Spatiotemporal Imaging of Zinc Ions in Zebrafish Live Brain Tissue Enabled by Fluorescent Bionanoprobes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R21NS109659
NIH HHS - United States
P30GM145499
NIH HHS - United States
P20 GM103638
NIGMS NIH HHS - United States
2108448
National Science Foundation
MCB-2001870
National Science Foundation
SVV260560
Charles University in Prague
P20GM103638
NIH HHS - United States
P30 GM145499
NIGMS NIH HHS - United States
PubMed
36903504
PubMed Central
PMC10005619
DOI
10.3390/molecules28052260
PII: molecules28052260
Knihovny.cz E-zdroje
- Klíčová slova
- fluorescence, gold, nanoparticles, two-photon excitation imaging, zebrafish, zinc,
- MeSH
- dánio pruhované * metabolismus MeSH
- fluorescenční barviva metabolismus MeSH
- ionty metabolismus MeSH
- kovové nanočástice * MeSH
- mozek metabolismus MeSH
- zinek metabolismus MeSH
- zlato metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fluorescenční barviva MeSH
- ionty MeSH
- zinek MeSH
- zlato MeSH
The zebrafish is a powerful model organism to study the mechanisms governing transition metal ions within whole brain tissue. Zinc is one of the most abundant metal ions in the brain, playing a critical pathophysiological role in neurodegenerative diseases. The homeostasis of free, ionic zinc (Zn2+) is a key intersection point in many of these diseases, including Alzheimer's disease and Parkinson's disease. A Zn2+ imbalance can eventuate several disturbances that may lead to the development of neurodegenerative changes. Therefore, compact, reliable approaches that allow the optical detection of Zn2+ across the whole brain would contribute to our current understanding of the mechanisms that underlie neurological disease pathology. We developed an engineered fluorescence protein-based nanoprobe that can spatially and temporally resolve Zn2+ in living zebrafish brain tissue. The self-assembled engineered fluorescence protein on gold nanoparticles was shown to be confined to defined locations within the brain tissue, enabling site specific studies, compared to fluorescent protein-based molecular tools, which diffuse throughout the brain tissue. Two-photon excitation microscopy confirmed the physical and photometrical stability of these nanoprobes in living zebrafish (Danio rerio) brain tissue, while the addition of Zn2+ quenched the nanoprobe fluorescence. Combining orthogonal sensing methods with our engineered nanoprobes will enable the study of imbalances in homeostatic Zn2+ regulation. The proposed bionanoprobe system offers a versatile platform to couple metal ion specific linkers and contribute to the understanding of neurological diseases.
Bioengineering Program University of Kansas Lawrence KS 66045 USA
Department of Mechanical Engineering University of Kansas Lawrence KS 66045 USA
Department of Pharmacology and Toxicology University of Kansas Lawrence KS 66045 USA
Institute for Bioengineering Research University of Kansas Lawrence KS 66045 USA
Zobrazit více v PubMed
Wang L., Yin Y.L., Liu X.Z., Shen P., Zheng Y.G., Lan X.R., Lu C.B., Wang J.Z. Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Transl. Neurodegener. 2020;9:10. doi: 10.1186/s40035-020-00189-z. PubMed DOI PMC
Chen Z., Ai H.W. Single Fluorescent Protein-Based Indicators for Zinc Ion (Zn2+) Anal. Chem. 2016;88:9029–9036. doi: 10.1021/acs.analchem.6b01653. PubMed DOI PMC
Choi S., Hong D.K., Choi B.Y., Suh S.W. Zinc in the Brain: Friend or Foe? Int. J. Mol. Sci. 2020;21:8941. doi: 10.3390/ijms21238941. PubMed DOI PMC
Howell G.A., Welch M.G., Frederickson C.J. Stimulation-induced uptake and release of zinc in hippocampal slices. Nature. 1984;308:736–738. doi: 10.1038/308736a0. PubMed DOI
Stewart G.R., Frederickson C.J., Howell G.A., Gage F.H. Cholinergic denervation-induced increase of chelatable zinc in mossy-fiber region of the hippocampal formation. Brain Res. 1984;290:43–51. doi: 10.1016/0006-8993(84)90734-0. PubMed DOI
Goldberg J.M., Lippard S.J. Challenges and Opportunities in Brain Bioinorganic Chemistry. Acc. Chem. Res. 2017;50:577–579. doi: 10.1021/acs.accounts.6b00561. PubMed DOI PMC
Frederickson C.J., Bush A.I. Synaptically released zinc: Physiological functions and pathological effects. Biometals. 2001;14:353–366. doi: 10.1023/A:1012934207456. PubMed DOI
Frederickson C.J. Neurobiology of zinc and zinc-containing neurons. Int. Rev. Neurobiol. 1989;31:145–238. doi: 10.1016/s0074-7742(08)60279-2. PubMed DOI
Slomianka L. Neurons of origin of zinc-containing pathways and the distribution of zinc-containing boutons in the hippocampal region of the rat. Neuroscience. 1992;48:325–352. doi: 10.1016/0306-4522(92)90494-M. PubMed DOI
Ketterman J.K., Li Y.V. Presynaptic evidence for zinc release at the mossy fiber synapse of rat hippocampus. J. Neurosci. Res. 2008;86:422–434. doi: 10.1002/jnr.21488. PubMed DOI
Takeda A., Fuke S., Tsutsumi W., Oku N. Negative modulation of presynaptic activity by zinc released from Schaffer collaterals. J. Neurosci. Res. 2007;85:3666–3672. doi: 10.1002/jnr.21449. PubMed DOI
Bagheri S., Squitti R., Haertle T., Siotto M., Saboury A.A. Role of Copper in the Onset of Alzheimer’s Disease Compared to Other Metals. Front. Aging Neurosci. 2017;9:446. doi: 10.3389/fnagi.2017.00446. PubMed DOI PMC
Ward R.J., Dexter D.T., Crichton R.R. Neurodegenerative diseases and therapeutic strategies using iron chelators. J. Trace Elem. Med. Biol. 2015;31:267–273. doi: 10.1016/j.jtemb.2014.12.012. PubMed DOI
Barnham K.J., Bush A.I. Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem. Soc. Rev. 2014;43:6727–6749. doi: 10.1039/C4CS00138A. PubMed DOI
Qian X., Xu Z. Fluorescence imaging of metal ions implicated in diseases. Chem. Soc. Rev. 2015;44:4487–4493. doi: 10.1039/C4CS00292J. PubMed DOI
Chowdhury S., Rooj B., Dutta A., Mandal U. Review on recent advances in metal ions sensing using different fluorescent probes. J. Fluoresc. 2018;28:999–1021. doi: 10.1007/s10895-018-2263-y. PubMed DOI
Pratt E.P.S., Damon L.J., Anson K.J., Palmer A.E. Tools and techniques for illuminating the cell biology of zinc. Biochim. Biophys. Acta Mol. Cell Res. 2021;1868:118865. doi: 10.1016/j.bbamcr.2020.118865. PubMed DOI PMC
Qin Y., Dittmer P.J., Park J.G., Jansen K.B., Palmer A.E. Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors. Proc. Natl. Acad. Sci. USA. 2011;108:7351–7356. doi: 10.1073/pnas.1015686108. PubMed DOI PMC
Park J.G., Qin Y., Galati D.F., Palmer A.E. New sensors for quantitative measurement of mitochondrial Zn2+ ACS Chem. Biol. 2012;7:1636–1640. doi: 10.1021/cb300171p. PubMed DOI PMC
Fudge D.H., Black R., Son L., LeJeune K., Qin Y. Optical Recording of Zn2+ Dynamics in the Mitochondrial Matrix and Intermembrane Space with the GZnP2 Sensor. ACS Chem. Biol. 2018;13:1897–1905. doi: 10.1021/acschembio.8b00319. PubMed DOI PMC
Falcon-Perez J.M., Dell’Angelica E.C. Zinc transporter 2 (SLC30A2) can suppress the vesicular zinc defect of adaptor protein 3-depleted fibroblasts by promoting zinc accumulation in lysosomes. Exp. Cell Res. 2007;313:1473–1483. doi: 10.1016/j.yexcr.2007.02.006. PubMed DOI PMC
Kukic I., Lee J.K., Coblentz J., Kelleher S.L., Kiselyov K. Zinc-dependent lysosomal enlargement in TRPML1-deficient cells involves MTF-1 transcription factor and ZnT4 (Slc30a4) transporter. Biochem. J. 2013;451:155–163. doi: 10.1042/BJ20121506. PubMed DOI PMC
Vinkenborg J.L., Nicolson T.J., Bellomo E.A., Koay M.S., Rutter G.A., Merkx M. Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nat. Methods. 2009;6:737–740. doi: 10.1038/nmeth.1368. PubMed DOI PMC
Yang Z., Loh K.Y., Chu Y.-T., Feng R., Satyavolu N.S.R., Xiong M., Nakamata Huynh S.M., Hwang K., Li L., Xing H., et al. Optical control of metal ion probes in cells and zebrafish using highly selective DNAzymes conjugated to upconversion nanoparticles. J. Am. Chem. Soc. 2018;140:17656–17665. doi: 10.1021/jacs.8b09867. PubMed DOI PMC
Peng J., Xu W., Teoh C.L., Han S., Kim B., Samanta A., Er J.C., Wang L., Yuan L., Liu X., et al. High-efficiency in vitro and in vivo detection of Zn2+ by dye-assembled upconversion nanoparticles. J. Am. Chem. Soc. 2015;137:2336–2342. doi: 10.1021/ja5115248. PubMed DOI
Carter K.P., Young A.M., Palmer A.E. Fluorescent Sensors for Measuring Metal Ions in Living Systems. Chem. Rev. 2014;114:4564–4601. doi: 10.1021/cr400546e. PubMed DOI PMC
Knecht M.R., Sethi M. Bio-inspired colorimetric detection of Hg2+ and Pb2+ heavy metal ions using Au nanoparticles. Anal. Bioanal. Chem. 2009;394:33–46. doi: 10.1007/s00216-008-2594-7. PubMed DOI
Zhang J., Cheng F., Li J., Zhu J.J., Lu Y. Fluorescent nanoprobes for sensing and imaging of metal ions: Recent advances and future perspectives. Nano Today. 2016;11:309–329. doi: 10.1016/j.nantod.2016.05.010. PubMed DOI PMC
Lai J., Niu W., Luque R., Xu G. Solvothermal synthesis of metal nanocrystals and their applications. Nano Today. 2015;10:240–267. doi: 10.1016/j.nantod.2015.03.001. DOI
Li D., Ma Y., Duan H., Jiang F., Deng W., Ren X. Fluorescent/SERS dual-sensing and imaging of intracellular Zn2+ Anal. Chim. Acta. 2018;1038:148–156. doi: 10.1016/j.aca.2018.07.020. PubMed DOI
Li W., Nie Z., He K., Xu X., Li Y., Huang Y., Yao S. Simple, rapid and label-free colorimetric assay for Zn2+ based on unmodified gold nanoparticles and specific Zn2+ binding peptide. Chem. Commun. 2011;47:4412–4414. doi: 10.1039/c0cc05727d. PubMed DOI
Promnimit S., Bera T., Baruah S., Dutta J. Chitosan capped colloidal gold nanoparticles for sensing zinc ions in water. Int. J. Nano Res. 2011;16:55–61. doi: 10.4028/www.scientific.net/JNanoR.16.55. DOI
Tira D.S., Focsan M., Ulinici S., Maniu D., Astilean S. Rhodamine B-Coated Gold Nanoparticles as Effective “Turn-on” Fluorescent Sensors for Detection of Zinc II Ions in Water. Spectrosc. Lett. 2014;47:153–159. doi: 10.1080/00387010.2013.782557. DOI
Wang S., Sun J., Gao F. A turn-on near-infrared fluorescent chemosensor for selective detection of lead ions based on a fluorophore-gold nanoparticle assembly. Analyst. 2015;140:4001–4006. doi: 10.1039/C5AN00320B. PubMed DOI
Hnilova M., Karaca B.T., Park J., Jia C., Wilson B.R., Sarikaya M., Tamerler C. Fabrication of hierarchical hybrid structures using bio-enabled layer-by-layer self-assembly. Biotechnol. Bioeng. 2012;109:1120–1130. doi: 10.1002/bit.24405. PubMed DOI
Hnilova M., Oren E.E., Seker U.O., Wilson B.R., Collino S., Evans J.S., Tamerler C., Sarikaya M. Effect of molecular conformations on the adsorption behavior of gold-binding peptides. Langmuir. 2008;24:12440–12445. doi: 10.1021/la801468c. PubMed DOI
Tamerler C., Duman M., Oren E.E., Gungormus M., Xiong X.R., Kacar T., Parviz B.A., Sarikaya M. Materials specificity and directed assembly of a gold-binding peptide. Small. 2006;2:1372–1378. doi: 10.1002/smll.200600070. PubMed DOI
Tamerler C., Oren E.E., Duman M., Venkatasubramanian E., Sarikaya M. Adsorption kinetics of an engineered gold binding peptide by surface plasmon resonance spectroscopy and a quartz crystal microbalance. Langmuir. 2006;22:7712–7718. doi: 10.1021/la0606897. PubMed DOI
Yuca E., Tamerler C. Self Assembled Recombinant Proteins on Metallic Nanoparticles As Bimodal Imaging Probes. JOM. 2019;71:1281–1290. doi: 10.1007/s11837-018-03325-3. PubMed DOI PMC
Karaca B.T., Hnilova M., Tamerler C. Addressable biological functionalization of inorganics: Materials-selective fusion proteins in bio-nanotechnology. In: Knecht M., Walsh T., editors. Bio-Inspired Nanotechnology. Springer; New York, NY, USA: 2014. pp. 221–255. DOI
Karaca B.T., Meyer J., VanOosten S., Richter M., Tamerler C. Modular Peptide-Based Hybrid Nanoprobes for Bio-Imaging and Bio-Sensing. MRS Online Proc. Libr. Arch. 2014;1621:155–161. doi: 10.1557/opl.2014.368. DOI
Zhang S., Karaca B.T., VanOosten S.K., Yuca E., Mahalingam S., Edirisinghe M., Tamerler C. Coupling infusion and gyration for the nanoscale assembly of functional polymer nanofibers integrated with genetically engineered proteins. Macromol. Rapid Commun. 2015;36:1322–1328. doi: 10.1002/marc.201500174. PubMed DOI PMC
Ko S.-K., Chen X., Yoon J., Shin I. Zebrafish as a good vertebrate model for molecular imaging using fluorescent probes. Chem. Soc. Rev. 2011;40:2120–2130. doi: 10.1039/c0cs00118j. PubMed DOI
Kalueff A.V., Stewart A.M., Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci. 2014;35:63–75. doi: 10.1016/j.tips.2013.12.002. PubMed DOI PMC
Li W., Fang B., Jin M., Tian Y. Two-photon ratiometric fluorescence probe with enhanced absorption cross section for imaging and biosensing of zinc ions in hippocampal tissue and zebrafish. Anal. Chem. 2017;89:2553–2560. doi: 10.1021/acs.analchem.6b04781. PubMed DOI
Kim E.H., Chin G., Rong G., Poskanzer K.E., Clark H.A. Optical Probes for Neurobiological Sensing and Imaging. Acc. Chem. Res. 2018;51:1023–1032. doi: 10.1021/acs.accounts.7b00564. PubMed DOI PMC
Iversen T.G., Skotland T., Sandvig K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today. 2011;6:176–185. doi: 10.1016/j.nantod.2011.02.003. DOI
Kiselyov K., Colletti G.A., Terwilliger A., Ketchum K., Lyons C.W.P., Quinn J., Muallem S. TRPML: Transporters of metals in lysosomes essential for cell survival? Cell Calcium. 2011;50:288–294. doi: 10.1016/j.ceca.2011.04.009. PubMed DOI PMC
Fan C., Wang S., Hong J.W., Bazan G.C., Plaxco K.W., Heeger A.J. Beyond superquenching: Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proc. Natl. Acad. Sci. USA. 2003;100:6297–6301. doi: 10.1073/pnas.1132025100. PubMed DOI PMC
Li S., Zhang T., Zhu Z., Gao N., Xu Q.-H. Lighting up the gold nanoparticles quenched fluorescence by silver nanoparticles: A separation distance study. RSC Adv. 2016;6:58566–58572. doi: 10.1039/C6RA11265J. DOI
Swierczewska M., Lee S., Chen X. The design and application of fluorophore-gold nanoparticle activatable probes. Phys. Chem. Chem. Phys. 2011;13:9929–9941. doi: 10.1039/c0cp02967j. PubMed DOI PMC
Field T.M., Shin M., Stucky C.S., Loomis J., Johnson M.A. Electrochemical Measurement of Dopamine Release and Uptake in Zebrafish Following Treatment with Carboplatin. Chemphyschem. 2018;19:1192–1196. doi: 10.1002/cphc.201701357. PubMed DOI PMC
Shin M., Field T.M., Stucky C.S., Furgurson M.N., Johnson M.A. Ex Vivo Measurement of Electrically Evoked Dopamine Release in Zebrafish Whole Brain. ACS Chem. Neurosci. 2017;8:1880–1888. doi: 10.1021/acschemneuro.7b00022. PubMed DOI PMC