Ketamine disrupts locomotion and electrolocation in a novel model of schizophrenia, Gnathonemus petersii fish

. 2023 Jul ; 101 (7) : 1098-1106. [epub] 20230303

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36866610

The present study aimed to examine a weakly electric fish Gnathonemus petersii (G. petersii) as a candidate model organism of glutamatergic theory of schizophrenia. The idea of G. petersii elevating the modeling of schizophrenia symptoms is based on the fish's electrolocation and electrocommunication abilities. Fish were exposed to the NMDA antagonist ketamine in two distinct series differing in the dose of ketamine. The main finding revealed ketamine-induced disruption of the relationship between electric signaling and behavior indicating impairment of fish navigation. Moreover, lower doses of ketamine significantly increased locomotion and erratic movement and higher doses of ketamine reduced the number of electric organ discharges indicating successful induction of positive schizophrenia-like symptoms and disruption of fish navigation. Additionally, a low dose of haloperidol was used to test the normalization of the positive symptoms to suggest a predictive validity of the model. However, although successfully induced, positive symptoms were not normalized using the low dose of haloperidol; hence, more doses of the typical antipsychotic haloperidol and probably also of a representative of atypical antipsychotic drugs need to be examined to confirm the predictive validity of the model.

Zobrazit více v PubMed

Arruda, M. d. O. V., Soares, P. M., Honório, J. E. R., Jr., Lima, R. C. d. S., Chaves, E. M. C., Lobato, R. d. F. G., Martin, A. L. d. A. R., Sales, G. T. M., Carvalho, K. d. M., Assreuy, A. M. S., de Brito, E. M., & Vasconcelos, S. M. M. (2008). Activities of the antipsychotic drugs haloperidol and risperidone on behavioural effects induced by ketamine in mice. Scientia Pharmaceutica, 76, 673-687.

Bissoli, R., Niso, R., Contestabile, A., & Szabo, T. (1987). Regional levels of neurotransmitter-related markers in the brain of the weakly electric fish Gnathonemus petersii. Brain Research, 405, 380-383.

Bubeníková-Valešová, V., Horáček, J., Vrajová, M., & Höschl, C. (2008). Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neuroscience and Biobehavioral Reviews, 32, 1014-1023.

Cain, P. (1995). Navigation in familiar environments by the weakly electric elephantnose fish, Gnathonemus petersii L. (Mormyriformes, Teleostei). Ethology, 99, 332-349.

Caputi, A. A., & Budelli, R. (2006). Peripheral electrosensory imaging by weakly electric fish. Journal of Comparative Physiology A, 192, 587-600.

Carli, M., Calcagno, E., Mainolfi, P., Mainini, E., & Invernizzi, R. W. (2011). Effects of aripiprazole, olanzapine, and haloperidol in a model of cognitive deficit of schizophrenia in rats: Relationship with glutamate release in the medial prefrontal cortex. Psychopharmacology, 214, 639-652.

Carlson, B. A., Hasan, S. M., Hollmann, M., Miller, D. B., Harmon, L. J., & Arnegard, M. E. (2011). Brain evolution triggers incrased diversification of electric fishes. Science, 332, 583-586.

Ciali, S., Gordon, J., & Moller, P. (1997). Spectral sensitivity of the weakly discharging electric fish Gnathonemus petersii using its electric organ discharges as the response measure. Journal of Fish Biology, 50, 1074-1087.

Crockett, D. P. (1986). Agonistic behavior of the weakly electric fish, Gnathonemus petersii (Mormyridae, Osteoglossomorpha). Journal of Comparative Psychology, 100, 3-14.

Domino, E. F., & Luby, E. D. (2012). Phencyclidine/schizophrenia: One view toward the past, the other to the future. Schizophrenia Bulletin, 38, 914-919.

Engelmann, J., Nöbel, S., Röver, T., & von der Emde, G. (2009). The schnauzenorgan-response of Gnathonemus petersii. Frontiers in Zoology, 6, 21.

Greisman, L., & Moller, P. (2005). The anal fin complex in a weakly discharging electric fish, Gnathonemus petersii (Mormyridae). Journal of Fish Biology, 66, 266-275.

Hayase, T., Yamamoto, Y., & Yamamoto, K. (2006). Behavioral effects of ketamine and toxic interactions with psychostimulants. BMC Neuroscience, 7, 1-10.

Hetzler, B. E., & Swain Wautlet, B. (1985). Ketamine-induced locomotion in rats in an open-field. Pharmacology, Biochemistry, and Behavior, 22, 653-655.

Hofmann, V., Geurten, B. R. H., Sanguinetti-Scheck, J. I., Gómez-Sena, L., & Engelmann, J. (2014). Motor patterns during active electrosensory acquisition. Frontiers in Behavioral Neuroscience, 8, 1-13.

Horacek, J., Bubenikova-Valesova, V., Kopecek, M., Palenicek, T., Dockery, C., Mohr, P., & Höschl, C. (2006). Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Drugs, 20, 389-409.

Idris, N. F., Repeto, P., Neill, J. C., & Large, C. H. (2005). Investigation of the effects of lamotrigine and clozapine in improving reversal-learning impairments induced by acute phencyclidine and d-amphetamine in the rat. Psychopharmacology, 179, 336-348.

Kunze, P., & Wezstein, H. (1988). Apomorphine and haloperidol influence electric behaviour of a mormyrid fish. Zeitschrift für Naturforschung, 43, 105-107.

Landsman, R. E. (1991). Captivity affects behavioral physiology: Plasticity in signaling sexual identity. Experientia, 47, 31-38.

Langova, V., Vales, K., Horka, P., & Horacek, J. (2020). The role of zebrafish and laboratory rodents in schizophrenia research. Frontiers in Psychiatry, 11, 703.

Lewis, J. W., & Kay, A. N. (1991). The effect of temperature on electric organ activity in two species of Gnathonemus (family mormyridae). Environmental Technology, 12, 815-819.

Malhotra, A. K., Adler, C. M., Kennison, S. D., Elman, I., Pickar, D., & Breier, A. (1997). Clozapine blunts N-methyl-d-aspartate antagonist-induced psychosis: A study with ketamine. Biological Psychiatry, 42, 664-668.

Meek, J., Joosten, H. W. J., & Steinbusch, H. W. M. (1989). Distribution of dopamine immunoreactivity in the brain of the mormyrid teleost Gnathonemus petersii. Journal of Comparative Neurology, 281, 362-383.

Moller, P. (1970). “Communication” in weakly electric fish, Gnathonemus niger (Mormyridae) I. Variation of electric organ discharge (EOD) frequency elicited by controlled electric stimuli. Animal Behaviour, 18, 768-786.

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 156869.

Páleníček, T., Fujáková, M., Brunovský, M., Balíková, M., Horáček, J., Gorman, I., Tylš, F., Tišlerová, B., Šoš, P., Bubeníková-Valešová, V., Höschl, C., & Krajča, V. (2011). Electroencephalographic spectral and coherence analysis of ketamine in rats: Correlation with behavioral effects and pharmacokinetics. Neuropsychobiology, 63, 202-218.

Riehl, R., Kyzar, E., Allain, A., Green, J., Hook, M., Monnig, L., Rhymes, K., Roth, A., Pham, M., Razavi, R., DiLeo, J., Gaikwad, S., Hart, P., & Kalueff, A. V. (2011). Behavioral and physiological effects of acute ketamine exposure in adult zebrafish. Neurotoxicology and Teratology, 33, 658-667.

Rojas, R., & Moller, P. (2002). Multisensory contributions to the shelter-seeking behavior of a mormyrid fish, Gnathonemus petersii Günther (Mormyridae, Teleostei): The role of vision, and the passive and active electrosenses. Brain, Behavior and Evolution, 59, 211-221.

Sabbagh, J. J., Heaney, C. F., Bolton, M. M., Murtishaw, A. S., & Kinney, J. W. (2012). Examination of ketamine-induced deficits in sensorimotor gating and spatial learning. Physiology & Behavior, 107, 355-363.

Schumacher, S., Burt de Perera, T., Thenert, J., & von der Emde, G. (2016). Cross-modal object recognition and dynamic weighting of sensory inputs in a fish. Proceedings of the National Academy of Sciences of the United States of America, 113, 7638-7643.

Schumacher, S., von der Emde, G., & Burt de Perera, T. (2017). Sensory influence on navigation in the weakly electric fish Gnathonemus petersii. Animal Behaviour, 132, 1-12.

Snyder, S. H. (1973). Amphetamine psychosis: A “model” schizophrenia mediated by catecholamines. American Journal of Psychiatry, 130, 61-67.

Sukhum, K. V., Freiler, M. K., Wang, R., & Carlson, B. A. (2016). The costs of a big brain: Extreme encephalization results in higher energetic demand and reduced hypoxia tolerance in weakly electric African fishes. Proceedings of the Royal Society B: Biological Sciences, 238, 20162157.

Umbricht, D., Schmid, L., Koller, R., Vollenweider, F. X., Hell, D., & Javitt, D. C. (2000). Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: Implications for models of cognitive deficits in schizophrenia. Archives of General Psychiatry, 57, 1139-1147.

von der Emde, G., & Schwarz, S. (2002). Imaging of objects through active electrolocation in Gnathonemus petersii. Journal of Physiology, 96, 431-444.

von der Emde, G., & Zelick, R. (1995). Behavioral detection of electric signal waveform distortion in the weakly electric fish, Gnathonemus petersii. Journal of Comparative Physiology, 177, 493-501.

Zakhary, S. M., Ayubcha, D., Ansari, F., Kamran, K., Karim, M., Leheste, J. R., Horowitz, J. M., & Torres, G. (2011). A behavioral and molecular analysis of ketamine in zebrafish. Synapse, 65, 160-167.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Open field test for the assessment of anxiety-like behavior in Gnathonemus petersii fish

. 2023 ; 17 () : 1280608. [epub] 20240110

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...