Broadband Mueller ellipsometer as an all-in-one tool for spectral and temporal analysis of mutarotation kinetics
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36860536
PubMed Central
PMC9969180
DOI
10.1039/d3ra00101f
PII: d3ra00101f
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Spectroscopic Mueller matrix ellipsometry is becoming increasingly routine across physical branches of science, even outside optics. The highly sensitive tracking of the polarization-related physical properties offers a reliable and non-destructive analysis of virtually any sample at hand. If coupled with a physical model, it is impeccable in performance and irreplaceable in versatility. Nonetheless, this method is rarely adopted interdisciplinarily, and when it is, it often plays a supporting role, which does not take benefit of its full potential. To bridge this gap, we present Mueller matrix ellipsometry in the context of chiroptical spectroscopy. In this work, we utilize a commercial broadband Mueller ellipsometer to analyze the optical activity of a saccharides solution. We verify the correctness of the method in the first place by studying the well-known rotatory power of glucose, fructose, and sucrose. By employing a physically meaningful dispersion model, we obtain 2π-unwrapped absolute specific rotations. Besides that, we demonstrate the capability of tracing the glucose mutarotation kinetics from just one set of measurements. Coupling the Mueller matrix ellipsometry with the proposed dispersion model ultimately leads to the precisely determined mutarotation rate constants and spectrally and temporally resolved gyration tensor of individual glucose anomers. In this view, Mueller matrix ellipsometry may stand as an offbeat yet equal technique to those considered classical chiroptical spectroscopy techniques, which may help open new opportunities for broader polarimetric applications in biomedicine and chemistry.
Zobrazit více v PubMed
He C. He H. Chang J. Chen B. Ma H. Booth M. J. Light: Sci. Appl. 2021;10:1–20. doi: 10.1038/s41377-020-00435-z. PubMed DOI PMC
Rodríguez-Núñez O. Schucht P. Hewer E. Novikova T. Pierangelo A. Biomed. Opt. Express. 2021;12:6674–6685. doi: 10.1364/BOE.439754. PubMed DOI PMC
Kupinski M. Boffety M. Goudail F. Ossikovski R. Pierangelo A. Rehbinder J. Vizet J. Novikova T. Biomed. Opt. Express. 2018;9:5691–5702. doi: 10.1364/BOE.9.005691. PubMed DOI PMC
Herrfurth O. Richter S. Rebarz M. Espinoza S. Zúñiga-Pérez J. Deparis C. Leveillee J. Schleife A. Grundmann M. Andreasson J. Schmidt-Grund R. Phys. Rev. Res. 2021;3:013246. doi: 10.1103/PhysRevResearch.3.013246. DOI
Richter S. Herrfurth O. Espinoza S. Rebarz M. Kloz M. Leveillee J. A. Schleife A. Zollner S. Grundmann M. Andreasson J. Schmidt-Grund R. New J. Phys. 2020;22:083066. doi: 10.1088/1367-2630/aba7f3. DOI
Chen X. Sun Q. Wang J. Lindley-Hatcher H. Pickwell-MacPherson E. Adv. Photonics Res. 2021;2:2000024. doi: 10.1002/adpr.202000024. DOI
Vizet J. Rehbinder J. Deby S. Roussel S. Nazac A. Soufan R. Genestie C. Haie-Meder C. Fernandez H. Moreau F. Pierangelo A. Sci. Rep. 2017;7:1–12. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC
Halagacka L. Gelnarova Z. Al-Ghzaiwat M. Florea I. Hornicek J. Postava K. Foldyna M. Opt. Express. 2021;29:31465–31477. doi: 10.1364/OE.435500. PubMed DOI
Mrazkova Z. Sobkowicz I. P. Foldyna M. Postava K. Florea I. Pištora J. Roca i Cabarrocas P. Prog. Photovolt.: Res. Appl. 2018;26:369–376. doi: 10.1002/pip.2994. DOI
Sachse R. Moor M. Kraehnert R. Hodoroaba V.-D. Hertwig A. Adv. Eng. Mater. 2022;24:2101320. doi: 10.1002/adem.202101320. DOI
Caglayan M. O. Üstündağ Z. Şahin S. Talanta. 2022;237:122897. doi: 10.1016/j.talanta.2021.122897. PubMed DOI
Dukor R. K. Keiderling T. A. Biospectroscopy. 1996;2:83–100. doi: 10.1002/(SICI)1520-6343(1996)2:2<83::AID-BSPY2>3.0.CO;2-T. DOI
Sato H. Phys. Chem. Chem. Phys. 2020;22:7671–7679. doi: 10.1039/D0CP00713G. PubMed DOI
Parchaňský V. Kapitán J. Bouř P. RSC Adv. 2014;4:57125–57136. doi: 10.1039/C4RA10416A. DOI
Melcrová A. Kessler J. Bouř P. Kaminský J. Phys. Chem. Chem. Phys. 2016;18:2130–2142. doi: 10.1039/C5CP04111B. PubMed DOI
Wu T. Kapitán J. Bouř P. J. Phys. Chem. Lett. 2022;13:3873–3877. doi: 10.1021/acs.jpclett.2c00653. PubMed DOI
Albano G. Pescitelli G. Di Bari L. Chem. Rev. 2020;120:10145–10243. doi: 10.1021/acs.chemrev.0c00195. PubMed DOI
Kessler J. Bouř P. J. Chem. Theory Comput. 2022;18:1780–1787. doi: 10.1021/acs.jctc.1c01138. PubMed DOI
Stabo-Eeg F. Kildemo M. Nerbo I. Lindgren M. Opt. Eng. 2008;47:0736041. doi: 10.1117/1.2957047. DOI
Manhas S. Swami M. K. Buddhiwant P. Ghosh N. Gupta P. K. Singh K. Opt. Express. 2006;14:190–202. doi: 10.1364/OPEX.14.000190. PubMed DOI
Lin L.-H. Lo Y.-L. Liao C.-C. Lin J.-X. Appl. Opt. 2015;54:10425–10431. doi: 10.1364/AO.54.010425. PubMed DOI
Mukherjee P. Hagen N. Otani Y. Optik. 2019;180:775–781. doi: 10.1016/j.ijleo.2018.11.157. DOI
McNichols R. J. Coté G. L. J. Biomed. Opt. 2000;5:5–16. doi: 10.1117/1.429962. PubMed DOI
Phan Q.-H. Lo Y.-L. Opt. Express. 2017;25:15179–15187. doi: 10.1364/OE.25.015179. PubMed DOI
Westphal P. Kaltenbach J.-M. Wicker K. Biomed. Opt. Express. 2016;7:1160–1174. doi: 10.1364/BOE.7.001160. PubMed DOI PMC
Maestro A. Gutfreund P. Adv. Colloid Interface Sci. 2021;293:102434. doi: 10.1016/j.cis.2021.102434. PubMed DOI
Romanenko A. Agócs E. Hózer Z. Petrik P. Serényi M. Appl. Surf. Sci. 2022;573:151543. doi: 10.1016/j.apsusc.2021.151543. DOI
Wolnica K. Szklarz G. Dulski M. Wojtyniak M. Tarnacka M. Kaminska E. Wrzalik R. Kaminski K. Paluch M. Colloids Surf., B. 2019;182:110319. doi: 10.1016/j.colsurfb.2019.06.049. PubMed DOI
Lin C.-E. Yu C.-J. Chen C.-L. Chou L.-D. Chou C. J. Phys. Chem. A. 2010;114:1665–1669. doi: 10.1021/jp906523s. PubMed DOI
Barron L. D., Molecular Light Scattering and Optical Activity, Cambridge University Press, Cambridge, England, UK, 2004
Weast R. C., Handbook of Chemistry and Physics, CRC Press Inc., Boca Raton, FL, USA, 55th edn, 1974
Greenstein G. R. Reference Reviews. 2007;21:40.
Moreno J. and Peinado R., Enological Chemistry, Elsevier, Academic Press, 2012
Arteaga O. Canillas A. Jellison Jr G. E. Appl. Opt. 2009;48:5307–5317. doi: 10.1364/AO.48.005307. PubMed DOI
Arteaga O. Freudenthal J. Kahr B. J. Appl. Crystallogr. 2012;45:279–291. doi: 10.1107/S0021889812006085. DOI
Vala D. Koleják P. Postava K. Kildemo M. Provazníková P. Pištora J. Opt. Express. 2021;29:10434–10450. doi: 10.1364/OE.418186. PubMed DOI
Franta D. J. Appl. Phys. 2020;127:223101. doi: 10.1063/5.0005735. DOI
Ossikovski R. Arteaga O. Opt. Lett. 2017;42:3690–3693. doi: 10.1364/OL.42.003690. PubMed DOI
Franta D. Vohánka J. J. Opt. Soc. Am. B. 2021;38:553–561. doi: 10.1364/JOSAB.410315. DOI
Daimon M. Masumura A. Appl. Opt. 2007;46:3811–3820. doi: 10.1364/AO.46.003811. PubMed DOI
Belay A. J. Lasers Opt. Photonics. 2018;5:1–5. PubMed PMC
Kendrew C. J. Moelwyn-Hughes A. E. Proc. R. Soc. London, Ser. A. 1940;176:352–367.
Kabayama M. Patterson D. Piche L. Can. J. Chem. 1958;36:557–562. doi: 10.1139/v58-078. DOI
Le Barc’H N. Grossel J. M. Looten P. Mathlouthi M. Food Chem. 2001;74:119–124. doi: 10.1016/S0308-8146(01)00139-X. DOI
Kraus J. Nyvlt J. Zuckerindustrie. 1994;119:24–29.
Arwin H. Schoeche S. Hilfiker J. Hartveit M. Järrendahl K. Juárez-Rivera O. R. Mendoza-Galván A. Magnusson R. Appl. Sci. 2021;11:6742. doi: 10.3390/app11156742. DOI
Garcia-Caurel E., Ossikovski R., Foldyna M., Pierangelo A., Drévillon B. and De Martino A., Ellipsometry at the Nanoscale, Springer, Berlin, Germany, 2013, pp. 31–143
Buckingham A. D., Advances in Chemical Physics, John Wiley & Sons, Ltd, Chichester, England, UK, 1967, pp. 107–142
Fischer P. Hache F. Chirality. 2005;17:421–437. doi: 10.1002/chir.20179. PubMed DOI
Buckingham A. D. Dunn M. B. J. Chem. Soc. A. 1971:1988–1991. doi: 10.1039/J19710001988. DOI
Andrews S. S. J. Chem. Educ. 2004;81:877. doi: 10.1021/ed081p877. DOI
Kuball H.-G. Karstens T. Schönhofer A. Chem. Phys. 1976;12:1–13. doi: 10.1016/0301-0104(76)80105-X. DOI
Nye J. F., Physical Properties of Crystals: Their Representation by Tensors and Matrices, Clarendon Press, Oxford, England, UK, 1985
Agranovich V. M. and Ginzburg V., Crystal Optics with Spatial Dispersion, and Excitons, Springer, Berlin, Germany, 1984
Cloude S. R. Optik. 1986;75:26–36.
Lu S.-Y. Chipman R. A. J. Opt. Soc. Am. A. 1996;13:1106–1113. doi: 10.1364/JOSAA.13.001106. DOI
Gil Pérez J. J. and Ossikovski R., Polarized Light and the Mueller Matrix Approach, Taylor & Francis, Andover, England, UK, 2016
Ortega-Quijano N. Arce-Diego J. L. Opt. Lett. 2011;36:1942–1944. doi: 10.1364/OL.36.001942. PubMed DOI