Red blood cells in proliferative kidney disease-rainbow trout (Oncorhynchus mykiss) infected by Tetracapsuloides bryosalmonae harbor IgM+ red blood cells
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36875079
PubMed Central
PMC9975563
DOI
10.3389/fimmu.2023.1041325
Knihovny.cz E-zdroje
- Klíčová slova
- anemia, antibody, bony fish, erythrocytes, innate immunity, proliferative kidney disease (PKD), renal disease,
- MeSH
- B-lymfocyty MeSH
- erytrocyty MeSH
- imunoglobulin M MeSH
- nemoci ledvin * MeSH
- Oncorhynchus mykiss * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- imunoglobulin M MeSH
The myxozoan parasite Tetracapsuloides bryosalmonae is the causative agent of proliferative kidney disease (PKD)-a disease of salmonid fishes, notably of the commercially farmed rainbow trout Oncorhynchus mykiss. Both wild and farmed salmonids are threatened by this virulent/deadly disease, a chronic immunopathology characterized by massive lymphocyte proliferation and hyperplasia, which manifests as swollen kidneys in susceptible hosts. Studying the immune response towards the parasite helps us understand the causes and consequences of PKD. While examining the B cell population during a seasonal outbreak of PKD, we unexpectedly detected the B cell marker immunoglobulin M (IgM) on red blood cells (RBCs) of infected farmed rainbow trout. Here, we studied the nature of this IgM and this IgM+ cell population. We verified the presence of surface IgM via parallel approaches: flow cytometry, microscopy, and mass spectrometry. The levels of surface IgM (allowing complete resolution of IgM- RBCs from IgM+ RBCs) and frequency of IgM+ RBCs (with up to 99% of RBCs being positive) have not been described before in healthy fishes nor those suffering from disease. To assess the influence of the disease on these cells, we profiled the transcriptomes of teleost RBCs in health and disease. Compared to RBCs originating from healthy fish, PKD fundamentally altered RBCs in their metabolism, adhesion, and innate immune response to inflammation. In summary, RBCs play a larger role in host immunity than previously appreciated. Specifically, our findings indicate that the nucleated RBCs of rainbow trout interact with host IgM and contribute to the immune response in PKD.
Division of Fish Health Veterinary University of Vienna Vienna Austria
Faculty of Science University of South Bohemia České Budějovice Czechia
Zobrazit více v PubMed
Holzer AS, Bartosova-Sojkova P, Born-Torrijos A, Lovy A, Hartigan A, Fiala I. The joint evolution of the myxozoa and their alternate hosts: A cnidarian recipe for success and vast biodiversity. Mol Ecol (2018) 27:1651–66. doi: 10.1111/mec.14558 PubMed DOI
Holzer AS, Piazzon MC, Barrett D, Bartholomew JL, Sitja-Bobadilla A. To react or not to react: The dilemma of fish immune systems facing myxozoan infections. Front Immunol (2021) 12:734238. doi: 10.3389/fimmu.2021.734238 PubMed DOI PMC
Kent ML, Hedrick RP. PKX, the causative agent of proliferative kidney disease (PKD) in pacific salmonid fishes and its affinities with the myxozoa. J Protozool (1985) 32:254–60. doi: 10.1111/j.1550-7408.1985.tb03047.x PubMed DOI
Grabner DS, El-Matbouli M. Transmission of tetracapsuloides bryosalmonae (Myxozoa: Malacosporea) to fredericella sultana (Bryozoa: Phylactolaemata) by various fish species. Dis Aquat Organ (2008) 79:133–9. doi: 10.3354/dao01894 PubMed DOI
Carraro L, Mari L, Hartikainen H, Strepparava N, Wahli T, Jokela J, et al. . An epidemiological model for proliferative kidney disease in salmonid populations. Parasites Vectors (2016) 9:487. doi: 10.1186/s13071-016-1759-z PubMed DOI PMC
Okamura B, Wood TS. Bryozoans as hosts for tetracapsula bryosalmonae, the PKX organism. J Fish Dis (2002) 25:469–75. doi: 10.1046/j.1365-2761.2002.00376.x DOI
Chilmonczyk S, Monge D, De Kinkelin P. Proliferative kidney disease: cellular aspects of the rainbow trout, oncorhynchus mykiss (Walbaum), response to parasitic infection. J Fish Dis (2002) 25:217–26. doi: 10.1046/j.1365-2761.2002.00362.x DOI
Bailey C, Segner H, Wahli T. What goes around comes around: an investigation of resistance to proliferative kidney disease in rainbow trout oncorhynchus mykiss (Walbaum) following experimental re-exposure. J Fish Dis (2017) 40:1599–612. doi: 10.1111/jfd.12628 PubMed DOI
Abos B, Estensoro I, Perdiguero P, Faber M, Hu Y, Diaz Rosales P, et al. . Dysregulation of b cell activity during proliferative kidney disease in rainbow trout. Front Immunol (2018) 9:1203. doi: 10.3389/fimmu.2018.01203 PubMed DOI PMC
Korytar T, Wiegertjes GF, Zuskova E, Tomanova A, Lisnerova M, Patra S, et al. . The kinetics of cellular and humoral immune responses of common carp to presporogonic development of the myxozoan sphaerospora molnari. Parasit Vectors (2019) 12:208–019-3462-3. doi: 10.1186/s13071-019-3462-3 PubMed DOI PMC
Taggart-Murphy L, Alama-Bermejo G, Dolan B, Takizawa F, Bartholomew J. Differences in inflammatory responses of rainbow trout infected by two genotypes of the myxozoan parasite ceratonova shasta. Dev Comp Immunol (2021) 114:103829. doi: 10.1016/j.dci.2020.103829 PubMed DOI PMC
Picard-Sanchez A, Estensoro I, Perdiguero P, Del Pozo R, Tafalla C, Piazzon MC, et al. . Passive immunization delays disease outcome in gilthead Sea bream infected with enteromyxum leei (Myxozoa), despite the moderate changes in IgM and IgT repertoire. Front Immunol (2020) 11:581361. doi: 10.3389/fimmu.2020.581361 PubMed DOI PMC
Perez-Cordon G, Estensoro I, Benedito-Palos L, Calduch-Giner JA, Sitja-Bobadilla A, Perez-Sanchez J. Interleukin gene expression is strongly modulated at the local level in a fish-parasite model. Fish Shellfish Immunol (2014) 37:201–8. doi: 10.1016/j.fsi.2014.01.022 PubMed DOI
Gorgoglione B, Wang T, Secombes CJ, Holland JW. Immune gene expression profiling of proliferative kidney disease in rainbow trout oncorhynchus mykiss reveals a dominance of anti-inflammatory, antibody and T helper cell-like activities. Vet Res (2013) 44. doi: 10.1186/1297-9716-44-55 PubMed DOI PMC
Bilal S, Etayo A, Hordvik I. Immunoglobulins in teleosts. Immunogenetics (2021) 73:65–77. doi: 10.1007/s00251-020-01195-1 PubMed DOI
Puente-Marin S, Thwaite R, Mercado L, Coll J, Roher N, Ortega-Villaizan MDM. Fish red blood cells modulate immune genes in response to bacterial inclusion bodies made of TNFalpha and a G-VHSV fragment. Front Immunol (2019) 10:1055. doi: 10.3389/fimmu.2019.01055 PubMed DOI PMC
Chico V, Puente-Marin S, Nombela I, Ciordia S, Mena MC, Carracedo B, et al. . Shape-shifted red blood cells: A novel red blood cell stage? Cells (2018) 7. doi: 10.3390/cells7040031 PubMed DOI PMC
Pereiro P, Romero A, Diaz-Rosales P, Estepa A, Figueras A, Novoa B. Nucleated teleost erythrocytes play an nk-lysin- and autophagy-dependent role in antiviral immunity. Front Immunol (2017) 8:1458. doi: 10.3389/fimmu.2017.01458 PubMed DOI PMC
Shen Y, Wang D, Zhao J, Chen X. Fish red blood cells express immune genes and responses. Aquac Fish. (2018) 3:14–21. doi: 10.1016/j.aaf.2018.01.001 DOI
Clifton-Hadley R, Bucke D, Richards RH. A study of the sequential clinical and pathological changes during proliferative kidney disease in rainbow trout, salmo gairdneri Richardson. J Fish Dis (1987) 10:335–52. doi: 10.1111/j.1365-2761.1987.tb01081.x DOI
DeLuca D, Wilson M, Warr GW. Lymphocyte heterogeneity in the trout, salmo gairdneri, defined with monoclonal antibodies to IgM. Eur J Immunol (1983) 13:546–51. doi: 10.1002/eji.1830130706 PubMed DOI
Korytar T, Dang Thi H, Takizawa F, Kollner B. A multicolour flow cytometry identifying defined leukocyte subsets of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol (2013) 35:2017–9. doi: 10.1016/j.fsi.2013.09.025 PubMed DOI
Korytar T, Chan JTH, Vancova M, Holzer AS. Blood feast: Exploring the erythrocyte-feeding behaviour of the myxozoan sphaerospora molnari . Parasite Immunol (2020) 42. doi: 10.1111/pim.12683 PubMed DOI PMC
Clifton-Hadley R, Richards RH, Bucke D. Further consideration of the haematology of proliferative kidney disease (PKD) in rainbow trout, salmo gairdneri Richardson. J Fish Dis (1987) 10:435–44. doi: 10.1111/j.1365-2761.1987.tb01094.x DOI
Palikova M, Papezikova I, Markova Z, Navratil S, Mares J, Mares L, et al. . Proliferative kidney disease in rainbow trout (Oncorhynchus mykiss) under intensive breeding conditions: Pathogenesis and haematological and immune parameters. Vet Parasitol (2017) 238:5–16. doi: 10.1016/j.vetpar.2017.03.003 PubMed DOI
Hoffmann R, Lommel R. Haematological studies in proliferative kidney disease of rainbow trout, salmo gairdneri Richardson. J Fish Dis (1984) 7:323–6. doi: 10.1111/j.1365-2761.1984.tb00939.x DOI
Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part I - molecular mechanisms of activation and regulation. Front Immunol (2015) 6:262. doi: 10.3389/fimmu.2015.00262 PubMed DOI PMC
Berentsen S, Barcellini W. Autoimmune hemolytic anemias. N Engl J Med (2021) 385:1407–19. doi: 10.1056/NEJMra2033982 PubMed DOI
Mak T, Saunders M, Jett B. Chapter 4 - the b cell receptor: Proteins and genes. In: Mak TW, Saunders ME, Jett BD, editors. Primer to the immune response, 2nd ed. Boston: Academic Cell; (2014). p. 85–110.
Takizawa F, Magadan S, Parra D, Xu Z, Korytar T, Boudinot P, et al. . Novel teleost CD4-bearing cell populations provide insights into the evolutionary origins and primordial roles of CD4+ lymphocytes and CD4+ macrophages. J Immunol (2016) 196:4522–35. doi: 10.4049/jimmunol.1600222 PubMed DOI PMC
Miyagawa S, Kobayashi M, Konishi N, Sato T, Ueda K. Insulin and insulin-like growth factor I support the proliferation of erythroid progenitor cells in bone marrow through the sharing of receptors. Br J Haematol (2000) 109:555–62. doi: 10.1046/j.1365-2141.2000.02047.x PubMed DOI
Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol (2010) 125:S73–80. doi: 10.1016/j.jaci.2009.11.017 PubMed DOI PMC
Garratty G. The significance of IgG on the red cell surface. Transfus Med Rev (1987) 1:47–57. doi: 10.1016/s0887-7963(87)70005-4 PubMed DOI
Hu YL, Pan XM, Xiang LX, Shao JZ. Characterization of C1q in teleosts: insight into the molecular and functional evolution of C1q family and classical pathway. J Biol Chem (2010) 285:28777–86. doi: 10.1074/jbc.M110.131318 PubMed DOI PMC
Boshra H, Li J, Sunyer JO. Recent advances on the complement system of teleost fish. Fish Shellfish Immunol (2006) 20:239–62. doi: 10.1016/j.fsi.2005.04.004 PubMed DOI
Schraml B, Baker MA, Reilly BD. A complement receptor for opsonized immune complexes on erythrocytes from oncorhynchus mykiss but not ictalarus punctatus. Mol Immunol (2006) 43:1595–603. doi: 10.1016/j.molimm.2005.09.014 PubMed DOI
Morera D, Roher N, Ribas L, Balasch JC, Doñate C, Callol A, et al. . RNA-Seq reveals an integrated immune response in nucleated erythrocytes. PloS One (2011) 6:e26998. doi: 10.1371/journal.pone.0026998 PubMed DOI PMC
Sun B, Li X, Ning X, Sun L. Transcriptome analysis of paralichthys olivaceus erythrocytes reveals profound immune responses induced by edwardsiella tarda infection. Int J Mol Sci (2020) 21. doi: 10.3390/ijms21093094 PubMed DOI PMC
Nombela I, Puente-Marin S, Chico V, Villena AJ, Carracedo B, Ciordia S, et al. . Identification of diverse defense mechanisms in rainbow trout red blood cells in response to halted replication of VHS virus. F1000Res (2017) 6:1958. doi: 10.12688/f1000research.12985.2 PubMed DOI PMC
Wessel O, Krasnov A, Timmerhaus G, Rimstad E, Dahle MK. Antiviral responses and biological concequences of piscine orthoreovirus infection in salmonid erythrocytes. Front Immunol (2019) 9:3182. doi: 10.3389/fimmu.2018.03182 PubMed DOI PMC
Lam LKM, Murphy S, Kokkinaki D, Venosa A, Sherrill-Mix S, Casu C, et al. . DNA Binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Sci Transl Med (2021) 13:eabj1008. doi: 10.1126/scitranslmed.abj1008 PubMed DOI PMC
Marin-Juez R, Jong-Raadsen S, Yang S, Spaink HP. Hyperinsulinemia induces insulin resistance and immune suppression via Ptpn6/Shp1 in zebrafish. J Endocrinol (2014) 222:229–41. doi: 10.1530/JOE-14-0178 PubMed DOI
Caruso MA, Sheridan MA. New insights into the signaling system and function of insulin in fish. Gen Comp Endocrinol (2011) 173:227–47. doi: 10.1016/j.ygcen.2011.06.014 PubMed DOI
Sudhagar A, Ertl R, Kumar G, El-Matbouli M. Transcriptome profiling of posterior kidney of brown trout, salmo trutta, during proliferative kidney disease. Parasit Vectors (2019) 12. doi: 10.1186/s13071-019-3823-y PubMed DOI PMC
Faber M, Shaw S, Yoon S, de Paiva Alves E, Wang B, Qi Z, et al. . Comparative transcriptomics and host-specific parasite gene expression profiles inform on drivers of proliferative kidney disease. Sci Rep (2021) 11. doi: 10.1038/s41598-020-77881-7 PubMed DOI PMC
Rinkenberger N, Abrams ME, Matta SK, Schoggins JW, Alto NM, Sibley LD. Overexpression screen of interferon-stimulated genes identifies RARRES3 as a restrictor of toxoplasma gondii infection. eLife (2021) 10:e73137. doi: 10.7554/eLife.73137 PubMed DOI PMC
Bailey C, Holland JW, Secombes CJ, Tafalla C. A portrait of the immune response to proliferative kidney disease (PKD) in rainbow trout. Parasite Immunol (2020) 42:e12730. doi: 10.1111/pim.12730 PubMed DOI PMC
Nangaku M, Couser WG. Mechanisms of immune-deposit formation and the mediation of immune renal injury. Clin Exp Nephrol (2005) 9:183–91. doi: 10.1007/s10157-005-0357-8 PubMed DOI
Sheerin NS, Abe K, Risley P, Sacks SH. Accumulation of immune complexes in glomerular disease is independent of locally synthesized c3. J Am Soc Nephrol (2006) 17:686–96. doi: 10.1681/ASN.2004070515 PubMed DOI
Wener MH. Chapter 26 - immune complexes in systemic lupus erythematosus. In: Tsokos GC, editor. Systemic lupus erythematosus. Boston: Academic Press; (2016). p. 223–9.
Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc (2007) 2:1896–906. doi: 10.1038/nprot.2007.261 PubMed DOI
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol (2008) 26:1367–72. doi: 10.1038/nbt.1511 PubMed DOI
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment. J Proteome Resl (2011) 10:1794–805. doi: 10.1021/pr101065j PubMed DOI
Seibel H, Chikwati E, Schulz C, Rebl A. A multidisciplinary approach evaluating soybean meal-induced enteritis in rainbow trout oncorhynchus mykiss. Fishes (2022) 7. doi: 10.3390/fishes7010022 DOI
Smyth GK, Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S. Limma: Linear models for microarray data. In: Bioinformatics and computational biology solutions using r and bioconductor. New York, NY: Springer New York; (2005). p. 397–420.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Society.Series B (Methodological) (1995) 57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x DOI
Rebl A, Verleih M, Nipkow M, Altmann S, Bochert R, Goldammer T. Gradual and acute temperature rise induces crossing endocrine, metabolic, and immunological pathways in maraena whitefish (Coregonus maraena). Front Genet (2018) 9:241. doi: 10.3389/fgene.2018.00241 PubMed DOI PMC
Rebl A, Zebunke M, Borchel A, Bochert R, Verleih M, Goldammer T. Microarray-predicted marker genes and molecular pathways indicating crowding stress in rainbow trout (Oncorhynchus mykiss). Aquaculture (2017) 473:355–65. doi: 10.1016/j.aquaculture.2017.03.003 DOI
Korytar T, Nipkow M, Altmann S, Goldammer T, Kollner B, Rebl A. Adverse husbandry of maraena whitefish directs the immune system to increase mobilization of myeloid cells and proinflammatory responses. Front Immunol (2016) 7:631. doi: 10.3389/fimmu.2016.00631 PubMed DOI PMC
Verleih M, Borchel A, Krasnov A, Rebl A, Korytar T, Kuhn C, et al. . Impact of thermal stress on kidney-specific gene expression in farmed regional and imported rainbow trout. Mar Biotechnol (NY) (2015) 17:576–92. doi: 10.1007/s10126-015-9640-1 PubMed DOI