Meningioma microstructure assessed by diffusion MRI: An investigation of the source of mean diffusivity and fractional anisotropy by quantitative histology

. 2023 ; 37 () : 103365. [epub] 20230302

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36898293

Grantová podpora
R01 MH074794 NIMH NIH HHS - United States
P41 EB015902 NIBIB NIH HHS - United States

Odkazy

PubMed 36898293
PubMed Central PMC10020119
DOI 10.1016/j.nicl.2023.103365
PII: S2213-1582(23)00054-2
Knihovny.cz E-zdroje

BACKGROUND: Mean diffusivity (MD) and fractional anisotropy (FA) from diffusion MRI (dMRI) have been associated with cell density and tissue anisotropy across tumors, but it is unknown whether these associations persist at the microscopic level. PURPOSE: To quantify the degree to which cell density and anisotropy, as determined from histology, account for the intra-tumor variability of MD and FA in meningioma tumors. Furthermore, to clarify whether other histological features account for additional intra-tumor variability of dMRI parameters. MATERIALS AND METHODS: We performed ex-vivo dMRI at 200 μm isotropic resolution and histological imaging of 16 excised meningioma tumor samples. Diffusion tensor imaging (DTI) was used to map MD and FA, as well as the in-plane FA (FAIP). Histology images were analyzed in terms of cell nuclei density (CD) and structure anisotropy (SA; obtained from structure tensor analysis) and were used separately in a regression analysis to predict MD and FAIP, respectively. A convolutional neural network (CNN) was also trained to predict the dMRI parameters from histology patches. The association between MRI and histology was analyzed in terms of out-of-sample (R2OS) on the intra-tumor level and within-sample R2 across tumors. Regions where the dMRI parameters were poorly predicted from histology were analyzed to identify features apart from CD and SA that could influence MD and FAIP, respectively. RESULTS: Cell density assessed by histology poorly explained intra-tumor variability of MD at the mesoscopic level (200 μm), as median R2OS = 0.04 (interquartile range 0.01-0.26). Structure anisotropy explained more of the variation in FAIP (median R2OS = 0.31, 0.20-0.42). Samples with low R2OS for FAIP exhibited low variations throughout the samples and thus low explainable variability, however, this was not the case for MD. Across tumors, CD and SA were clearly associated with MD (R2 = 0.60) and FAIP (R2 = 0.81), respectively. In 37% of the samples (6 out of 16), cell density did not explain intra-tumor variability of MD when compared to the degree explained by the CNN. Tumor vascularization, psammoma bodies, microcysts, and tissue cohesivity were associated with bias in MD prediction based solely on CD. Our results support that FAIP is high in the presence of elongated and aligned cell structures, but low otherwise. CONCLUSION: Cell density and structure anisotropy account for variability in MD and FAIP across tumors but cell density does not explain MD variations within the tumor, which means that low or high values of MD locally may not always reflect high or low tumor cell density. Features beyond cell density need to be considered when interpreting MD.

Zobrazit více v PubMed

Bankhead P., Loughrey M.B., Fernández J.A., Dombrowski Y., McArt D.G., Dunne P.D., McQuaid S., Gray R.T., Murray L.J., Coleman H.G., James J.A., Salto-Tellez M., Hamilton P.W. QuPath: open source software for digital pathology image analysis. Sci. Rep. 2017;7(1) PubMed PMC

Basser P.J., Mattiello J., LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 1994;66(1):259–267. PubMed PMC

Bigun J. Linköping University Electronic Press; 1987. Optimal Orientation Detection of Linear Symmetry.

Brabec J., Szczepankiewicz F., Lennartsson F., Englund E., Pebdani H., Bengzon J., Knutsson L., Westin C.-F., Sundgren P.C., Nilsson M. Histogram analysis of tensor-valued diffusion MRI in meningiomas: relation to consistency, histological grade and type. NeuroImage: Clinical. 2022;33 PubMed PMC

Brown R.W., Haacke E.M., Cheng Y.-C.-N., Thompson M.R., Venkatesan R. John Wiley & Sons; 2014. Magnetic Resonance Imaging: Physical Principles and Sequence Design.

Budde M.D., Frank J.A. Examining brain microstructure using structure tensor analysis of histological sections. Neuroimage. 2012;63(1):1–10. PubMed

Chakwizira A., Westin C.F., Brabec J., Lasič S., Knutsson L., Szczepankiewicz F., Nilsson M. Diffusion MRI with pulsed and free gradient waveforms: effects of restricted diffusion and exchange. NMR Biomed. 2023;36:e4827. PubMed PMC

Chen L., Liu M., Bao J., Xia Y., Zhang J., Zhang L., Huang X., Wang J., Hess C.P. The correlation between apparent diffusion coefficient and tumor cellularity in patients: a meta-analysis. PLoS One. 2013;8(11):e79008. PubMed PMC

Chenevert T.L., Stegman L.D., Taylor J.M., Robertson P.L., Greenberg H.S., Rehemtulla A., Ross B.D. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. JNCI: J. Natl. Cancer Inst. 2000;92:2029–2036. PubMed

Colvin D.C., Jourquin J., Xu J., Does M.D., Estrada L., Gore J.C. Effects of intracellular organelles on the apparent diffusion coefficient of water molecules in cultured human embryonic kidney cells. Magn. Reson. Med. 2011;65(3):796–801. PubMed PMC

Egnell L., Vidić I., Jerome N.P., Bofin A.M., Bathen T.F., Goa P.E. Stromal collagen content in breast tumors correlates with in vivo diffusion-weighted imaging: a comparison of multi b-value DWI with histologic specimen from benign and malignant breast lesions. J. Magn. Reson. Imaging. 2020;51(6):1868–1878. PubMed

Gauvain K.M., McKinstry R.C., Mukherjee P., Perry A., Neil J.J., Kaufman B.A., Hayashi R.J. Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. Am. J. Roentgenol. 2001;177(2):449–454. PubMed

Gurkanlar D., Er U., Sanlı M., Özkan M., Sekerci Z. Peritumoral brain edema in intracranial meningiomas. J. Clin. Neurosci. 2005;12(7):750–753. PubMed

Hsu C.-C., Pai C.-Y., Kao H.-W., Hsueh C.-J., Hsu W.-L., Lo C.-P. Do aggressive imaging features correlate with advanced histopathological grade in meningiomas? J. Clin. Neurosci. 2010;17(5):584–587. PubMed

Jolapara M., Kesavadas C., Radhakrishnan V.V., Thomas B., Gupta A.K., Bodhey N., Patro S., Saini J., George U., Sarma P.S. Role of diffusion tensor imaging in differentiating subtypes of meningiomas. J. Neuroradiol. 2010;37(5):277–283. PubMed

Jütten K., Mainz V., Gauggel S., Patel H.J., Binkofski F., Wiesmann M., Clusmann H., Na C.-H. Diffusion tensor imaging reveals microstructural heterogeneity of normal-appearing white matter and related cognitive dysfunction in glioma patients. Front. Oncol. 2019;9:536. PubMed PMC

Kashimura H., Inoue T., Ogasawara K., Arai H., Otawara Y., Kanbara Y., Ogawa A. Prediction of meningioma consistency using fractional anisotropy value measured by magnetic resonance imaging. J. Neurosurg. 2007;107(4):784–787. PubMed

Laviolette P.S., Mickevicius N.J., Cochran E.J., Rand S.D., Connelly J., Bovi J.A., Malkin M.G., Mueller W.M., Schmainda K.M. Precise ex vivo histological validation of heightened cellularity and diffusion-restricted necrosis in regions of dark apparent diffusion coefficient in 7 cases of high-grade glioma. Neuro Oncol. 2014;16:1599–1606. PubMed PMC

Lin L., Bhawana R., Xue Y., Duan Q., Jiang R., Chen H., Chen X., Sun B., Lin H. Comparative analysis of diffusional kurtosis imaging, diffusion tensor imaging, and diffusion-weighted imaging in grading and assessing cellular proliferation of meningiomas. Am. J. Neuroradiol. 2018;39(6):1032–1038. PubMed PMC

Louis D.N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–820. PubMed

Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., Figarella-Branger D., Hawkins C., Ng H.K., Pfister S.M., Reifenberger G., Soffietti R., von Deimling A., Ellison D.W. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–1251. PubMed PMC

Miyoshi K., Wada T., Uwano I., Sasaki M., Saura H., Fujiwara S., Takahashi F., Tsushima E., Ogasawara K. Predicting the consistency of intracranial meningiomas using apparent diffusion coefficient maps derived from preoperative diffusion-weighted imaging. J. Neurosurg. 2020;1:1–8. PubMed

Nilsson M., Englund E., Szczepankiewicz F., Van Westen D., Sundgren P.C. Imaging brain tumour microstructure. Neuroimage. 2018;182:232–250. PubMed

Nilsson, M., Szczepankiewicz, F., Lampinen, B., Ahlgren, A., De Almeida Martins, J.P., Lasic, S., Westin, C.-F., and Topgaard, D. (2018b). “An open-source framework for analysis of multidimensional diffusion MRI data implemented in MATLAB”, in: Proc Intl Soc Mag Reson Med), 5355.

Nilsson M., Szczepankiewicz F., Brabec J., Taylor M., Westin C.-F., Golby A., Westen D., Sundgren P.C. Tensor-valued diffusion MRI in under 3 minutes: an initial survey of microscopic anisotropy and tissue heterogeneity in intracranial tumors. Magn. Reson. Med. 2020;83(2):608–620. PubMed PMC

Novikov D.S., Fieremans E., Jespersen S.N., Kiselev V.G. Quantifying brain microstructure with diffusion MRI: theory and parameter estimation. NMR Biomed. 2019;32:e3998. PubMed PMC

Ortega-Porcayo L.A., Ballesteros-Zebadúa P., Marrufo-Meléndez O.R., Ramírez-Andrade J.J., Barges-Coll J., Tecante A., Ramírez-Gilly M., Gómez-Amador J.L. Prediction of mechanical properties and subjective consistency of meningiomas using T1–T2 assessment versus fractional anisotropy. World Neurosurg. 2015;84(6):1691–1698. PubMed

Patterson D.M., Padhani A.R., Collins D.J. Technology insight: water diffusion MRI—a potential new biomarker of response to cancer therapy. Nat. Clin. Pract. Oncol. 2008;5(4):220–233. PubMed

Pierpaoli C., Jezzard P., Basser P.J., Barnett A., Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201(3):637–648. PubMed

Pistolesi S., Fontanini G., Camacci T., De Ieso K., Boldrini L., Lupi G., Padolecchia R., Pingitore R., Parenti G. Meningioma-associated brain oedema: the role of angiogenic factors and pial blood supply. J. Neurooncol. 2002;60:159–164. PubMed

Price S.J., Pena A., Burnet N.G., Jena R., Green H.A., Carpenter T.A., Pickard J.D., Gillard J.H. Tissue signature characterisation of diffusion tensor abnormalities in cerebral gliomas. Eur. Radiol. 2004;14:1909–1917. PubMed

Romani R., Tang W.-J., Mao Y., Wang D.-J., Tang H.-L., Zhu F.-P., Che X.-M., Gong Y., Zheng K., Zhong P., Li S., Bao W.-M., Benner C., Wu J.-S., Zhou L.-f. Diffusion tensor magnetic resonance imaging for predicting the consistency of intracranial meningiomas. Acta Neurochir. 2014;156(10):1837–1845. PubMed

Santelli L., Ramondo G., Della Puppa A., Ermani M., Scienza R., d’Avella D., Manara R. Diffusion-weighted imaging does not predict histological grading in meningiomas. Acta Neurochir. 2010;152(8):1315–1319. PubMed

Squillaci E., Manenti G., Cova M., Di Roma M., Miano R., Palmieri G., Simonetti G. Correlation of diffusion-weighted MR imaging with cellularity of renal tumours. Anticancer Res. 2004;24:4175–4180. PubMed

Stejskal E.O., Tanner J.E. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 1965;42(1):288–292.

Stepišnik J. Time-dependent self-diffusion by NMR spin-echo. Phys. B Condens. Matter. 1993;183(4):343–350.

Sugahara T., Korogi Y., Kochi M., Ikushima I., Shigematu Y., Hirai T., Okuda T., Liang L., Ge Y., Komohara Y., Ushio Y., Takahashi M. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J. Magn. Reson. Imaging. 1999;9(1):53–60. PubMed

Surov A., Gottschling S., Mawrin C., Prell J., Spielmann R.P., Wienke A., Fiedler E. Diffusion-weighted imaging in meningioma: prediction of tumor grade and association with histopathological parameters. Transl. Oncol. 2015;8(6):517–523. PubMed PMC

Surov A., Meyer H.J., Wienke A. Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: a meta-analysis. Oncotarget. 2017;8(35):59492–59499. PubMed PMC

Szafer A., Zhong J., Gore J.C. Theoretical model for water diffusion in tissues. Magn. Reson. Med. 1995;33(5):697–712. PubMed

Szczepankiewicz F., Lasič S., Van Westen D., Sundgren P.C., Englund E., Westin C.-F., Ståhlberg F., Lätt J., Topgaard D., Nilsson M. Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: applications in healthy volunteers and in brain tumors. Neuroimage. 2015;104:241–252. PubMed PMC

Szczepankiewicz F., Van Westen D., Englund E., Westin C.-F., Ståhlberg F., Lätt J., Sundgren P.C., Nilsson M. The link between diffusion MRI and tumor heterogeneity: mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE) Neuroimage. 2016;142:522–532. PubMed PMC

Tan, M., Le, Q. (2021). “Efficientnetv2: Smaller models and faster training”, in: International Conference on Machine Learning: PMLR), 10096-10106.

Tropine A., Dellani P.D., Glaser M., Bohl J., Plöner T., Vucurevic G., Perneczky A., Stoeter P. Differentiation of fibroblastic meningiomas from other benign subtypes using diffusion tensor imaging. J. Magn. Reson. Imaging. 2007;25(4):703–708. PubMed

Vesal, S., Ravikumar, N., Davari, A., Ellmann, S., and Maier, A. (2018). “Classification of breast cancer histology images using transfer learning”, in: International conference image analysis and recognition: Springer), 812-819.

Watanabe K., Kakeda S., Yamamoto J., Ide S., Ohnari N., Nishizawa S., Korogi Y. Prediction of hard meningiomas: quantitative evaluation based on the magnetic resonance signal intensity. Acta Radiol. 2016;57(3):333–340. PubMed

Westin C.-F., Knutsson H., Pasternak O., Szczepankiewicz F., Özarslan E., van Westen D., Mattisson C., Bogren M., O'Donnell L.J., Kubicki M., Topgaard D., Nilsson M. Q-space trajectory imaging for multidimensional diffusion MRI of the human brain. Neuroimage. 2016;135:345–362. PubMed PMC

Wiemels J., Wrensch M., Claus E.B. Epidemiology and etiology of meningioma. J. Neurooncol. 2010;99(3):307–314. PubMed PMC

Xu J., Does M.D., Gore J.C. Sensitivity of MR diffusion measurements to variations in intracellular structure: effects of nuclear size. Magn. Reson. Med. 2009;61(4):828–833. PubMed PMC

Yao A., Pain M., Balchandani P., Shrivastava R.K. Can MRI predict meningioma consistency?: a correlation with tumor pathology and systematic review. Neurosurg. Rev. 2018;41(3):745–753. PubMed PMC

Yen P.S., Teo B.T., Chiu C.H., Chen S.C., Chiu T.L., Su C.F. White matter tract involvement in brain tumors: a diffusion tensor imaging analysis. Surg. Neurol. 2009;72(5):464–469. PubMed

Yogi A., Koga T., Azama K., Higa D., Ogawa K., Watanabe T., Ishiuchi S., Murayama S. Usefulness of the apparent diffusion coefficient (ADC) for predicting the consistency of intracranial meningiomas. Clin. Imaging. 2014;38(6):802–807. PubMed

Yoshikawa M.I., Ohsumi S., Sugata S., Kataoka M., Takashima S., Mochizuki T., Ikura H., Imai Y. Relation between cancer cellularity and apparent diffusion coefficient values using diffusion-weighted magnetic resonance imaging in breast cancer. Radiat. Med. 2008;26(4):222–226. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...