Poly(octamethylene citrate) Modified with Glutathione as a Promising Material for Vascular Tissue Engineering
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
SONATINA No. UMO-2018/28/C/ST5/00461
National Science Center Poland
Program "Excellence Initiative - Research University"
AGH University of Science and Technology.
16.16.160.557
AGH University of Science and Technology
NV18-02-00422
Ministry of Health of the Czech Republic
grant No. AP2202
Czech Academy of Sciences (Praemium Academiae)
PubMed
36904563
PubMed Central
PMC10006902
DOI
10.3390/polym15051322
PII: polym15051322
Knihovny.cz E-resources
- Keywords
- adipose tissue-derived stem cells (ASCs), citric acid, cytocompatibility, glutathione (GSH), poly(1,8-octametylene citrate), poly(alkylene citrates), vascular smooth-muscle cells (VSMCs), vascular tissue engineering,
- Publication type
- Journal Article MeSH
One of the major goals of vascular tissue engineering is to develop much-needed materials that are suitable for use in small-diameter vascular grafts. Poly(1,8-octamethylene citrate) can be considered for manufacturing small blood vessel substitutes, as recent studies have demonstrated that this material is cytocompatible with adipose tissue-derived stem cells (ASCs) and favors their adhesion and viability. The work presented here is focused on modifying this polymer with glutathione (GSH) in order to provide it with antioxidant properties, which are believed to reduce oxidative stress in blood vessels. Cross-linked poly(1,8-octamethylene citrate) (cPOC) was therefore prepared by polycondensation of citric acid and 1,8-octanediol at a 2:3 molar ratio of the reagents, followed by in-bulk modification with 0.4, 0.8, 4 or 8 wt.% of GSH and curing at 80 °C for 10 days. The chemical structure of the obtained samples was examined by FTIR-ATR spectroscopy, which confirmed the presence of GSH in the modified cPOC. The addition of GSH increased the water drop contact angle of the material surface and lowered the surface free energy values. The cytocompatibility of the modified cPOC was evaluated in direct contact with vascular smooth-muscle cells (VSMCs) and ASCs. The cell number, the cell spreading area and the cell aspect ratio were measured. The antioxidant potential of GSH-modified cPOC was measured by a free radical scavenging assay. The results of our investigation indicate the potential of cPOC modified with 0.4 and 0.8 wt.% of GSH to produce small-diameter blood vessels, as the material was found to: (i) have antioxidant properties, (ii) support VSMC and ASC viability and growth and (iii) provide an environment suitable for the initiation of cell differentiation.
See more in PubMed
Teebken O.E., Haverich A. Tissue Engineering of Small Diameter Vascular Grafts. Eur. J. Vasc. Endovasc. Surg. 2002;23:475–485. doi: 10.1053/ejvs.2002.1654. PubMed DOI
Camasão D.B., Mantovani D.J.M.T.B. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Mater. Today Bio. 2021;10:100106. doi: 10.1016/j.mtbio.2021.100106. PubMed DOI PMC
Sharma A.K., Hota P.V., Matoka D.J., Fuller N.J., Jandali D., Thaker H., Ameer G.A., Cheng E.Y. Urinary bladder smooth muscle regeneration utilizing bone marrow derived mesenchymal stem cell seeded elastomeric poly(1,8-octanediol-co-citrate) based thin films. Biomaterials. 2010;31:6207–6217. doi: 10.1016/j.biomaterials.2010.04.054. PubMed DOI
Yan S., Li Y., Jiang Y.-C., Xu Y., Wang D., Zhang X., Li Q., Turng L.S. Expanded polytetrafluoroethylene/silk fibroin/salicin vascular graft fabrication for improved endothelialization and anticoagulation. Appl. Surf. Sci. 2021;542:148610. doi: 10.1016/j.apsusc.2020.148610. DOI
Hiob M.A., She S., Muiznieks L.D., Weiss A.S. Biomaterials and Modifications in the Development of Small-Diameter Vascular Grafts. ACS Biomater. Sci. Eng. 2017;3:712–723. doi: 10.1021/acsbiomaterials.6b00220. PubMed DOI
Zhu A.P., Ming Z., Jian S. Blood compatibility of chitosan/heparin complex surface modified ePTFE vascular graft. Appl. Surf. Sci. 2005;241:485–492. doi: 10.1016/j.apsusc.2004.07.055. DOI
Lantz G., Badylak S., Coffey A., Geddes I.-L.A., Sandusky A.E. Small Intestinal Submucosa as a Superior Vena Cava Graft in the Dog. J. Surg. Res. 1992;53:175–181. doi: 10.1016/0022-4804(92)90031-T. PubMed DOI
Xue L., Greisler H.P. Biomaterials in the development and future of vascular grafts. J. Vasc. Surg. 2003;37:472–480. doi: 10.1067/mva.2003.88. PubMed DOI
Niklasonayb L.E., Langerb R.S. Advances in tissue engineering of blood vessels and other tissues. Transpl. Immunol. 1997;5:303–306. doi: 10.1016/S0966-3274(97)80013-5. PubMed DOI
Seifalian A.M., Tiwari A., Hamilton G., Salacinski H.J. Improving the Clinical Patency of Prosthetic Vascular and Coronary Bypass Grafts: The Role of Seeding and Tissue Engineering. Artif. Organs. 2002;26:307–320. doi: 10.1046/j.1525-1594.2002.06841.x. PubMed DOI
He H., Matsuda T. Arterial Replacement with Compliant Hierarchic Hybrid Vascular Graft: Biomechanical Adaptation and Failure. Tissue Eng. 2002;8:213–224. doi: 10.1089/107632702753724987. PubMed DOI
Seifu D.G., Purnama A., Mequanint K., Mantovani D. Small-diameter vascular tissue engineering. Nat. Rev. Cardiol. 2013;10:410–421. doi: 10.1038/nrcardio.2013.77. PubMed DOI
Motlagh D., Allen J., Hoshi R., Yang J., Lui K., Ameer G. Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering. J. Biomed. Mater. Res. A. 2007;82:907–916. doi: 10.1002/jbm.a.31211. PubMed DOI
Yang J., Webb A.R., Pickerill S.J., Hageman G., Ameer G.A. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials. 2006;27:1889–1898. doi: 10.1016/j.biomaterials.2005.05.106. PubMed DOI
van Der Lei B., Wildevuur C.R. From a Synthetic, Microporous, Compliant, Biodegradable Small-Caliber Vascular Graft to a New Artery. Thorac. Cardiovasc. Surg. 1989;37:337–347. doi: 10.1055/s-2007-1020349. PubMed DOI
Tran R.T., Zhang Y., Gyawali D., Yang J. Recent Developments on Citric Acid Derived Biodegradable Elastomers. Recent Pat. Biomed. Eng. 2009;2:216–227. doi: 10.2174/1874764710902030216. DOI
Yang J., Webb A.R., Ameer G.A. Novel Citric Acid-Based Biodegradable Elastomers for Tissue Engineering. Adv. Mater. 2004;16:511–516. doi: 10.1002/adma.200306264. DOI
Yang J., Zhang Y., Gautam S., Liu L., Dey J., Chen W., Mason R.P., Serrano C.A., Schug K.A., Tang L. Development of aliphatic biodegradable photoluminescent polymers. Proc. Natl. Acad. Sci. USA. 2009;106:9256–9261. doi: 10.1073/pnas.0900004106. PubMed DOI PMC
Webb A.R., Yang J., Ameer G.A. Biodegradable polyester elastomers in tissue engineering. Expert Opin. Biol. Ther. 2004;2:801–812. doi: 10.1517/14712598.4.6.801. PubMed DOI
Yu L., He W., Peters E.B., Ledford B.T., Tsihlis N.D., Kibbe M.R. Development of Poly(1,8-octanediol- co-citrate- co-ascorbate) Elastomers with Enhanced Ascorbate Performance for Use as a Graft Coating to Prevent Neointimal Hyperplasia. ACS Appl. Bio. Mater. 2020;3:2150–2159. doi: 10.1021/acsabm.0c00019. PubMed DOI
Tran R.T., Yang J., Ameer G.A. Citrate-Based Biomaterials and Their Applications in Regenerative Engineering. Annu. Rev. Mater. Res. 2015;45:277–310. doi: 10.1146/annurev-matsci-070214-020815. PubMed DOI PMC
Yang J., Motlagh D., Webb A.R., Ameer G.A. Novel Biphasic Elastomeric Scaffold for Small-Diameter Blood Vessel Tissue Engineering. Tissue Eng. 2005;11:1876–1886. doi: 10.1089/ten.2005.11.1876. PubMed DOI
Won Y.W., Patel A.N., Bull D.A. Engineering biodegradable polyester elastomers with antioxidant properties to attenuate oxidative stress in tissues. Biomaterials. 2014;35:8113–8122. doi: 10.1016/j.biomaterials.2014.06.004. PubMed DOI PMC
Guo J., Xie Z., Tran R.T., Xie D., Jin D., Bai X., Yang J. Click chemistry plays a dual role in biodegradable polymer design. Adv. Mater. 2014;26:1906–1911. doi: 10.1002/adma.201305162. PubMed DOI PMC
Webb A.R., Kumar V.A., Ameer G.A. Biodegradable poly(diol citrate) nanocomposite elastomers for soft tissue engineering. J. Mater. Chem. 2007;17:900–906. doi: 10.1039/B611353B. DOI
Wu Y., Shi R., Chen D., Zhang L., Tian W. Nanosilica filled poly(glycerol-sebacate-citrate) elastomers with improved mechanical properties, adjustable degradability, and better biocompatibility. J. Appl. Polym. Sci. 2012;123:1612–1620. doi: 10.1002/app.34556. DOI
Zhang Y., Yang J. Design strategies for fluorescent biodegradable polymeric biomaterials. J. Mater. Chem. B. 2013;1:132–148. doi: 10.1039/C2TB00071G. PubMed DOI PMC
Serrano C.A., Zhang Y., Yang J., Schug K.A. Matrix-assisted laser desorption/ionization mass spectrometric analysis of aliphatic biodegradable photoluminescent polymers using new ionic liquid matrices. Rapid Commun. Mass Spectrom. 2011;25:1152–1158. doi: 10.1002/rcm.4974. PubMed DOI
Kasprzyk W., Bednarz S., Bogdał D. Luminescence phenomena of biodegradable photoluminescent poly(diol citrates) Chem. Commun. 2013;49:6445–6447. doi: 10.1039/c3cc42661k. PubMed DOI
Koper F., Świergosz T., Żaba A., Flis A., Trávníčková M., Bačáková L., Pamuła E., Bogdał D., Kasprzyk W.P. Advancements in structure-property correlation studies of cross-linked citric acid-based elastomers from the perspective of medical application. J. Mater. Chem. B. 2021;9:6425–6440. doi: 10.1039/D1TB01078F. PubMed DOI
Shearer H.L., Paton J.C., Hampton M.B., Dickerhof N. Glutathione utilization protects Streptococcus pneumoniae against lactoperoxidase-derived hypothiocyanous acid. Free Radic. Biol. Med. 2022;179:24–33. doi: 10.1016/j.freeradbiomed.2021.12.261. PubMed DOI
Linetsky M., Shipova E.V., Argirov O.K. Influence of glutathione fructosylation on its properties. Arch. Biochem. Biophys. 2006;449:34–46. doi: 10.1016/j.abb.2006.02.019. PubMed DOI
Kasprzyk W., Koper F., Flis A., Szreder D., Pamuła E., Bogdał D., Wybraniec S., Ortyl J., Świergosz T. Fluorescence assay for the determination of glutathione based on a ring-fused 2-pyridone derivative in dietary supplements. Analyst. 2021;146:1897–1906. doi: 10.1039/D0AN02245D. PubMed DOI
Travnickova M., Kasalkova N.S., Sedlar A., Molitor M., Musilkova J., Slepicka P., Svorcik V., Bacakova L. Differentiation of adipose tissue-derived stem cells towards vascular smooth muscle cells on modified poly(L-lactide) foils. Biomed. Mater. 2021;16:025016. doi: 10.1088/1748-605X/abaf97. PubMed DOI
Kasprzyk W.P., Świergosz T., Romańczyk P.P., Feldmann J., Stolarczyk J. The role of molecular fluorophores in the photoluminescence of carbon dots derived from citric acid: Current state-of-the-art and future perspectives. Nanoscale. 2022;14:14368–14384. doi: 10.1039/D2NR03176K. PubMed DOI
Singh G., Dogra S.D., Kaur S., Tripathi S.K., Prakash S., Rai B., Saini G.S.S. Structure and vibrations of glutathione studied by vibrational spectroscopy and density functional theory. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015;149:505–515. doi: 10.1016/j.saa.2015.04.062. PubMed DOI
Bacakova: L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI