Anomalous magnetoresistance by breaking ice rule in Bi2Ir2O7/Dy2Ti2O7 heterostructure
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
DE-SC0020254
DOE | SC | Basic Energy Sciences (BES)
PubMed
36918538
PubMed Central
PMC10014844
DOI
10.1038/s41467-023-36886-2
PII: 10.1038/s41467-023-36886-2
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
While geometrically frustrated quantum magnets host rich exotic spin states with potentials for revolutionary quantum technologies, most of them are necessarily good insulators which are difficult to be integrated with modern electrical circuit. The grand challenge is to electrically detect the emergent fluctuations and excitations by introducing charge carriers that interact with the localized spins without destroying their collective spin states. Here, we show that, by designing a Bi2Ir2O7/Dy2Ti2O7 heterostructure, the breaking of the spin-ice rule in insulating Dy2Ti2O7 leads to a charge response in the conducting Bi2Ir2O7 measured as anomalous magnetoresistance during the field-induced Kagome ice-to-saturated ice transition. The magnetoresistive anomaly also captures the characteristic angular and temperature dependence of this ice-rule-breaking transition, which has been understood as magnetic monopole condensation. These results demonstrate a novel heteroepitaxial approach for electronically probing the transition between exotic insulating spin states, laying out a blueprint for the metallization of frustrated quantum magnets.
Charles University Prague 11636 Czechia
Department of Physics and Astronomy University of Tennessee Knoxville TN 37996 USA
Department of Physics University of Washington Seattle WA 98195 USA
Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
National High Magnetic Field Laboratory Florida State University Tallahassee FL 32310 USA
School of Physics Georgia Institute of Technology Atlanta GA 30332 USA
See more in PubMed
Lacroix, C., Mendels, P. & Mila, F. Introduction to Frustrated Magnetism: Materials, Experiments, Theory (Springer Science & Business Media, 2011).
Castelnovo C, Moessner R, Sondhi SL. Spin ice, fractionalization, and topological order. Annu. Rev. Condens. Matter Phys. 2012;3:35–55. doi: 10.1146/annurev-conmatphys-020911-125058. DOI
Gingras MJ, McClarty PA. Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets. Rep. Prog. Phys. 2014;77:056501. doi: 10.1088/0034-4885/77/5/056501. PubMed DOI
Knolle J, Moessner R. A field guide to spin liquids. Annu. Rev. Condens. Matter Phys. 2019;10:451–472. doi: 10.1146/annurev-conmatphys-031218-013401. DOI
Shannon N, Sikora O, Pollmann F, Penc K, Fulde P. Quantum ice: a quantum Monto Carlo study. Phys. Rev. Lett. 2012;108:067204. doi: 10.1103/PhysRevLett.108.067204. PubMed DOI
Savary L, Balents L. Quantum spin liquid: a review. Rep. Prog. Phys. 2017;80:016502. doi: 10.1088/0034-4885/80/1/016502. PubMed DOI
Zhou Y, Kanoda K, Ng T-K. Quantum spin liquid states. Rev. Mod. Phys. 2017;89:025003. doi: 10.1103/RevModPhys.89.025003. DOI
Milton KA. Theoretical and experimental staus of magnetic monopoles. Rep. Prog. Phys. 2006;69:1637–1711. doi: 10.1088/0034-4885/69/6/R02. DOI
Balents L. Spin liquids in frustrated magnets. Nature. 2010;464:199–208. doi: 10.1038/nature08917. PubMed DOI
Semeghini G, et al. Probing topological spin liquids on a programmable quantum simulator. Science. 2021;374:1242–1247. doi: 10.1126/science.abi8794. PubMed DOI
Siddharthan R, et al. Ising pyrochlore magnets: low-temperature properties, “ice rules,” and beyond. Phys. Rev. Lett. 1999;83:1854. doi: 10.1103/PhysRevLett.83.1854. DOI
Yavors’kii T, Fennell T, Gingras MJ, Bramwell ST. Dy2Ti2O7 spin ice: a test case for emergent clusters in a frustrated magnet. Phys. Rev. Lett. 2008;101:037204. doi: 10.1103/PhysRevLett.101.037204. PubMed DOI
Gardner JS, Gingras MJP, Greedan JE. Magnetic pyrochlore oxides. Rev. Mod. Phys. 2010;82:53–107. doi: 10.1103/RevModPhys.82.53. DOI
Bramwell ST, Gingras MJP. Spin ice state in frustrated magnetic pyrochlore materials. Science. 2001;294:1495–1501. doi: 10.1126/science.1064761. PubMed DOI
Ramirez AP, Hayashi A, Cava RJ, Siddharthan R, Shastry BS. Zero-point entropy in ‘spin ice’. Nature. 1999;399:333–335. doi: 10.1038/20619. DOI
Castelnovo C, Moessner R, Sondhi SL. Magnetic monopoles in spin ice. Nature. 2008;451:42–45. doi: 10.1038/nature06433. PubMed DOI
Tabata Y, et al. Kagome ice state in the dipolar spin ice Dy2Ti2O7. Phys. Rev. Lett. 2006;97:257205. doi: 10.1103/PhysRevLett.97.257205. PubMed DOI
Jaubert LDC, Holdsworth PCW. Signature of magnetic monople and Dirac string dynamics in spin ice. Nat. Phys. 2009;5:258–261. doi: 10.1038/nphys1227. DOI
Sakakibara T, Tayama T, Hiroi Z, Matsuhira K, Takagi S. Observation of a liquid-gas-type transition in the pyrochlore spin ice compound Dy2Ti2O7 in a magnetic field. Phys. Rev. Lett. 2003;90:207205. doi: 10.1103/PhysRevLett.90.207205. PubMed DOI
Mostame S, Castelnovo C, Moessner R, Sondhi SL. Tunable nonequilibrium dynamics of field quenches in spin ice. Proc. Natl Acad. Sci. USA. 2014;111:640–645. doi: 10.1073/pnas.1317631111. PubMed DOI PMC
Wan X, Turner AM, Vishwanath A, Savrasov SY. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B. 2011;83:205101. doi: 10.1103/PhysRevB.83.205101. DOI
Millican JN, et al. Crystal growth and structure of R2Ir2O7 (R=Pr, Eu) using molten KF. Mater. Res. Bull. 2007;42:928–934. doi: 10.1016/j.materresbull.2006.08.011. DOI
Nakatsuji S, et al. Metallic spin-liquid behavior of the geometrically frustrated Kondo lattice Pr2Ir2O7. Phys. Rev. Lett. 2006;96:087204. doi: 10.1103/PhysRevLett.96.087204. PubMed DOI
Matsuhira K, Tokunaga M, Wakeshima M, Hinatsu Y, Takagi S. Giant magnetoresistance effect in the metal–insulator transition of pyrochlore oxide Nd2Ir2O7. J. Phys. Soc. Jpn. 2013;82:023706. doi: 10.7566/JPSJ.82.023706. DOI
Lefrançois E, et al. Fragmentation in spin ice from magnetic charge injection. Nat. Commun. 2017;8:1. doi: 10.1038/s41467-017-00277-1. PubMed DOI PMC
Pearce MJ, et al. Magnetic monopole density and antiferromagnetic domain control in spin-ice iridates. Nat. Commun. 2022;13:1. doi: 10.1038/s41467-022-27964-y. PubMed DOI PMC
Prabhakaran D, Boothroyd AT. Crystal growth of spin-ice pyrochlores by the floating-zone method. J. Cryst. Growth. 2011;318:1053–1056. doi: 10.1016/j.jcrysgro.2010.11.049. DOI
Chrisey, D. B. & Hubler, G. K., Pulsed Laser Deposition of Thin Films (Wiley, 1994). PubMed
Shinaoka H, Hoshino S, Troyer M, Werner P. Phase diagram of pyrochlore iridates: all-in-all-out magnetic ordering and non-Fermi-liquid properties. Phys. Rev. Lett. 2015;115:156401. doi: 10.1103/PhysRevLett.115.156401. PubMed DOI
Zhang H, Haule K, Vanderbilt D. Metal-insulator transition and topological properties of pyrochlore iridates. Phys. Rev. Lett. 2017;118:026404. doi: 10.1103/PhysRevLett.118.026404. PubMed DOI
Qi TF, et al. Strong magnetic instability in correlated metallic Bi2Ir2O7. J. Phys. Condens. Matter. 2012;24:345601. doi: 10.1088/0953-8984/24/34/345601. PubMed DOI
Chu J-H, et al. Possible scale invariant linear magnetoresistance in pyrochlore iridates Bi2Ir2O7. N. J. Phys. 2019;21:113041. doi: 10.1088/1367-2630/ab534c. DOI
Sato H, et al. Field-angle dependence of the ice-rule breaking spin-flip transition in Dy2Ti2O7. J. Phys. Condens. Matter. 2007;19:145272. doi: 10.1088/0953-8984/19/14/145272. DOI
Anand N, et al. Investigation of the monopole magneto-chemical potential in spin ices using capacitive torque magnetometry, Nat. Comm. 2022;13:3818. doi: 10.1038/s41467-022-31297-1. PubMed DOI PMC
Anderson PW. Localized magnetic states in metals. Phys. Rev. 1961;124:41. doi: 10.1103/PhysRev.124.41. DOI
Held K, Bulla R. Mott transition of the f-electron system in the periodic Anderson model with nearest neighbor hybridization. Eur. Phys. J. B. 2000;17:7. doi: 10.1007/s100510070154. DOI
Jungwirth T, Wunderlich J, Olejník K. Spin hall effect devices. Nat. Matter. 2012;11:382–390. doi: 10.1038/nmat3279. PubMed DOI
Bovo L, et al. Restoration of the third law in spin ice thin films. Nat. Commun. 2014;5:3439. doi: 10.1038/ncomms4439. PubMed DOI PMC
Barry K, et al. Modification of spin-ice physics in Ho2Ti2O7 thin films. Phys. Rev. Mater. 2019;3:084412. doi: 10.1103/PhysRevMaterials.3.084412. PubMed DOI PMC
Giblin SR, Bramwell ST, Holdsworth PCW, Prabhakaran D, Terry I. Creation and measurement of long-lived magnetic monopole currents in spin ice. Nat. Phys. 2011;7:252–258. doi: 10.1038/nphys1896. DOI
Li SJ, et al. Low temperature thermal conductivity of Dy2Ti2O7 and Y2Ti2O7 single crystals. Phys. Rev. B. 2015;92:094408. doi: 10.1103/PhysRevB.92.094408. DOI
Dusad R, et al. Magnetic monopole noise. Nature. 2019;571:234–239. doi: 10.1038/s41586-019-1358-1. PubMed DOI
Eyvazov AB, et al. Common glass-forming spin-liquid state in the pyrochlore magnets Dy2Ti2O7 and Ho2Ti2O7. Phys. Rev. B. 2018;98:214430. doi: 10.1103/PhysRevB.98.214430. DOI
Kassner ER, et al. Supercooled spin liquid state in the frustrated pyrochlore Dy2Ti2O7. Proc. Natl Acad. Sci. USA. 2015;112:8549–8554. doi: 10.1073/pnas.1511006112. PubMed DOI PMC
Kirschner FK, Flicker F, Yacoby A, Yao NY, Blundell SJ. Proposal for the detection of magnetic monopoles in spin ice via nanoscale magnetometry. Phys. Rev. B. 2018;97:140402. doi: 10.1103/PhysRevB.97.140402. DOI
Goryca M, et al. Field-induced magnetic monopole plasma in artificial spin ice. Phys. Rev. X. 2021;11:011042.
Miao L, Lee Y, Mei AB, Lawler MJ, Shen KM. Two-dimensional magnetic monopole gas in an oxide heterostructure. Nat. Commun. 2020;11:1341. doi: 10.1038/s41467-020-15213-z. PubMed DOI PMC
Lantagne-Hurtubise É, Rau JG, Gingras MJP. Spin-ice thin films: large-N theory and Monte Carlo simulations. Phys. Rev. X. 2018;8:021053.