• This record comes from PubMed

Anomalous magnetoresistance by breaking ice rule in Bi2Ir2O7/Dy2Ti2O7 heterostructure

. 2023 Mar 14 ; 14 (1) : 1404. [epub] 20230314

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article

Grant support
DE-SC0020254 DOE | SC | Basic Energy Sciences (BES)

Links

PubMed 36918538
PubMed Central PMC10014844
DOI 10.1038/s41467-023-36886-2
PII: 10.1038/s41467-023-36886-2
Knihovny.cz E-resources

While geometrically frustrated quantum magnets host rich exotic spin states with potentials for revolutionary quantum technologies, most of them are necessarily good insulators which are difficult to be integrated with modern electrical circuit. The grand challenge is to electrically detect the emergent fluctuations and excitations by introducing charge carriers that interact with the localized spins without destroying their collective spin states. Here, we show that, by designing a Bi2Ir2O7/Dy2Ti2O7 heterostructure, the breaking of the spin-ice rule in insulating Dy2Ti2O7 leads to a charge response in the conducting Bi2Ir2O7 measured as anomalous magnetoresistance during the field-induced Kagome ice-to-saturated ice transition. The magnetoresistive anomaly also captures the characteristic angular and temperature dependence of this ice-rule-breaking transition, which has been understood as magnetic monopole condensation. These results demonstrate a novel heteroepitaxial approach for electronically probing the transition between exotic insulating spin states, laying out a blueprint for the metallization of frustrated quantum magnets.

See more in PubMed

Lacroix, C., Mendels, P. & Mila, F. Introduction to Frustrated Magnetism: Materials, Experiments, Theory (Springer Science & Business Media, 2011).

Castelnovo C, Moessner R, Sondhi SL. Spin ice, fractionalization, and topological order. Annu. Rev. Condens. Matter Phys. 2012;3:35–55. doi: 10.1146/annurev-conmatphys-020911-125058. DOI

Gingras MJ, McClarty PA. Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets. Rep. Prog. Phys. 2014;77:056501. doi: 10.1088/0034-4885/77/5/056501. PubMed DOI

Knolle J, Moessner R. A field guide to spin liquids. Annu. Rev. Condens. Matter Phys. 2019;10:451–472. doi: 10.1146/annurev-conmatphys-031218-013401. DOI

Shannon N, Sikora O, Pollmann F, Penc K, Fulde P. Quantum ice: a quantum Monto Carlo study. Phys. Rev. Lett. 2012;108:067204. doi: 10.1103/PhysRevLett.108.067204. PubMed DOI

Savary L, Balents L. Quantum spin liquid: a review. Rep. Prog. Phys. 2017;80:016502. doi: 10.1088/0034-4885/80/1/016502. PubMed DOI

Zhou Y, Kanoda K, Ng T-K. Quantum spin liquid states. Rev. Mod. Phys. 2017;89:025003. doi: 10.1103/RevModPhys.89.025003. DOI

Milton KA. Theoretical and experimental staus of magnetic monopoles. Rep. Prog. Phys. 2006;69:1637–1711. doi: 10.1088/0034-4885/69/6/R02. DOI

Balents L. Spin liquids in frustrated magnets. Nature. 2010;464:199–208. doi: 10.1038/nature08917. PubMed DOI

Semeghini G, et al. Probing topological spin liquids on a programmable quantum simulator. Science. 2021;374:1242–1247. doi: 10.1126/science.abi8794. PubMed DOI

Siddharthan R, et al. Ising pyrochlore magnets: low-temperature properties, “ice rules,” and beyond. Phys. Rev. Lett. 1999;83:1854. doi: 10.1103/PhysRevLett.83.1854. DOI

Yavors’kii T, Fennell T, Gingras MJ, Bramwell ST. Dy2Ti2O7 spin ice: a test case for emergent clusters in a frustrated magnet. Phys. Rev. Lett. 2008;101:037204. doi: 10.1103/PhysRevLett.101.037204. PubMed DOI

Gardner JS, Gingras MJP, Greedan JE. Magnetic pyrochlore oxides. Rev. Mod. Phys. 2010;82:53–107. doi: 10.1103/RevModPhys.82.53. DOI

Bramwell ST, Gingras MJP. Spin ice state in frustrated magnetic pyrochlore materials. Science. 2001;294:1495–1501. doi: 10.1126/science.1064761. PubMed DOI

Ramirez AP, Hayashi A, Cava RJ, Siddharthan R, Shastry BS. Zero-point entropy in ‘spin ice’. Nature. 1999;399:333–335. doi: 10.1038/20619. DOI

Castelnovo C, Moessner R, Sondhi SL. Magnetic monopoles in spin ice. Nature. 2008;451:42–45. doi: 10.1038/nature06433. PubMed DOI

Tabata Y, et al. Kagome ice state in the dipolar spin ice Dy2Ti2O7. Phys. Rev. Lett. 2006;97:257205. doi: 10.1103/PhysRevLett.97.257205. PubMed DOI

Jaubert LDC, Holdsworth PCW. Signature of magnetic monople and Dirac string dynamics in spin ice. Nat. Phys. 2009;5:258–261. doi: 10.1038/nphys1227. DOI

Sakakibara T, Tayama T, Hiroi Z, Matsuhira K, Takagi S. Observation of a liquid-gas-type transition in the pyrochlore spin ice compound Dy2Ti2O7 in a magnetic field. Phys. Rev. Lett. 2003;90:207205. doi: 10.1103/PhysRevLett.90.207205. PubMed DOI

Mostame S, Castelnovo C, Moessner R, Sondhi SL. Tunable nonequilibrium dynamics of field quenches in spin ice. Proc. Natl Acad. Sci. USA. 2014;111:640–645. doi: 10.1073/pnas.1317631111. PubMed DOI PMC

Wan X, Turner AM, Vishwanath A, Savrasov SY. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B. 2011;83:205101. doi: 10.1103/PhysRevB.83.205101. DOI

Millican JN, et al. Crystal growth and structure of R2Ir2O7 (R=Pr, Eu) using molten KF. Mater. Res. Bull. 2007;42:928–934. doi: 10.1016/j.materresbull.2006.08.011. DOI

Nakatsuji S, et al. Metallic spin-liquid behavior of the geometrically frustrated Kondo lattice Pr2Ir2O7. Phys. Rev. Lett. 2006;96:087204. doi: 10.1103/PhysRevLett.96.087204. PubMed DOI

Matsuhira K, Tokunaga M, Wakeshima M, Hinatsu Y, Takagi S. Giant magnetoresistance effect in the metal–insulator transition of pyrochlore oxide Nd2Ir2O7. J. Phys. Soc. Jpn. 2013;82:023706. doi: 10.7566/JPSJ.82.023706. DOI

Lefrançois E, et al. Fragmentation in spin ice from magnetic charge injection. Nat. Commun. 2017;8:1. doi: 10.1038/s41467-017-00277-1. PubMed DOI PMC

Pearce MJ, et al. Magnetic monopole density and antiferromagnetic domain control in spin-ice iridates. Nat. Commun. 2022;13:1. doi: 10.1038/s41467-022-27964-y. PubMed DOI PMC

Prabhakaran D, Boothroyd AT. Crystal growth of spin-ice pyrochlores by the floating-zone method. J. Cryst. Growth. 2011;318:1053–1056. doi: 10.1016/j.jcrysgro.2010.11.049. DOI

Chrisey, D. B. & Hubler, G. K., Pulsed Laser Deposition of Thin Films (Wiley, 1994). PubMed

Shinaoka H, Hoshino S, Troyer M, Werner P. Phase diagram of pyrochlore iridates: all-in-all-out magnetic ordering and non-Fermi-liquid properties. Phys. Rev. Lett. 2015;115:156401. doi: 10.1103/PhysRevLett.115.156401. PubMed DOI

Zhang H, Haule K, Vanderbilt D. Metal-insulator transition and topological properties of pyrochlore iridates. Phys. Rev. Lett. 2017;118:026404. doi: 10.1103/PhysRevLett.118.026404. PubMed DOI

Qi TF, et al. Strong magnetic instability in correlated metallic Bi2Ir2O7. J. Phys. Condens. Matter. 2012;24:345601. doi: 10.1088/0953-8984/24/34/345601. PubMed DOI

Chu J-H, et al. Possible scale invariant linear magnetoresistance in pyrochlore iridates Bi2Ir2O7. N. J. Phys. 2019;21:113041. doi: 10.1088/1367-2630/ab534c. DOI

Sato H, et al. Field-angle dependence of the ice-rule breaking spin-flip transition in Dy2Ti2O7. J. Phys. Condens. Matter. 2007;19:145272. doi: 10.1088/0953-8984/19/14/145272. DOI

Anand N, et al. Investigation of the monopole magneto-chemical potential in spin ices using capacitive torque magnetometry, Nat. Comm. 2022;13:3818. doi: 10.1038/s41467-022-31297-1. PubMed DOI PMC

Anderson PW. Localized magnetic states in metals. Phys. Rev. 1961;124:41. doi: 10.1103/PhysRev.124.41. DOI

Held K, Bulla R. Mott transition of the f-electron system in the periodic Anderson model with nearest neighbor hybridization. Eur. Phys. J. B. 2000;17:7. doi: 10.1007/s100510070154. DOI

Jungwirth T, Wunderlich J, Olejník K. Spin hall effect devices. Nat. Matter. 2012;11:382–390. doi: 10.1038/nmat3279. PubMed DOI

Bovo L, et al. Restoration of the third law in spin ice thin films. Nat. Commun. 2014;5:3439. doi: 10.1038/ncomms4439. PubMed DOI PMC

Barry K, et al. Modification of spin-ice physics in Ho2Ti2O7 thin films. Phys. Rev. Mater. 2019;3:084412. doi: 10.1103/PhysRevMaterials.3.084412. PubMed DOI PMC

Giblin SR, Bramwell ST, Holdsworth PCW, Prabhakaran D, Terry I. Creation and measurement of long-lived magnetic monopole currents in spin ice. Nat. Phys. 2011;7:252–258. doi: 10.1038/nphys1896. DOI

Li SJ, et al. Low temperature thermal conductivity of Dy2Ti2O7 and Y2Ti2O7 single crystals. Phys. Rev. B. 2015;92:094408. doi: 10.1103/PhysRevB.92.094408. DOI

Dusad R, et al. Magnetic monopole noise. Nature. 2019;571:234–239. doi: 10.1038/s41586-019-1358-1. PubMed DOI

Eyvazov AB, et al. Common glass-forming spin-liquid state in the pyrochlore magnets Dy2Ti2O7 and Ho2Ti2O7. Phys. Rev. B. 2018;98:214430. doi: 10.1103/PhysRevB.98.214430. DOI

Kassner ER, et al. Supercooled spin liquid state in the frustrated pyrochlore Dy2Ti2O7. Proc. Natl Acad. Sci. USA. 2015;112:8549–8554. doi: 10.1073/pnas.1511006112. PubMed DOI PMC

Kirschner FK, Flicker F, Yacoby A, Yao NY, Blundell SJ. Proposal for the detection of magnetic monopoles in spin ice via nanoscale magnetometry. Phys. Rev. B. 2018;97:140402. doi: 10.1103/PhysRevB.97.140402. DOI

Goryca M, et al. Field-induced magnetic monopole plasma in artificial spin ice. Phys. Rev. X. 2021;11:011042.

Miao L, Lee Y, Mei AB, Lawler MJ, Shen KM. Two-dimensional magnetic monopole gas in an oxide heterostructure. Nat. Commun. 2020;11:1341. doi: 10.1038/s41467-020-15213-z. PubMed DOI PMC

Lantagne-Hurtubise É, Rau JG, Gingras MJP. Spin-ice thin films: large-N theory and Monte Carlo simulations. Phys. Rev. X. 2018;8:021053.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...