Biodiversity of ecosystems in an arid setting: The late Albian plant communities and associated biota from eastern Iberia

. 2023 ; 18 (3) : e0282178. [epub] 20230302

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36862709

Deserts are stressful environments where the living beings must acquire different strategies to survive due to the water stress conditions. From the late Albian to the early Cenomanian, the northern and eastern parts of Iberia were the location of the desert system represented by deposits assigned to the Utrillas Group, which bear abundant amber with numerous bioinclusions, including diverse arthropods and vertebrate remains. In the Maestrazgo Basin (E Spain), the late Albian to early Cenomanian sedimentary succession represents the most distal part of the desert system (fore-erg) that was characterised by an alternation of aeolian and shallow marine sedimentary environments in the proximity of the Western Tethys palaeo-coast, with rare to frequent dinoflagellate cysts. The terrestrial ecosystems from this area were biodiverse, and comprised plant communities whose fossils are associated with sedimentological indicators of aridity. The palynoflora dominated by wind-transported conifer pollen is interpreted to reflect various types of xerophytic woodlands from the hinterlands and the coastal settings. Therefore, fern and angiosperm communities abundantly grew in wet interdunes and coastal wetlands (temporary to semi-permanent freshwater/salt marshes and water bodies). In addition, the occurrence of low-diversity megafloral assemblages reflects the existence of coastal salt-influenced settings. The palaeobotanical study carried out in this paper which is an integrative work on palynology and palaeobotany, does not only allow the reconstruction of the vegetation that developed in the mid-Cretaceous fore-erg from the eastern Iberia, in addition, provides new biostratigraphic and palaeogeographic data considering the context of angiosperm radiation as well as the biota inferred in the amber-bearing outcrops of San Just, Arroyo de la Pascueta and La Hoya (within Cortes de Arenoso succesion). Importantly, the studied assemblages include Afropollis, Dichastopollenites, Cretacaeiporites together with pollen produced by Ephedraceae (known for its tolerance to arid conditions). The presence of these pollen grains, typical for northern Gondwana, associates the Iberian ecosystems with those characterising the mentioned region.

Zobrazit více v PubMed

Perrichot V. Environnements paraliques à ambre et à végétaux du Crétacé Nord-Aquitain (Charentes, Sud-Ouest de la France). PhD Thesis. Univ Rennes. 2003.

Peyrot D, Rodríguez-López JP, Barrón E, Meléndez N. Palynology and biostratigraphy of the Escucha Formation in the Early Cretaceous Oliete Sub-basin, Teruel, Spain. Rev Esp Micropaleontol. 2007; 39(1–2): 135–154.

Diéguez C, Peyrot D, Barrón E. Floristic and vegetational changes in the Iberian Peninsula during Jurassic and Cretaceous. Rev Palaeobot Palynol. 2010; 162: 325–340.

Coiffard C, Gomez B, Daviero-Gomez V, Dilcher D. Rise to dominance of angiosperm pioneers in European Cretaceous environments. PNAS. 2012; 109(51): 20955–20959. doi: 10.1073/pnas.1218633110 PubMed DOI PMC

Peralta-Medina E, Falcon-Lang HJ. Cretaceous forest composition and productivity inferred from a global fossil wood database. Geology. 2012; 40 (3): 219–222.

Heimhofer U, Hochuli PA, Burlas S, Oberli F, Adatte T, Dinis JL, et al.. Climate and vegetation history of western Portugal inferred from Albian near-shore deposits (Galé Formation, Lusitanian Basin). Geol Mag. 2012; 149: 1046–1064.

Heimhofer U, Wucherpfenning N, Adatte T, Schouten S, Schneebeli-Hermann E, Gardin S, et al.. Vegetation response to exceptional global warmth during Oceanic Anoxic Event 2. Nat Commun. 2018; 9: 3832. doi: 10.1038/s41467-018-06319-6 PubMed DOI PMC

Vakhrameev VA. Jurassic and Cretaceous floras and climates of the Earth. Cambridge: Cambridge Univ Press; 1991.

Herngreen GFW, Kedves M, Rovnina LV, Smirnova SB. Chapter 29C. Cretaceous palynofloral provinces: a review. In: Jansonius J, McGregor DC, editors. Palynology: Principles and Applications, vol. 3. Salt Lake City: Am Assoc Stratigr Palynol Found; 1996. pp. 1157–1188.

Lidgard S, Crane PR. Angiosperm diversification and Cretaceous floristic trends: a comparison of palynofloras and leaf macrofloras. Paleobiology. 1990; 16: 77–93.

Boyce CK, Brodribb TJ, Field TS, Zwieniecki MA. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc R Soc Lond B. 2009; 276: 1771–1776. doi: 10.1098/rspb.2008.1919 PubMed DOI PMC

Friis EM, Crane PR, Pedersen KR. Early flowers and angiosperm evolution. Cambridge: Cambridge Univ Press; 2011.

Herendeen PS, Friis EM, Perdersen KR, Crane PR. Palaeobotanical redux: revisiting the age of the angiosperms. Nat Plants. 2017; 17015. doi: 10.1038/nplants.2017.15 PubMed DOI

Rodríguez-López JP, Peyrot D, Barrón E. Complex sedimentology and palaeohabitats of Holocene coastal deserts, their topographic controls, and analogues for the mid-Cretaceous of northern Iberia. Earth Sci Rev. 2020; 201: 103075.

Coiro M, Doyle JA, Hilton J. How deep is the conflict between molecular and fossil evidence on age of angiosperms? New Phytol. 2019; 223(1): 83–99. PubMed

Boukhamsin H, Peyrot D, Vecoli M. Angiosperm pollen assemblages from the Lower Cretaceous (Barremian–lower Aptian) of offshore Saudi Arabia and their implications for early patterns of angiosperm radiation. Palaeogeogr Palaeoeclimat Palaeoecol. 2022; 599: 111052.

Chumakov NM, Zharkov MA, Herman AB, Doludenko MP, Kalandadze NN, Lebedev EL, et al.. Climatic belts of the mid-Cretaceous time. Stratigr Geol Correl. 1995; 3: 241–260.

Rodríguez-López JP, Meléndez N, de Boer PL, Soria AR, Liesa CL. Spatial variability of multi-controlled aeolian supersurfaces in central-erg and marine erg-margin systems. Aeolian Res. 2013; 11: 141–154.

Demko TM, Parrish JT. Paleoclimatic setting of the Upper Jurassic Morrison Formation. Mod Geol. 1998; 22: 283–296.

Galán-Abellán A-B, López-Gómez J, Barrenechea JF, Marzo M, De la Horra R, Arche A. 2013. The beginning of the Buntsandstein cycle (Early–Middle Triassic) in the Catalan Ranges, NE Spain: Sedimentary and palaeogeographic implications. Sediment Geol. 2013; 296:86–102.

Magdefrau K. Paläobiologie der Pflanzen (vierte Auflage). Jena: Gustav Fischer; 1968.

Blanco-Moreno C. Integrative approach to the Early Cretaceous ferns of Las Hoyas (upper Barremian, Cuenca, Spain) in the light of other European localities. PhD Thesis. Univ Autónoma Madrid. 2019.

Amiot R, Kusuhashi N, Saegusa H, Shibata M, Ikegami N. Paleoclimate and ecology of Cretaceous continental ecosystems of Japan inferred from the stable oxygen and carbon isotope compositions of vertebrate bioapatite. J Asian Earth Sci. 2021; 205: 104602.

Ch Wu, Ch Kiu, yi H, Xia G, Zhang H, Wang L, et al.. Mid-Cretaceous desert system in the Simao Basin, southwestern China, and its implications for sea-level change during a greenhouse climate. Palaeogeogr Palaeoclimatol Palaeoecol. 2017; 468: 529–544.

Bueno-Cebollada CA, Barrón E, Peyrot D, Meléndez N. Palynostratigraphy and palaeoenvironmental evolution of the Aptian to lower Cenomanian succession in the Serranía de Cuenca (Eastern Spain). Cretaceous Res. 2021; 128: 104956.

Smith RMH, Mason TR. Sedimentary environments and trace fossils of Tertiary oasis deposits in the Central Namib Desert, Namibia. Palaios. 1998; 13: 547–559.

Parris JT, Falcon-Lang HJ. Coniferous trees associated with interdune deposits in the Jurassic Navajo Sandstone Formation, Utah, USA. Palaeontology. 2007; 50: 829–843.

Gomez B, Barale G, Martín-Closas C, Thévenard F, Philippe M. Découverte d’une flore à Ginkgoales, Bennettitales et Coniférales dans le Crétacé inférieur de la Formation Escucha (Chaîne Ibérique Orientale, Teruel, Espagne). Neues Jahr Geol Paläontol Monatsh. 1999; 1999(11): 661–675.

Gomez B, Martín-Closas C, Barale G, Thévenard F. A new species of Nehvizdya (Ginkgoales) from the Lower Cretaceous of the Iberian Ranges (Spain). Rev Palaeobot Palynol. 2000; 111: 49–70. doi: 10.1016/s0034-6667(00)00017-8 PubMed DOI

Gomez B. A new species of Mirovia (Coniferales, Miroviaceae) from the Lower Cretaceous of the Iberian Ranges (Spain). Cretaceous Res. 2002; 23: 761–773.

Villanueva-Amadoz U. Nuevas aportaciones palinostratigráficas para el intervalo Albiense-Cenomaniense en el Sector NE de la península Ibérica. Implicaciones paleogeográficas y paleoclimáticas. PhD Thesis. Univ Zaragoza. 2009.

Villanueva-Amadoz U, Pons D, Díez JB, Ferrer J, Sender LM. Angiosperm pollen grains of Sant Just site (Escucha Formation) from the Albian of the Iberian Range (north-eastern Spain). Rev Palaeobot Palynol. 2010; 162(3): 362–381.

Villanueva-Amadoz U, Sender LM, Díez JB, Ferrer J, Pons D. Palynological studies of the boundary marls unit (Albian–Cenomanian) from northeastern Spain. Paleophytogeographical implications. Geodiversitas. 2011; 33(1): 137–176.

Sender LM, Gomez B, Díez JB, Coiffard C, Martín-Closas C, Villanueva-Amadoz U, et al.. Ploufolia cerciforme gen. et comb. nov.: Aquatic angiosperm leaves from the Upper Albian of north-eastern Spain. Rev Palaeobot Palynol. 2010; 161: 77–86.

Sender LM, Villanueva-Amadoz U, Díez JB, Sánchez-Pellicer R, Bercovici A, Pons D, et al.. A new uppermost Albian flora from Teruel province, northeastern Spain. Geodiversitas. 2012; 34(2): 373–397.

Sender LM, Doyle JA, Upchurch GR, Villanueva-Amadoz U, Díez JB. Leaf and inflorescence evidence for near-basal Araceae and an unexpected diversity of other monocots from the late Early Cretaceous of Spain. J Syst Palaeontol. 2019; 17(15): 1093–1126.

Barral A, Gomez G, Daviero-Gomez V, Lécuyer C, Mendes MM, Ewin TAM. New insights into the morphology and taxonomy of the Cretaceous conifer Frenelopsis based on a new species from the Albian of San Just, Teruel, Spain. Cretaceous Res. 2019; 96: 21–36.

Vilanova y Piera J. Manual de Geología aplicada a la Agricultura y a las Artes Industriales, vol. 1. Madrid: Imprenta Nacional; 1860.

Delclòs X, Arillo A, Peñalver E, Barrón E, Soriano C, López del Valle R, et al.. Fossiliferous amber deposits from the Cretaceous (Albian) of Spain. CR Palevol. 2007; 6: 135–149.

Peñalver E, Delclòs X. Spanish amber. In: Penney D., editor. Biodiversity of fossils in amber from the major world deposits. Manchester: Siri Scientific Press; 2010. pp. 236–270.

Álvarez-Parra S, Pérez-de la Fuente R, Peñalver E, Barrón E, Alcalá L, Pérez-Cano J, et al.. Dinosaur bonebed amber from an original swamp forest soil. eLife. 2021; 10:e72477. doi: 10.7554/eLife.72477 PubMed DOI PMC

Peñalver E, Martínez-Delclòs X. Importancia patrimonial de Arroyo de la Pascueta, un yacimiento de ámbar cretácico con insectos fósiles en Rubielos de Mora. In: Meléndez Hevia G, Peñalver Mollá E, editors. El patrimonio paleontológico de Teruel. Teruel: Instituto de Estudios Turolenses; 2002. pp. 201–208.

Peñalver E, Delclòs X, Soriano C. A new rich outcrop with palaeobiological inclusions in the Lower Cretaceous of Spain. Cretaceous Res. 2007; 28: 791–802.

Peñalver E, Ortega-Blanco J, Nel A, Delclòs X. Mesozoic Evaniidae (Insecta: Hymenoptera) in Spanish amber: reanalysis of the phylogeny of the Evanioidea. Acta Geol Sin. 2010; 84 (4): 809–827.

Aurell M, Bádenas B, Gasca JM, Canudo JI, Liesa CL, Soria AR, et al.. Stratigraphy and evolution of the Galve sub-basin (Spain) in the middle Tithonian–early Barremian: implications for the setting and age of some dinosaur fossil sites. Cretaceous Res. 2016; 65: 138–162.

Canérot J, Crespo Zamorano A, Navarro Vázquez D. Hoja geológica n° 518 (Montalbán). Mapa Geológico de España 1:50.000. 2ª serie. Madrid: IGME; 1977.

Almera J, Anadón P, Godoy A. Mapa Geológico de España 1:50.000, hoja n° 591 (Mora de Rubielos). Madrid: IGME; 1972.

Sopeña A, Gutiérrez-Marco JC, Sánchez-Moya Y, Gómez JJ, Mas R, García A, et al.. Cordillera Ibérica y Costero Catalana. In: Vera JA, editor. Geología de España. Madrid: SGE-IGME; 2004. pp. 465–527.

Martín-Chivelet J, López-Gómez J, Aguado R, Arias C, Arribas J, Arribas ME, et al.. The Late Jurassic–Early Cretaceous rifting. In: Quesada C, Oliveira JT, editors. The Geology of Iberia: A Geodynamic Approach. Volume 3: The Alpine cycle. Cham: Springer; 2019. pp. 169–249.

Canérot J, Cugny P, Pardo G, Salas R, Villena J. Ibérica central-maestrazgo. In: García A, editor. El Cretácico de España. Madrid: Univ Complutense; 1982. pp. 273–344.

Soria AR. La sedimentación en las cuencas marginales del Surco Ibérico durante el Cretácico Inferior y su control estructural. PhD Thesis. Univ Zaragoza. 1997.

Salas R, Guimerà J, Mas R, Martín-Closas C, Meléndez A, Alonso A. Evolution of the Mesozoic Central Iberian Rift System and its Cainozoic inversion (Iberian chain). Peri-Tethys Mem. 2001; 6: 145–185.

Peropadre C. El Aptiense del margen occidental de la Cuenca del Maestrazgo: controles tectónico, eustático y climático en la sedimentación. PhD Thesis. Madrid: Univ Complutense. 2011.

Peropadre C, Liesa CL, Meléndez N. High-frequency, moderate to high-amplitude sea-level oscillations during the late early Aptian: Insights into the mid-Aptian event (Galve Sub-basin, Spain). Sediment Geol. 2013; 294: 233–250.

Aurell M, Fregenal-Martínez M, Bádenas B, Muñoz-García MB, Élez J, Meléndez N, et al.. Middle Jurassic–Early Cretaceous tectono-sedimentary evolution of the southwestern Iberian Basin (central Spain): Major palaeogeographical changes in the geotectonic framework of the Western Tethys. Earth Sci Rev. 2019; 199: 1–33.

Cervera A, Pardo G, Villena J. Algunas precisiones litoestratigráficas sobre la formación «Lignitos de Escucha». Tecniterrae. 1976; 14: 25–33.

Pardo G. Estratigrafía y sedimentología de las formaciones detríticas del Cretácico Inferior terminal del Bajo Aragón Turolense. PhD Thesis. Univ Zaragoza. 1979.

Querol X, Salas R, Pardo G, Ardevol L. Albian coal-bearing deposits of the Iberian Range in northeastern Spain. In: Mc. Cabe JP, Panish JT, editors. Coals. Geol Soc Am Spec Pap. 1992; 267: 193–208.

Rodríguez-López JP, Meléndez N, Soria AR, De Boer P. Reinterpretación estratigráfica y sedimentológica de las Formaciones Escucha y Utrillas de la Cordillera Ibérica. Rev Soc Geol Esp. 2009; 22(3–4): 163–219.

Rodríguez-López JP. Sedimentología y evolución del sistema desértico arenoso (erg) desarrollado en el margen occidental del Tethys durante el Cretácico Medio, Cordillera Ibérica. Provincias de Teruel y Zaragoza. PhD Thesis. Madrid: Univ Complutense. 2008.

Aguilar MJ, Ramírez del Pozo J, Riba O. Algunas precisiones sobre la sedimentación y paleocecología del Cretácico Inferior en la zona de Utrillas-Villarroya de los Pinares (Teruel). Estud Geol. 1971; 27(6): 497–512.

Pardo G, Ardevol L, Villena J. Mapa Geológico de España. 1:200.000, hoja n°40 (Daroca). Madrid: ITGE; 1991.

Liesa CL, Casas AM, Soria AR, Simón JL, Meléndez A. Estructura extensional cretácica e inversión terciaria en la región de Aliaga-Montalbán. Geo-Guías. 2004; 1: 151–180.

Martín-Chivelet J, Floquet M, García-Senz J, Callapez PM, López-Mir B, Muñoz JA, et al.. Late Cretaceous Post-Rift to Convergence in Iberia. In: Quesada C, Oliveira JT, editors. The Geology of Iberia: A Geodynamic Approach. Volume 3: The Alpine cycle. Cham: Springer; 2019. pp. 285–376.

Altolaguirre Y. Estudio palinológico preliminar del Cretácico de Cortes de Arenoso, Castellón. MSc Thesis. Madrid: Univ Complutense; 2015.

Zervas D, Nichols GJ, Hall R, Smyth HR, Lüthje C, Murtagh F. SedLog: A shareware program for drawing graphic logs and log data manipulation. Comput Geosci. 2009; 35 (10): 2151–2159.

Batten DJ. Small palynomorphs. In: Jones TP, Rowe NP, editors. Fossil plant and spores modern techniques. London: Geol Soc; 1999. pp. 15–19.

Paleopalynology Traverse A., Second ed. Dordrecht: Springer; 2007.

Grimm EC. Tilia, Version 2. Springfield: Illinois Stat Mus; 1992.

Grimm EC. TGView, Version 2.0.2. Springfield: Illinois Stat Mus; 2004.

Jansonius J, McGregor DC. Palynology: principles and applications. Volume 1. Principles. Salt Lake City: Am Assoc Stratigr Paynol Found; 1996.

Peyrot D. Late Cretaceous (late Cenomanian-early Turonian) dinoflagellate cysts from the Castilian Platform, northern Spain. Palynology. 2011; 35(2): 267–300.

Van Konijnenburg-Van Cittert JHA. Ecology of some Late Triassic to Early Cretaceous ferns in Eurasia. Rev Palaeobot Palynol. 2002; 119: 113–124.

Abbink OA, Van Konijnenburg-Van Cittert JHA, Visscher H. A sporomorph ecogroup model for the Northwest European Jurassic–Lower Cretaceous: concepts and framework. Geol Mijnbouw. 2004; 83: 17–31.

Mohr BAR, Bernardes-de-Oliveira MEC, Loveridge R, Pons D, Sucerquia PA, Castro-Fernandes MC. Ruffordia goeppertii (Schizaeales, Anemiaceae)–A common fern from the Lower Cretaceous Crato Formation of northeast Brazil. Cretaceous Res. 2015; 54: 17–26.

Lindström S, Irmis RB, Whiteside JH, Smith ND, Nesbitt SJ, Turner AH. Palynology of the upper Chinle Formation in northern New Mexico, U.S.A.: Implications for biostratigraphy and terrestrial ecosystem change during the Late Triassic (Norian–Rhaetian). Rev Palaeobot Palynol. 2016; 225: 106–131.

Thompson PW, Pflug H. Pollen und Sporen des Mitteleuropaïschen Tertiärs. Palaeontographica Abt B. 1953; 94 (1–4): 1–138.

Van Konijnenburg-Van Cittert JHA. In situ gymnosperm pollen from the Middle Jurassic of Yorkshire. Acta Bot Neerl. 1971; 20(1): 1–97.

Azéma C, Boltenhagen E. Pollen du Crétacé Moyen du Gabon attribué aux Ephedrales. Paléobiol Cont. 1974; 5(1): 1–37.

Alvin KL. Cheirolepidiaceae: Biology, structure and paleoecology. Rev Palaeobot Palynol. 1982; 37: 71–98.

Pedersen KR, Crane PR, Friis EM. Morphology and phylogenetic significance of Vardekloeftia Harris (Bennettitales). Rev Palaeobot Palynol. 1989; 60: 7–24.

Balme BE. Fossil in situ spores and pollen grains: an annotated catalogue. Rev Palaeobot Palynol. 1995; 87: 81–323.

Uličný D, Kvaček J, Svobodová M, Špičáková L. High-frequency sea-level fluctuations and plant habitats in Cenomanian fluvial to estuarine succession: Pecínov quarry, Bohemia. Palaeogeogr Palaeoclimatol Palaeoecol. 1997; 136: 165–197.

Stuchlik L, Ziembińska-Tworzydło M, Kohlman-Adamska A, Grabowska I, Ważyńska H, Sadowska A. Atlas of pollen and spores of the Polish Neogene. Volume 2 –Gymnosperms. Kraków: Polish Acad Sci; 2002.

Dejax J, Pons D, Yans J. Palynology of the dinosaur-bearing Wealden facies in the natural pit of Bernissart (Belgium). Rev Palaeobot Palynol. 2007; 144: 25–38.

Peyrot D, Barrón E, Comas-Rengifo MJ, Thouand E, Tafforeau P. A confocal laser scanning and conventional wide field light microscopy study of Circumpolles from the Toarcian-Aalenian of the Fuentelsaz section (Spain). Grana. 2007; 46: 217–226.

Peñalver E, Arillo A, Pérez de la Fuente R, Riccio M, Delclòs X, Barrón E, et al.. Long-proboscid flies as pollinators of Cretaceous gymnosperms. Curr Biol. 2015; 25 (14): 1917–1923. doi: 10.1016/j.cub.2015.05.062 PubMed DOI

Pattemore GA, Rigby JF, Playford G. Triassic-Jurassic pteridosperms of Australasia: speciation, diversity and decline. Bol Geol Min. 2015; 126 (4): 689–722.

Peris D, Pérez de la Fuente R, Peñalver E, Delclòs X, Barrón E, Labandeira CC. False blister beetles and the expansion of gymnosperm-insect pollination modes before angiosperm dominance. Curr Biol. 2017; 27 (6): 897–904. doi: 10.1016/j.cub.2017.02.009 PubMed DOI

Kvaček J, Barrón E, Heřmanová Z, Mendes MM, Karch J, Žemlička J, et al.. Araucarian conifer from the late Albian amber of northern Spain. Pap Palaeont. 2018; 4(4): 643–656.

Peyrot D, Barrón E, Polette F, Batten DJ, Néraudeau D. Early Cenomanian palynofloras and inferred resiniferous forests and vegetation types in Charentes (southwestern France). Cretaceous Res. 2019; 94: 168–189.

Pacltová B. Some new pollen grains from the Bohemian Cenomanian. Rev Palaeobot Palynol. 1968; 7: 99–106. PubMed

Ward JV. Early Cretaceous angiosperm pollen from the Cheyenne and Kiowa Formations (Albian) of Kansas, U.S.A. Palaeontographica Abt B. 1986; 202 (1–6): 1–81.

Doyle JA, Endress PK, Upchurch GR. Early Cretaceous monocots: a phylogenetic evaluation. Acta Mus Natl Pragae B–Hist Nat. 2008; 64 (2–4): 59–87.

Raine JI, Mildenhall DC, Kennedy EM. New Zealand fossil spores and pollen: an illustrated catalogue. 4th edition. GNS Sci Misc Ser. 2011; 4. http://data.gns.cri.nz/sporepollen/index.htm

Stuchlik L, Ziembińska-Tworzydło M, Kohlman-Adamska A, Grabowska I, Słodkowska B, Worobiec E, et al.. Atlas of pollen and spores of the Polish Neogene. Volume 4 –Angiosperms (2). Kraków: Polish Acad Sci; 2014.

Doyle JA, Endress PK. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: ANITA lines and relatives of Chloranthaceae. Int J Plant Sci. 2014; 175: 555–600.

Kvaček J, Doyle JA, Endress PK, Daviero-Gomez V, Gomez B, Tekleva M. Pseudoasterophyllites cretaceous from the Cenomanian (Cretaceous) of the Czech Republic: A possible link between Chloranthaceae and Ceratophyllum. Taxon. 2016; 65(6): 1345–1373.

Llorens M, Pérez Loinaze VS. Late Aptian angiosperm pollen grains from Patagonia: Earliest steps in flowering plant evolution at middle latitudes in southern South America. Cretaceous Res. 2016; 57: 66–78.

Lê S, Josse J, Husson F. (2008). FactoMineR: An R Package for Multivariate Analysis. J Stat Soft. 2008; 25 (1): 1–18.

Juggins S. Rioja: Analysis of Quaternary Science Data. R package version 0.9–26, Newcastle: Newcastle Univ; 2020.

Corral JC, López Del Valle R, Alonso J. El ámbar cretácico de Álava (Cuenca Vasco-Cantábrica, norte de España). Su colecta y preparación. Estud Mus Cien Nat Álava. 1999; 14: 7–21.

Batten DJ. Chapter 26A. Palynofacies and Palaeoenvironmental interpretation. In: Jansonius J, McGregor DC, editors. Palynology: Principles and Applications, vol. 3. Salt Lake City: Am Assoc Stratigr Palynol Found; 1996. pp. 1011–1064.

Barrón E, Peyrot D, Rodríguez-López JP, Meléndez N, López del Valle R, Najarro M, et al.. Palynology of Aptian and upper Albian (Lower Cretaceous) amber-bearing outcrops of the southern margin of the Basque-Cantabrian basin (northern Spain). Cretaceous Res. 2015; 52: 292–312.

Horikx M, Hochuli PA, Feist-Burkhardt S, Heimhofer U. Albian angiosperm pollen from shallow marine strata in the Lusitanian Basin, Portugal. Rev Palaeobot Palynol. 2016; 228: 67–92.

Gomez B, Martín-Closas C, Barale G, Solé de Porta N, Thévenard F, Guignard G. Frenelopsis (Coniferales: Cheirolepidiaceae) and related male organ genera from the Lower Cretaceous of Spain. Palaeontology. 2002; 45(5): 997–1036.

Behrensmeyer AK, Hook RW. Paleoenvironmental contexts and taphonomic modes in the terrestrial fossil record, in: Behrensmeyer AK, Damuth JD, DiMichele WA, Potts R, Sues H-D, Wing SL, editors. Terrestrial Ecosystems through Time. Evolutionary paleoecology of terrestrial plants and animals. Chicago: Univ Chicago Press; 1992. pp. 15–38.

Peñalver E, Grimaldi DA, Delclòs X. Early Cretaceous spider web with its prey. Science. 2006; 312: 1761–1761. doi: 10.1126/science.1126628 PubMed DOI

Delclòs X, Peñalver E, Arillo A, Engel MS, Nel A, Azar D, et al.. 2016. New mantises (Insecta: Mantodea) in Cretaceous ambers from Lebanon, Spain, and Myanmar. Cretaceous Res. 2016; 60: 91–108.

Peñalver E, Ortega-Blanco J, Nel A, Delclòs X. Mesozoic Evaniidae (Insecta: Hymenoptera) in Spanish amber: reanalysis of the phylogeny of the Evanioidea. Acta Geol Sin. 2010; 84 (4): 809–827.

Singh C. Cenomanian microfloras of the Peace River area, northwestern Alberta. Res Counc Alberta Bull. 1983; 44: 1–239.

Hochuli PA, Heimhofer U, Weissert H. Timing of early angiosperm radiation: recalibrating the classical succession. J Geol Soc Lond. 2006; 163: 587–594.

Hasenboehler B. Étude paléobotanique et palynologique de l’Albien et du Cenomanien du "Bassin Occidental Portugais" au Sud de l’Accident de Nazare (Province d’Estremadure, Portugal). PhD Thesis. Université Pierre et Marie Curie. 1981.

Bint AN. Fossil Ceratiaceae: A restudy and new taxa from the mid-Cretaceous of the Western Interior, U.S.A. Palynology. 1986; 10: 135–180.

Berthou PY, Leereveld H. Stratigraphic implications of palynological studies on Berriasian to Albian deposits from western and southern Portugal. Rev Palaeobot Palynol. 1990; 66: 313–344.

Schrank E, Ibrahim MIA. Cretaceous (Aptian–Maastrichtian) palynology of Foraminifera-dated wells (KRM-1, AG-18) in northwestern Egypt. Berl Geowiss Abh, Reihe A. 1995; 177: 1–44.

Leereveld H, de Haan PJ, Juhász M. Stratigraphic evaluation of spore/pollen assemblages from the Lower Cretaceous of the Alpine-Mediterranean Realm. Lab Palaeobot Palynol Contrib Ser. 1989; 89/07: 1–253+1–98.

Deák MH, Combaz A. “Microfossiles organiques" du Wealdien et du Cénomanien dans un sondage de Charente-Maritime. Rev Micropaléontol. 1967; 10(2): 69–96.

Ravn RL. Miospores from the Muddy Sandstone (upper Albian), Wind River Basin, Wyoming, U.S.A. Palaeontographica Abt B. 1995; 234: 41–91.

Pacltová B. Palynological study of Angiospermae from the Peruc Formation (?Albian-Lower Cenomanian) of Bohemia. Sb Geol Paleontol, řada P. 1971; 13: 105–139.

May FE. A survey of palynomorphs from several coal-bearing horizons of Utah. In: Doelling H.H., editor. Utah Geol Min Surv Monogr Ser. 1972; 3: 497–542.

Ravn RL, Witzke BJ. The palynostratigraphy of the Dakota Formation (?late Albian–Cenomanian) in its type area, northwestern Iowa and northeastern Nebraska, USA. Palaeontographica Abt B. 1995; 234(3–6): 93–171.

Boulouard C, Canérot J. Données nouvelles sur l’Aptien supérieur et l’Albien dans le Bas-Aragón et le Maestrazgo (Espagne). Bull Cent Rech Pau-SNPA. 1970; 4(2): 453–463.

Solé de Porta N, Salas R. Conjuntos microflorísticos del Cretácico Inferior de la Cuenca del Maestrazgo. Cordillera Ibérica Oriental (NE de España). Cuad Geol Ibér. 1994; 18: 355–368.

Haq B. Cretaceous eustasy revisited. Global Planet Change. 2014; 113: 44–58.

Jürgens N. Floristic biodiversity and history of African arid regions. Biodiversity Conserv. 1997; 6 (3): 495–514.

Cowling RM, Rundel PW, Desmet PG, Esler KJ. Extraordinary high regional-scale plant diversity in southern Africa arid lands: subcontinental and global comparisons. Divers Distrib. 1998; 4: 27–36.

Muller J. Palynology of recent Orinoco delta and shelf sediments: reports of the Orinoco Shelf Expedition; Volume 5. Micropaleontology. 1959; 5(1): 1–32.

Krasilov VA. Paleoecology of terrestrial plants. Basic principles and techniques. New York: John Wiley & sons, INC; 1975.

Spicer RA. Plant taphonomic processes. In: Allison PA, Briggs DE, editors. Taphonomy releasing: the data locked in the fossil record. New York: Plenum Press; 1991. pp. 71–113.

Davis MB. Palynology after Y2K - Understanding the source area of pollen in sediments. Annu Rev Earth Planet Sci. 2000; 28: 1–18.

Najarro M, Peñalver E, Pérez-de la Fuente R, Ortega-Blanco J, Menor-Salván C, Barrón E, et al.. Review of the El Solplao amber outcrop, Early Cretaceous of Cantabria, Spain. Acta Geol Sin. 2010; 84 (4): 959–976.

Palynology Kimyai A. and biostratigraphy of the Lower Cretaceous sediments in the south barrow test well no. 1, point barrow, Alaska. Palynology. 2000; 24 (1): 201–215.

Tosolini A, McLoughlin S, Wagstaff B, Cantrill D, Gallagher S. Cheirolepidiacean foliage and pollen from Cretaceous high-latitudes of southeastern Australia. Gondwana Res. 2015; 27: 960–977.

Boukhamsin H, Peyrot D, Lang S, Vecoli M. Low-latitude? upper Barremian-lower Aptian palynoflora and paleovegetation of the Biyadh Formation (Arabian Plate, eastern margin of northern Gondwana): evidence for a possible cold nap. Cretaceous Res. 2022. a; 129: 104995.

Peyrot D, Playford G, Mantle DJ, Backhouse J, Milne LA, Carpenter RJ, et al.. The greening of Western Australian landscapes: the Phanerozoic plant record. J R Soc West Aust. 2019; 102: 52–82.

Boltenhagen E., Salard-Cheboldaeff M., 1987. Étude palynologique du sel aptien du Congo. Mém Trav Inst Montpellier Ecole Pratique Hautes Etud. 1987; 17: 273–293.

Watson J. Some Lower Cretaceous conifers of the Cheirolepidiaceae from the U.S.A. and England. Palaeontology. 1977; 20: 715–749.

Watson J. The Cheirolepidiaceae. In: Beck CB, editor. Origin and evolution of gymnosperms. New York: Columbia: Univ Press; 1988. pp. 382–447.

Hotton CL, Baghai-Riding NL. Palynological evidence for conifer dominance within a heterogeneous landscape in the Late Jurassic Morrison Formation, U.S.A. In: Gee CT, editor. Plants in Mesozoic time: Morphological innovations, phylogeny, ecosystems. Bloomington: Indiana: Univ Press; 2010. pp. 295–328.

Francis JE. The dominant conifer of the Jurassic Purbeck Formation, England. Palaeontology. 1983; 26: 277–294.

McLoughlin S, Tosolini A-MP, Nagalingum NS, Drinnan AN. Early Cretaceous (Neocomian) flora and fauna of the lower Strzelecki Group, Gippsland Basin, Victoria. Mem Assoc Australasian Palaeontol. 2002; 26: 1–144.

Farjon A. A monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens; 2005.

Pelzer G, Riegel W, Wilde V. Depositional controls on the Lower Cretaceous Wealden coals of northwest Germany. In: McCabe PJ, Parrish JT, editors. Controls on the Distribution and Quality of Cretaceous Coals. Geol Soc Am Spec Pap. 1992; 267: 227–243.

Mays C. A Late Cretaceous (Cenomanian–Turonian) south polar palynoflora from the Chatham Islands, New Zealand. Mem Assoc Australas Palaeontol. 2015; 47: 1–92.

McIver EE. Cretaceous Widdringtonia Endl. (Cupressaceae) from North America. Int J Plant Sci. 2001; 162 (4): 937–961.

Hamad A, Abu M, Amireh B, Jasper A, Uhl D. New palaeobotanical data from the Jarash Formation (Aptian–Albian, Kurnub Group) of NW Jordan. The Palaeobotanist. 2016; 65: 19–29.

Hamad AMA, Amireh B, El Atfy H, Jasper A, Uhl D. Fire in a Weichselia-dominated coastal ecosystem from the Lower Cretaceous (Barremian) of the Kurnub Group in NW Jordan. Cretaceous Res. 2016; 66: 82–93.

Dettmann ME. Cretaceous vegetation: the microfossil record. In: Hill RS, editor. History of the Australian vegetation: Cretaceous to recent. Adelaide: Univ Adelaide Press; 2017. pp. 143–170.

Blanco-Moreno C, Gomez B, Buscalioni Á. Palaeobiogeographic and metric analysis of the Mesozoic fern Weichselia. Geobios. 2018; 51: 571–578.

Halamski AT, Kvaček J, Svobodová M, Durska E, Heřmanová Z. Late Cretaceous mega-, meso-, and microfloras from Lower Silesia. Acta Palaeontol Pol. 2020; 65(4): 811–878.

Feild TS, Arens NC, Doyle JA, Dawson TE, Donoghue MJ. Dark and disturbed: a new image of early angiosperm ecology. Paleobiology. 2004; 30: 82–107.

Gomez B, Coiffard C, Sender LM, Martín-Closas C, Villanueva-Amadoz U, Ferrer J. Klitzschophyllites, aquatic basal eudicots (Ranunculales?) from the upper Albian (Lower Cretaceous) of northeastern Spain. Int J Plant Sci. 2009; 170 (8): 1075–1085.

Doyle JA, Endress PK. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: Magnoliidae and eudicots. J Syst Evol. 2010; 48(1): 1–35.

Feild T, Chatelet D, Brodribb T. Ancestral xerophobia: a hypothesis on the whole plant ecophysiology of early angiosperms. Geobiology. 2009; 7: 237–264. doi: 10.1111/j.1472-4669.2009.00189.x PubMed DOI

Taylor DW, Hu S. Coevolution of early angiosperms and their pollinators: Evidence for pollen. Palaeontographica Abt B. 2010; 283: 103–135.

Vidiella PE, Armesto JJ, Gutiérrez JR. Vegetation changes and sequential flowering after rain in the southern Atacama Desert. J Arid Environ. 1999; 43: 449–458.

Elliot MB. Modern pollen–vegetation relationships in Northland, New Zealand. N Z J Bot. 1999; 37: 131–148.

Sousa VA, Hattemer HH. Pollen dispersal and gene flow by pollen in Araucaria angustifolia. Aust J Bot. 2003; 51: 309–317.

Chaler R, Grimalt JO. Fingerprint of Cretaceous higher plant resins by inferred spectroscopy and gas chromatography coupled to mass spectrometry. Phytochem Anal. 2005; 16(6): 446–450. PubMed

Dal Corso J, Roghi G, Ragazzi E, Angelini I, Giaretta A, Soriano C, et al.. Physico-chemical analysis of Albian (Lower Cretaceous) amber from San Just (Spain): implications for palaeoenvironmental and palaeoecological studies. Geol Acta. 2013; 11(3): 359–370.

Peris D, Davis SR, Engel MS, Delclòs X. An evolutionary history embedded in amber: reflection of the Mesozoic shift in weevil-dominated (Coleoptera: Curculionoidea) faunas. Zool J Linn Soc. 2014; 171: 534–553.

Distribution Jaffré T. and ecology of conifers in New Caledonia. In: Enright NJ, Hill RS, editors. Distribution and ecology of southern conifers. Carlton: Melbourne: Univ Press; 1995. pp. 171–196.

Ogden J, Stewart GH. Community dynamics of the New Zealand conifers. In: Enright NJ, Hill RS, editors. Distribution and ecology of southern conifers. Carlton: Melbourne: Univ Press; 1995. pp. 81–119.

Farjon A. A natural history of conifers. London: Timber Press; 2008.

Jackson ST, Overpeck JT. Responses of plant population and communities to environmental changes of the late Quaternary. Paleobiology. 2000; 26 (4): 194–220.

Time Pillon Y. and tempo of diversification in the flora of New Caledonia. Bot J Linn Soc. 2012; 170: 288–298.

Arillo A, Peñalver E, Delclòs X. Microphorites (Diptera: Dolichopodidae) from the Lower Cretaceous amber of San Just (Spain), and the co-occurrence of two ceratopogonid species in Spanish amber deposits. Zootaxa. 2008; 1920: 29–40.

Nel A., Perrichot V., Daugeron C., Néraudeau D. 2004. A new Microphorites in the Lower Cretaceous amber of the southwest of France (Diptera: Dolichopodidae, “Microphorinae”). Ann Soc Entomol Fr. 2004; 40 (1): 23–29.

Ecology Regal P. and the evolution of flowering plant dominance. Science. 1977; 1996: 622–629. PubMed

Upchurch GR Jr, Doyle JA. Paleoecology of the conifers Frenelopsis and Pseudofrenelopsis (Cheirolepidiaceae) from the Cretaceous Potomac Group of Maryland and Virginia. In: Romans RC, editor. Geobotany II. New York: Plenum Press; 1981. pp. 167–202.

Kvaček J. Frenelopsis alata and its microsporangiate and ovuliferous reproductive structures from the Cenomanian of bohemia (Czech Republic, Central Europe). Rev Palaeobot Palynol. 2000; 112: 51–78. doi: 10.1016/s0034-6667(00)00035-x PubMed DOI

Daviero V, Gomez B, Philippe M. Uncommon branching pattern within conifers: Frenelopsis turolensis, a Spanish Early Cretaceous Cheirolepidiaceae. Can J Bot. 2001; 79: 1400–1408.

McElwain JC, Chaloner WG. The Fossil Cuticle as a Skeletal Record of Environmental Change. Palaios. 1996; 11(4): 376–388.

Haworth M, McElwain J. Hot, dry, wet, cold or toxic? Revisiting the ecological significance of leaf and cuticular micromorphology. Palaeogeogr Palaeoclimatol Palaeoecol. 2008; 262(1): 79–90.

Gomez B, Coiffard C, Dépré É, Daviero-Gomez V, Néraudeau D. Diversity and histology of a plant litter bed from the Cenomanian of Archingeay-Les Nouillers (southwestern France). CR Palevol. 2008; 7: 135–144.

Hluštík A. Eretmophyllous Ginkgoales from the Cenomanian. Acta Mus Natl Pragae, ser B Hist Nat. 1986; 42(1–2): 99–115.

Kvaček J, Falcon-Lang HJ, Dašková J. A new Late Cretaceous ginkgoalean reproductive structure Nehvizdyella gen. nov. from the Czech Republic and its whole-plant reconstruction. Am J Bot. 2005; 92(12): 1958–1969. PubMed

Hughes RG. Theories and models of species abundance. Am Nat. 1986; 128: 879–899.

Kvaček J, Gomez B, Zetter R. The early angiosperm Pseudoasterophyllites cretaceus from Albian-Cenomanian of the Czech Republic and France revisited. Acta Palaeontol Pol. 2012; 57(2): 437–443.

Kvaček J. Late Cretaceous floras in Central Europe and their palaeoenvironment. Praha: Univ Karlovy v Praze; 2017.

Krassilov VA. On Montsechia, an angiospermoid plant from Lower Cretaceous of Las Hoyas, Spain: new data and interpretations. Acta Palaeobot. 2011; 51(2): 181–205.

Friis EM, Pedersen K, Crane P. Cretaceous diversification of angiosperms in the western part of the Iberian Peninsula. Rev Palaeobot Palynol. 2010; 162: 341–361.

Heimhofer U, Hochuli PA, Burla S, Weissert H. New records of Early Cretaceous angiosperm pollen from Portuguese coastal deposits: Implications for the timing of the early angiosperm radiation. Rev Palaeobot Palynol. 2007; 144: 39–76.

Hughes N. The Enigma of Angiosperms origins. Cambridge: Cambridge: Univ Press; 1994.

Regali M., Tucanopollis a new genus of early angiosperms. Bol Geoci Petrobrás. 1989; 3: 395–402.

Doyle J. Revised palynological correlations of the lower Potomac Group (USA) and the Cocobeach sequence of Gabon (Barremian–Aptian). Cretaceous Res. 1992; 13: 337–349.

Rodríguez-López JP, Meléndez N, De Boer PL, Soria AR. Controls on marine–erg margin cycle variability: aeolian–marine interaction in the mid‐Cretaceous Iberian Desert System, Spain. Sedimentology. 2012; 59(2): 466–501.

Rodríguez-López JP, Barrón E, Peyrot D, Hughes GB. Deadly oasis: Recurrent annihilation of Cretaceous desert bryophyte colonies; the role of solar, climate and lithospheric forcing. Geosci Front. 2021; 12: 1–12.

Engel MS, Delclòs X. Primitive termites in Cretaceous amber from Spain and Canada (Isoptera). J Kansas Entomol Soc. 2010; 83 (2): 111–128.

Peris D, Philips TK, Delclòs X. Ptinid beetles from the Cretaceous gymnosperm-dominated forests. Cretaceous Res. 2015; 52(Part B): 440–452.

Arillo A, Subías LS, Sánchez-García A. New species of fossil oribatid mites (Acariformes, Oribatida), from the Lower Cretaceous amber of Spain. Cretaceous Res. 2016; 63: 68–76.

Retallack G J. Permian–Triassic life crisis on land. Science. 1995; 267 (5194): 77–80. doi: 10.1126/science.267.5194.77 PubMed DOI

Vajda V, Raine JI, Hollis CJ. Indication of global deforestation at the Cretaceous–Tertiary boundary by New Zealand fern spike. Science. 2001; 294 (5547): 1700–1702. doi: 10.1126/science.1064706 PubMed DOI

Van de Schootbrugge B, Quan TM, Lindstrom SL, Püttmann W, Heunisch C, Pross J, et al.. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nat Geosci. 2009; 2 (8): 589–594.

Spicer RA. Changing climate and biota. In: Skelton PW, editor. The Cretaceous World. Cambridge: Cambridge: Univ Press; 2003. pp. 85–162.

Brown JH, Valone TJ, Curtin CG 1997. Reorganization of an arid ecosystem in response to recent climate change. PNAS. 1997; 94 (18): 9729–9733. doi: 10.1073/pnas.94.18.9729 PubMed DOI PMC

Van de Koppel J, Rietkerk M. Spatial Interactions and Resilience in Arid Ecosystems. Am Nat. 2004; 163(1): 113–121. doi: 10.1086/380571 PubMed DOI

Peyrot D, Rodríguez-López JP, Lassaletta L, Meléndez N, Barrón E. Contributions to the palaeoenvironmental knowledge of the Escucha Formation in the Lower Cretaceous Oliete Sub-basin, Teruel, Spain. CR Palevol. 2007; 6: 469–481.

Page CN. Ecological strategies in fern evolution: a neopteridological overview. Rev Palaeobot Palynol. 2002; 119: 1–33.

Hietz P. Fern adaptations to xeric environments. In: Mehltreter K, Walker L, Sharpe J, editors. Fern Ecology. Cambridge: Cambridge: Univ Press; 2012. pp. 140–176.

Vitt DH, Crandall-Stotler B, Wood AJ. Bryophytes, survival in a dry world through tolerance and avoidance. In: Rajakaruna N, Boyd RS, Harris TB, editors. Plant Ecology and Evolution in Harsh Environments. New York: Nova Science; 2014. pp. 267–295.

Doyle J, Endress PK. Phylogenetic analyses of Cretaceous fossils related to Chloranthaceae and their evolutionary implications. Bot Rev. 2018; 84: 156–202.

Coiffard C, Gomez B, Thiébaut M, Kvaček J, Thévenard F, Néraudeau D. Inframarginal veined Lauraceae leaves from the Albian–Cenomanian of Charente-Maritime (western France). Palaeontology. 2009; 52(2): 323–336.

Crabtree DR. Mid-Cretaceous ferns in situ from the Albino member of the Mowry Shale, southwestern Montana. Palaeontographica Abt. B 1988; 209: 1–27.

Ahlbrandt TS, Fryberger SG. Sedimentary features and significance of interdune deposits. Soc Econ Paleontol Min Spec Publ. 1981; 31: 293–314.

Mudie PJ, McCarthy FMG. Late Quaternary pollen transport processes, western North Atlantic: Data from box models, cross-margin and N-S transects. Mar Geol. 1994; 118: 79–105.

Mudie PJ, McCarthy FMG. Marine palynology: potentials for onshore-offshore correlation of Pleistocene–Holocene records. Trans R Soc South Afr. 2006; 61: 139–157.

Chaloner WG, Muir M. Spores and Floras. In: Marendson L, Westord J, editors. Coal and coal-bearing strata. Edinburgh: Oliver and Boyd; 1968. pp. 127–146.

Ibrahim MIA. Aptian–Turonian palynology of the Ghazalat-1 Well (GTX-1) Qattara Depression, Egypt. Rev Palaeobot Palynol. 1996; 94: 137–168.

Ibrahim MIA. Late Albian–middle Cenomanian palynofacies and palynostratigraphy, Abu Gharadig-5 well, Western Desert, Egypt. Cretaceous Res. 2002; 2: 775–788.

El-Beialy S, El-Soughier M, Mohsen SA, El Atfy H. Palynostratigraphy and paleoenvironmental significance of the Cretaceous succession in the Gebel Rissu-1 well, north Western Desert, Egypt. J Afr Earth Sci. 2011; 59: 215–226.

Schrank E. Palaeoecological aspects of Afropollis/elaterates peaks (Albian–Cenomanian pollen) in the Cretaceous of northern Sudan and Egypt. In: Goodman DK, Clarke RT, editors. Proc IX Int Palynol Congress, Houston, Texas, USA, 1996. Am Assoc Stratigr Palynol Found; 2001. pp. 201–210.

Schrank E. Palynology of the Albian Makhtesh Qatan site, northern Negev (Israel), with descriptions of two new pollen species. Rev Palaeobot Palynol. 2017; 246: 185–215.

Shih PJ, Li L, Li D, Ren D. Application of geometric morphometric analyses to confirm three new wasps of Evaniidae (Hymenoptera: Evanioidea) from mid-Cretaceous Myanmar amber. Cretaceous Res. 2020; 109: 104249.

Engel MS, Perrichot V. The extinct wasp family Serphitidae in late Cretaceous Vendean amber (Hymenoptera). Paleontol Contrib. 2014; 10J: 46–51.

Médus J, Berthou PY. Palynoflores dans la coupe de l’Albien de Foz do Folcão (Portugal). Geobios. 1980; 13: 263–269.

Pons D, Vozenin-Serra C. Wood of Ginkgoales in the Cenomanian of Anjou, France. Cour Forchinst Senckenb. 1992; 147: 199–213.

Gomez B, Daviero-Gomez V, Perrichot V, Thévenard F, Coiffard C, Philippe M, et al.. Assemblages floristiques de l’Albien-Cénomanien de Charente-Maritime (SO France). Ann Paleontol. 2004; 90: 147–159.

Néraudeau D, Vullo R, Gomez B, Perrichot V, Videt B. Stratigraphie et paléontologie (plantes, vertébrés) de la série paralique Albien terminal-Cénomanian basal de Tonnay-Charente (Charente-Maritime, France). CR Palevol. 2005; 4: 79–93.

Spicer B, Skelton PW. The operation of the major geological carbon sinks. In: Skelton PW, editor. The Cretaceous World. Cambridge: Univ Press; 2003. pp. 249–271.

Brenner GJ. The spores and pollen of the Potomac Group of Maryland. Maryland Dep Geol Mines Water Res Bull. 1963; 27: 1–215.

Kemp EM. Aptian and Albian miospores from southern England. Palaeontographica Abt. B 1970; 131 (1–4): 73–143.

Svobodová M. Mid-Cretaceous palynomorphs from the Blansko Graben (Czech Republic): affinities to both Tethyan and Boreal bioprovinces. NR 58 Proc 4th EPPC: Mid-Cretaceous palynomorphs from the Blansko Graben; 1997. pp. 149–155.

Svobodová M, Hradecká L, Skupien P, Švábenická L. Microfossils of theAlbian and Cenomanian shales from the Stramberk area (Silesia unit, Outer Western Carpathians, Czech Republic). Geol Carpath. 2004; 55 (5): 371–388.

Polette F, Licht A, Cincotta A, Batten DJ, Depuydt P, Néraudeau D, et al.. Palynological assemblage from the lower Cenomanian plant-bearing Lagerstätte of Jaunay-Clan-Ormeau-Saint-Denis (Vienne, western France): Stratigraphic and paleoenvironmental implications. Rev Palaeobot Palynol. 2019; 271: 104102.

Spores Norris G. and pollen from the Lower Colorado Group (?Albian–Cenomanian) of central Alberta. Palaeontographica Abt B. 1967; 120 (1–4): 72–115.

Playford G. Palynology of Lower Cretaceous (Swan River) strata of Saskatchewan and Manitova. Palaeontology. 1971; 14 (4): 533–565.

Singh C. Lower Cretaceous microfloras of the Peace River Area, northwestern Alberta. Res Counc Alberta Bull. 1971; 28 (1): 1.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...