PubMed DOI PMC

Herrfurth O. Richter S. Rebarz M. Espinoza S. Zúñiga-Pérez J. Deparis C. Leveillee J. Schleife A. Grundmann M. Andreasson J. Schmidt-Grund R. Phys. Rev. Res. 2021;3:013246. doi: 10.1103/PhysRevResearch.3.013246. DOI

Richter S. Herrfurth O. Espinoza S. Rebarz M. Kloz M. Leveillee J. A. Schleife A. Zollner S. Grundmann M. Andreasson J. Schmidt-Grund R. New J. Phys. 2020;22:083066. doi: 10.1088/1367-2630/aba7f3. DOI

Chen X. Sun Q. Wang J. Lindley-Hatcher H. Pickwell-MacPherson E. Adv. Photonics Res. 2021;2:2000024. doi: 10.1002/adpr.202000024. DOI

Vizet J. Rehbinder J. Deby S. Roussel S. Nazac A. Soufan R. Genestie C. Haie-Meder C. Fernandez H. Moreau F. Pierangelo A. Sci. Rep. 2017;7:1–12. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC

Halagacka L. Gelnarova Z. Al-Ghzaiwat M. Florea I. Hornicek J. Postava K. Foldyna M. Opt. Express. 2021;29:31465–31477. doi: 10.1364/OE.435500. PubMed DOI

Mrazkova Z. Sobkowicz I. P. Foldyna M. Postava K. Florea I. Pištora J. Roca i Cabarrocas P. Prog. Photovolt.: Res. Appl. 2018;26:369–376. doi: 10.1002/pip.2994. DOI

Sachse R. Moor M. Kraehnert R. Hodoroaba V.-D. Hertwig A. Adv. Eng. Mater. 2022;24:2101320. doi: 10.1002/adem.202101320. DOI

Caglayan M. O. Üstündağ Z. Şahin S. Talanta. 2022;237:122897. doi: 10.1016/j.talanta.2021.122897. PubMed DOI

Dukor R. K. Keiderling T. A. Biospectroscopy. 1996;2:83–100. doi: 10.1002/(SICI)1520-6343(1996)2:2<83::AID-BSPY2>3.0.CO;2-T. DOI

Sato H. Phys. Chem. Chem. Phys. 2020;22:7671–7679. doi: 10.1039/D0CP00713G. PubMed DOI

Parchaňský V. Kapitán J. Bouř P. RSC Adv. 2014;4:57125–57136. doi: 10.1039/C4RA10416A. DOI

Melcrová A. Kessler J. Bouř P. Kaminský J. Phys. Chem. Chem. Phys. 2016;18:2130–2142. doi: 10.1039/C5CP04111B. PubMed DOI

Wu T. Kapitán J. Bouř P. J. Phys. Chem. Lett. 2022;13:3873–3877. doi: 10.1021/acs.jpclett.2c00653. PubMed DOI

Albano G. Pescitelli G. Di Bari L. Chem. Rev. 2020;120:10145–10243. doi: 10.1021/acs.chemrev.0c00195. PubMed DOI

Kessler J. Bouř P. J. Chem. Theory Comput. 2022;18:1780–1787. doi: 10.1021/acs.jctc.1c01138. PubMed DOI

Stabo-Eeg F. Kildemo M. Nerbo I. Lindgren M. Opt. Eng. 2008;47:0736041. doi: 10.1117/1.2957047. DOI

Manhas S. Swami M. K. Buddhiwant P. Ghosh N. Gupta P. K. Singh K. Opt. Express. 2006;14:190–202. doi: 10.1364/OPEX.14.000190. PubMed DOI

Lin L.-H. Lo Y.-L. Liao C.-C. Lin J.-X. Appl. Opt. 2015;54:10425–10431. doi: 10.1364/AO.54.010425. PubMed DOI

Mukherjee P. Hagen N. Otani Y. Optik. 2019;180:775–781. doi: 10.1016/j.ijleo.2018.11.157. DOI

McNichols R. J. Coté G. L. J. Biomed. Opt. 2000;5:5–16. doi: 10.1117/1.429962. PubMed DOI

Phan Q.-H. Lo Y.-L. Opt. Express. 2017;25:15179–15187. doi: 10.1364/OE.25.015179. PubMed DOI

Westphal P. Kaltenbach J.-M. Wicker K. Biomed. Opt. Express. 2016;7:1160–1174. doi: 10.1364/BOE.7.001160. PubMed DOI PMC

Maestro A. Gutfreund P. Adv. Colloid Interface Sci. 2021;293:102434. doi: 10.1016/j.cis.2021.102434. PubMed DOI

Romanenko A. Agócs E. Hózer Z. Petrik P. Serényi M. Appl. Surf. Sci. 2022;573:151543. doi: 10.1016/j.apsusc.2021.151543. DOI

Wolnica K. Szklarz G. Dulski M. Wojtyniak M. Tarnacka M. Kaminska E. Wrzalik R. Kaminski K. Paluch M. Colloids Surf., B. 2019;182:110319. doi: 10.1016/j.colsurfb.2019.06.049. PubMed DOI

Lin C.-E. Yu C.-J. Chen C.-L. Chou L.-D. Chou C. J. Phys. Chem. A. 2010;114:1665–1669. doi: 10.1021/jp906523s. PubMed DOI

Barron L. D., Molecular Light Scattering and Optical Activity, Cambridge University Press, Cambridge, England, UK, 2004

Weast R. C., Handbook of Chemistry and Physics, CRC Press Inc., Boca Raton, FL, USA, 55th edn, 1974

Greenstein G. R. Reference Reviews. 2007;21:40.

Moreno J. and Peinado R., Enological Chemistry, Elsevier, Academic Press, 2012

Arteaga O. Canillas A. Jellison Jr G. E. Appl. Opt. 2009;48:5307–5317. doi: 10.1364/AO.48.005307. PubMed DOI

Arteaga O. Freudenthal J. Kahr B. J. Appl. Crystallogr. 2012;45:279–291. doi: 10.1107/S0021889812006085. DOI

Vala D. Koleják P. Postava K. Kildemo M. Provazníková P. Pištora J. Opt. Express. 2021;29:10434–10450. doi: 10.1364/OE.418186. PubMed DOI

Franta D. J. Appl. Phys. 2020;127:223101. doi: 10.1063/5.0005735. DOI

Ossikovski R. Arteaga O. Opt. Lett. 2017;42:3690–3693. doi: 10.1364/OL.42.003690. PubMed DOI

Franta D. Vohánka J. J. Opt. Soc. Am. B. 2021;38:553–561. doi: 10.1364/JOSAB.410315. DOI

Daimon M. Masumura A. Appl. Opt. 2007;46:3811–3820. doi: 10.1364/AO.46.003811. PubMed DOI

Belay A. J. Lasers Opt. Photonics. 2018;5:1–5. PubMed PMC

Kendrew C. J. Moelwyn-Hughes A. E. Proc. R. Soc. London, Ser. A. 1940;176:352–367.

Kabayama M. Patterson D. Piche L. Can. J. Chem. 1958;36:557–562. doi: 10.1139/v58-078. DOI

Le Barc’H N. Grossel J. M. Looten P. Mathlouthi M. Food Chem. 2001;74:119–124. doi: 10.1016/S0308-8146(01)00139-X. DOI

Kraus J. Nyvlt J. Zuckerindustrie. 1994;119:24–29.

Arwin H. Schoeche S. Hilfiker J. Hartveit M. Järrendahl K. Juárez-Rivera O. R. Mendoza-Galván A. Magnusson R. Appl. Sci. 2021;11:6742. doi: 10.3390/app11156742. DOI

Garcia-Caurel E., Ossikovski R., Foldyna M., Pierangelo A., Drévillon B. and De Martino A., Ellipsometry at the Nanoscale, Springer, Berlin, Germany, 2013, pp. 31–143

Buckingham A. D., Advances in Chemical Physics, John Wiley & Sons, Ltd, Chichester, England, UK, 1967, pp. 107–142

Fischer P. Hache F. Chirality. 2005;17:421–437. doi: 10.1002/chir.20179. PubMed DOI

Buckingham A. D. Dunn M. B. J. Chem. Soc. A. 1971:1988–1991. doi: 10.1039/J19710001988. DOI

Andrews S. S. J. Chem. Educ. 2004;81:877. doi: 10.1021/ed081p877. DOI

Kuball H.-G. Karstens T. Schönhofer A. Chem. Phys. 1976;12:1–13. doi: 10.1016/0301-0104(76)80105-X. DOI

Nye J. F., Physical Properties of Crystals: Their Representation by Tensors and Matrices, Clarendon Press, Oxford, England, UK, 1985

Agranovich V. M. and Ginzburg V., Crystal Optics with Spatial Dispersion, and Excitons, Springer, Berlin, Germany, 1984

Cloude S. R. Optik. 1986;75:26–36.

Lu S.-Y. Chipman R. A. J. Opt. Soc. Am. A. 1996;13:1106–1113. doi: 10.1364/JOSAA.13.001106. DOI

Gil Pérez J. J. and Ossikovski R., Polarized Light and the Mueller Matrix Approach, Taylor & Francis, Andover, England, UK, 2016

Ortega-Quijano N. Arce-Diego J. L. Opt. Lett. 2011;36:1942–1944. doi: 10.1364/OL.36.001942. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...