New estimates of genome size in Orthoptera and their evolutionary implications
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36920952
PubMed Central
PMC10016648
DOI
10.1371/journal.pone.0275551
PII: PONE-D-22-25859
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- délka genomu MeSH
- fylogeneze MeSH
- genom hmyzu MeSH
- kobylky * genetika MeSH
- Orthoptera * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Animal genomes vary widely in size, and much of their architecture and content remains poorly understood. Even among related groups, such as orders of insects, genomes may vary in size by orders of magnitude-for reasons unknown. The largest known insect genomes were repeatedly found in Orthoptera, e.g., Podisma pedestris (1C = 16.93 pg), Stethophyma grossum (1C = 18.48 pg) and Bryodemella holdereri (1C = 18.64 pg). While all these species belong to the suborder of Caelifera, the ensiferan Deracantha onos (1C = 19.60 pg) was recently found to have the largest genome. Here, we present new genome size estimates of 50 further species of Ensifera (superfamilies Gryllidea, Tettigoniidea) and Caelifera (Acrididae, Tetrigidae) based on flow cytometric measurements. We found that Bryodemella tuberculata (Caelifera: Acrididae) has the so far largest measured genome of all insects with 1C = 21.96 pg (21.48 gBp). Species of Orthoptera with 2n = 16 and 2n = 22 chromosomes have significantly larger genomes than species with other chromosome counts. Gryllidea genomes vary between 1C = 0.95 and 2.88 pg, and Tetrigidae between 1C = 2.18 and 2.41, while the genomes of all other studied Orthoptera range in size from 1C = 1.37 to 21.96 pg. Reconstructing ancestral genome sizes based on a phylogenetic tree of mitochondrial genomic data, we found genome size values of >15.84 pg only for the nodes of Bryodemella holdereri / B. tuberculata and Chrysochraon dispar / Euthystira brachyptera. The predicted values of ancestral genome sizes are 6.19 pg for Orthoptera, 5.37 pg for Ensifera, and 7.28 pg for Caelifera. The reasons for the large genomes in Orthoptera remain largely unknown, but a duplication or polyploidization seems unlikely as chromosome numbers do not differ much. Sequence-based genomic studies may shed light on the underlying evolutionary mechanisms.
Czech Academy of Sciences Institute of Botany Průhonice Czech Republic
Department of Biology Norwegian University of Science and Technology Trondheim Norway
Leibniz Institute for the Analysis of Biodiversity Change Museum Koenig Bonn Germany
Leibniz Institute for the Analysis of Biodiversity Change Museum of Nature Hamburg Germany
Naturhistorisches Museum Wien Wien Austria
Staatliches Museum für Naturkunde Stuttgart Stuttgart Germany
Zobrazit více v PubMed
Thomas CA. The genetic organization of chromosomes. Annu Rev Genet. 1971;5:237–56. doi: 10.1146/annurev.ge.05.120171.001321 PubMed DOI
Pereira RJ, Ruiz-Ruano FJ, Thomas CJE, Pérez-Ruiz M, Jiménez-Bartolomé M, Liu S, et al.. Mind the numt: Finding informative mitochondrial markers in a giant grasshopper genome. J Zool Syst Evol Res. 2021;59:635–45.
Gregory TR. Animal Genome Size Database [Internet]. 2022. Available from: http://www.genomesize.com.
Gregory TR, Johnston JS. Genome size diversity in the family Drosophilidae. Heredity (Edinb). 2008;101:228–38. doi: 10.1038/hdy.2008.49 PubMed DOI
Juan C, Petitpiere E. C-banding and DNA content in seven species of Tenebrionidae (Coleoptera). Genome. 1989;32:834–9.
Westerman M, Barton NH, Hewitt GM. Differences in DNA content between two chromosomal races of the grasshopper Podisma pedestris. Heredity. 1987;58:221–8.
Mao Y, Zhang N, Nie Y, Zhang X, Li X, Huang Y. Genome Size of 17 Species From Caelifera (Orthoptera) and Determination of Internal Standards With Very Large Genome Size in Insecta. Front Physiol. 2020;11:1321. doi: 10.3389/fphys.2020.567125 PubMed DOI PMC
Husemann M, Sadílek D, Dey LS, Hawlitschek O, Seidel M. New genome size estimates for band-winged and slant-faced grasshoppers (Orthoptera: Acrididae: Oedipodinae, Gomphocerinae) reveal the so far largest measured insect genome. Caryologia. 2021;73:111–20.
Shah A, Hoffman JI, Schielzeth H. Comparative Analysis of Genomic Repeat Content in Gomphocerine Grasshoppers Reveals Expansion of Satellite DNA and Helitrons in Species with Unusually Large Genomes. Genome Biol Evol. 2020;12:1180–93. doi: 10.1093/gbe/evaa119 PubMed DOI PMC
Majid M, Yuan H. Comparative Analysis of Transposable Elements in Genus Calliptamus Grasshoppers Revealed That Satellite DNA Contributes to Genome Size Variation. Insects. 2021;12:837. doi: 10.3390/insects12090837 PubMed DOI PMC
Husemann M, Dey LS, Sadílek D, Ueshima N, Hawlitschek O, Song H, et al.. Evolution of chromosome number in grasshoppers (Orthoptera: Caelifera: Acrididae). Org Divers Evol. 2022;22: 649–657.
Yuan H, Huang Y, Mao Y, Zhang N, Nie Y, Zhang X, et al.. The Evolutionary Patterns of Genome Size in Ensifera (Insecta: Orthoptera). Front Genet. 2021;12:693541. doi: 10.3389/fgene.2021.693541 PubMed DOI PMC
Fischer J, Steinlechner D, Zehm A, Poniatowski D, Fartmann T, Beckmann A, et al.. Die Heuschrecken Deutschlands und Nordtirols. Wiebelsheim: Quelle & Meyer; 2016. 372 p.
Bellmann H, Rutschmann F, Roesti C, Hochkirch A. Der Kosmos Heuschrecken-Führer. Stuttgart: Kosmos; 2019. 432 p.
Cigliano MM, Braun H, Eades DC, Otte D. Orthoptera Species File Version 5.0/5.0. 2022. 2022. p. http://www.orthoptera.speciesfile.org.
Sadílek D, Urfus T, Vilímová J. Genome size and sex chromosome variability of bed bugs feeding on animal hosts compared to Cimex lectularius parasitizing human (Heteroptera: Cimicidae). Cytom Part A. 2019;95:1158–66. PubMed
Sadílek D, Urfus T, Hadrava J, Vilímová J, Suda J. Nuclear genome size in contrast to sex chromosome number variability in the human bed bug, Cimex lectularius (Heteroptera: Cimicidae). Cytom Part A. 2019;95:746–56. PubMed
Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, et al.. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Ann Bot. 1988;82:17–26.
Doležel J, Greilhuber J. Nuclear genome size: are we getting closer? Cytom Part A. 2010;77:635–42. doi: 10.1002/cyto.a.20915 PubMed DOI
Šmarda P, Bureš P, Horová L, Foggi B, Rossi G. Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Ann Bot. 2008;101:421–33. doi: 10.1093/aob/mcm307 PubMed DOI PMC
Barrow M, Meister A. Lack of correlation between AT frequency and genome size in higher plants and the effect of non-randomness of base sequences on dye binding. Cytom Part A. 2002;47:1–7. PubMed
Doležel J, Bartoš J, Vogelmayr H, Greilhuber J. Nuclear DNA Content and Genome Size of Trout and Human. Cytom Part A. 2003;51:127–8. doi: 10.1002/cyto.a.10013 PubMed DOI
Hammer Ø, Harper DAT, Ryan PD. PAST—PAlaeontological STatistics. Palaeontol electron. 2001;4:1–9.
Ratnasingham S, Hebert PDN. BOLD: the barcode of life data system (www.barcodinglife.org). Mol Ecol Notes. 2007;7:355–64. PubMed PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7. doi: 10.1093/nar/gkh340 PubMed DOI PMC
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al.. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9. doi: 10.1093/bioinformatics/bts199 PubMed DOI PMC
Madeira F, Park Ymi, Lee J, Buso N, Gur T, Madhusoodanan N, et al.. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47:636–41. doi: 10.1093/nar/gkz268 PubMed DOI PMC
Minh BQ, Schmidt H, Chernomor O, Schrempf D, Woodhams M, von Haeseler A, et al.. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015 PubMed DOI PMC
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:232–5. PubMed PMC
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2020.
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3:217–23.
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8. doi: 10.1093/bioinformatics/bty633 PubMed DOI
Schielzeth H, Streitner C, Lampe U, Franzke A, Reinhold K. Genome size variation affects song attractiveness in grasshoppers: Evidence for sexual selection against large genomes. Evolution. 2014;68:3629–35. doi: 10.1111/evo.12522 PubMed DOI
Camacho JPM. Comment on Schielzeth et al.. (2014): “Genome size variation affects song attractiveness in grasshoppers: Evidence for sexual selection against large genomes.” Evolution. 2016;70:1428–30. PubMed
Li X, Mank JE, Ban L. Grasshopper genome reveals long-term conservation of the X chromosome and temporal variation in X chromosome evolution. bioRxiv. 2022. Jan 1;2022.09.08.507201. PubMed PMC
Mugleston JD, Naegle M, Song H, Whiting MF. A Comprehensive Phylogeny of Tettigoniidae (Orthoptera: Ensifera) Reveals Extensive Ecomorph Convergence and Widespread Taxonomic Incongruence. Insect Syst Divers. 2018;2:1–25.
Leavitt JR, Hiatt KD, Whiting MF, Song H. Searching for the optimal data partitioning strategy in mitochondrial phylogenomics: a phylogeny of Acridoidea (Insecta: Orthoptera: Caelifera) as a case study. Mol Phylogenet Evol. 2013;67:494–508. doi: 10.1016/j.ympev.2013.02.019 PubMed DOI
Song H, Mariño-Pérez R, Woller DA, Cigliano MM. Evolution, Diversification, and Biogeography of Grasshoppers (Orthoptera: Acrididae). Insect Syst Divers. 2018;2:1–27.
Song H, Foquet B, Mariño-Pérez R, Woller DA. Phylogeny of locusts and grasshoppers reveals complex evolution of density-dependent phenotypic plasticity. Sci Rep. 2017;7:1–13. PubMed PMC
Song H, Béthoux O, Shin S, Donath A, Letsch H, Liu S, et al.. Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera. Nat Commun. 2020;11:4939. doi: 10.1038/s41467-020-18739-4 PubMed DOI PMC
Yang J, Dong H, He M, Gao J. Mitochondrial genome characterization of Gryllodes sigillatus (Orthoptera: Gryllidae) and its phylogenetic implications. Mitochondr DNA Part B. 2021. Mar 4;6:1056–8. PubMed PMC
Hawlitschek O, Ortiz EM, Noori S, Webster KC, Husemann M, Pereira RJ. Transcriptomic data reveals nuclear-mitochondrial discordance in Gomphocerinae grasshoppers (Insecta: Orthoptera: Acrididae). Mol Phylogenet Evol. 2022;170:107439. doi: 10.1016/j.ympev.2022.107439 PubMed DOI
Husemann M, Namkung S, Habel JC, Danley PD, Hochkirch A. Phylogenetic analyses of band-winged grasshoppers (Orthoptera, Acrididae, Oedipodinae) reveal convergence of wing morphology. Zool Scr. 2012;41:515–26.
Glazier DS. Genome Size Covaries More Positively with Propagule Size than Adult Size: New Insights into an Old Problem. Biology (Basel). 2021;10:270. doi: 10.3390/biology10040270 PubMed DOI PMC
Hughes AL. Adaptive Evolution of Genes and Genomes. Oxford: Oxford University Press; 1999. 270 p.
Gregory TR. Genome Size Evolution in Animals. In: Gregory TR, editor. The Evolution of the Genome. Burlington: Academic Press; 2005. p. 3–87.
Ustyantsev K, Biryukov M, Sukhikh I, Shatskaya N V, Fet V, Blinov A, et al.. Diversity of mariner-like elements in Orthoptera. Vavilov Journal of Genetics and Breeding. 2019;23:1059–66.
Palacios-Gimenez OM, Koelman J, Palmada-Flores M, Bradford TM, Jones KK, Cooper SJB, et al.. Comparative analysis of morabine grasshopper genomes reveals highly abundant transposable elements and rapidly proliferating satellite DNA repeats. BMC Biol. 2020;18:199. doi: 10.1186/s12915-020-00925-x PubMed DOI PMC
Liu X, Majid M, Yuan H, Chang H, Liu X, He X, et al.. Transposable elements expansion and low-level piRNA silencing in grasshopper may cause genome gigantism. BMC Biol. 2022;20:243. PubMed PMC
Donald D, Matt F, D. SA, Vincent F, Giorgio C, E. AP, et al.. Fossilized cell structures identify an ancient origin for the teleost whole-genome duplication. Proc Nat Acad Sci U.S.A. 2021;118:e2101780118. doi: 10.1073/pnas.2101780118 PubMed DOI PMC
McCutcheon JP, Boyd BM, Dale C. The Life of an Insect Endosymbiont from the Cradle to the Grave. Curr Biol. 2019;29:485–95. doi: 10.1016/j.cub.2019.03.032 PubMed DOI
Vinogradov AE, Anatskaya O V. Genome size and metabolic intensity in tetrapods: a tale of two lines. Proc Roy Soc B. 2006;273(1582):27–32. doi: 10.1098/rspb.2005.3266 PubMed DOI PMC
Johnston JS, Bernardini A, Hjelmen CE. Genome Size Estimation and Quantitative Cytogenetics in Insects. In: Brown SJ, Pfrender ME, editors. Insect Genomics. New York, NY: Springer New York; 2019. p. 15–26. PubMed
Ohmachi F. Preliminary Note on Cytological Studies on Gryllodea Chromosome-numbers and sex-chromosomes of eighteen species. Proc Imp Acad. 1927;3:451–6.
Barker JF. Variation of chiasma frequency in and between natural populations of Acrididae. Heredity. 1960;14:211–4.
Cabrero J, Camacho JPM. Cytogenetic studies in gomphocerine grasshoppers. I. Comparative analysis of chromosome C-banding pattern. Heredity. 1986;56:365–72.
Zhao L, Wang H, Li P, Sun K, Guan DL, Xu SQ. Genome Size Estimation and Full-Length Transcriptome of Sphingonotus tsinlingensis: Genetic Background of a Drought-Adapted Grasshopper. Front Genet. 2021;12:678625. PubMed PMC