Analysis of the use of behavioral data from virtual reality for calibration of agent-based evacuation models
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36938424
PubMed Central
PMC10015235
DOI
10.1016/j.heliyon.2023.e14275
PII: S2405-8440(23)01482-2
Knihovny.cz E-zdroje
- Klíčová slova
- Agent modeling, Evacuation behavior, Evacuation time, Indoor navigation, Pathfinder, Virtual reality,
- Publikační typ
- časopisecké články MeSH
Agent-based evacuation modeling represents an effective tool for making predictions about evacuation aspects of buildings such as evacuation times, congestions, and maximum safe building capacity. Collection of real behavioral data for calibrating agent-based evacuation models is time-consuming, costly, and completely impossible in the case of buildings in the design phase, where predictions about evacuation behavior are especially needed. In recent years evacuation experiments conducted in virtual reality (VR) have been frequently proposed in the literature as an effective tool for collecting data about human behavior. However, empirical studies which would assess validity of VR-based data for such purposes are still rare and considerably lacking in the agent-based evacuation modeling domain. This study explores opportunities that the VR behavioral data may bring for refining outputs of agent evacuation models. To this end, this study employed multiple input settings of agent-based evacuation models (ABEMs), including those based on the data gathered from the VR evacuation experiment that mapped out evacuation behaviors of individuals within the building. Calibration and evaluation of models was based on empirical data gathered from an original evacuation exercise conducted in a real building (N = 35) and its virtual twin (N = 38). This study found that the resulting predictions of single agent models using data collected in the VR environment after proposed corrections have the potential to better predict real-world evacuation behavior while offering desirable variance in the data outputs necessary for practical applications.
Department of Geography Faculty of Science Masaryk University Brno Czech Republic
Department of Psychology Faculty of Arts Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Wiener J.M., Büchner S.J., Hölscher C. Taxonomy of human wayfinding tasks: a knowledge-based approach. Spatial Cognit. Comput. 2009;9(2):152–165.
Cao L., Lin J., Li N. A virtual reality based study of indoor fire evacuation after active or passive spatial exploration. Comput. Hum. Behav. 2019;90:37–45.
Golledge R.G. first ed. Johns Hopkins University Press; Baltimore, Maryland, United States: 1999. Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes.
Maguire E.A., Burgess N., Donnett J.G., Frackowiak R.S., Frith C.D., O'Keefe J. Knowing where and getting there: a human navigation network. Science. 1998;280(5365):921–924. PubMed
Proulx G. Proceedings of the 9th International Fire Protection Symposium. Proceedings of the 9th International Fire Protection Seminar; Munich, Germany: 2001. Occupant behaviour and evacuation; pp. 219–232.
Johnson C. Lessons from the evacuation of the world trade centre, 9/11 2001 for the development of computer-based simulations. Cognit. Technol. Work. 2005;7(4):214–240.
Geyer T., Bellamy L.J., Max-Lino R., Harrison P.I., Bahrami Z., Modha B. In: Safety in the Built Environment. Sime J.D., editor. E. & F.N. Spon; New York, New York, United States: 1988. An evaluation of the effectiveness of the components of informative fire warning systems; pp. 36–47.
Proulx G., Fahy R. The time delay to start evacuation: review of five case studies. Fire Saf. Sci. 1997;5:783–794.
Proulx G., Sime J.D. To prevent 'panic' in an underground emergency: why not tell people the truth? Fire Saf. Sci. 1991;3:843–852.
Purser D.A., Bensilum M. Quantification of behaviour for engineering design standards and escape time calculations. Saf. Sci. 2001;38(2):157–182.
Snopková D., Ugwitz P., Stachoň Z., Hladík J., Juřík V., Kvarda O., Kubíček P. Retracing evacuation strategy: a virtual reality game-based investigation into the influence of building’s spatial configuration in an emergency. Spatial Cognit. Comput. 2021:1–21.
Kurkjian S., Ebbert S., Farragher T. The Boston Globe; 2003. Behind the Rhode Island Nightclub Fire: Series of Errors Sealed Crowd’s Fate.http://archive.boston.com/news/packages/nightclub_fire/Series_of_errors_sealed_crowd_s_fate.shtml
Wood P.G. The behaviour of people in fires. Fire Res. Notes. 1972;953
Kinateder M., Comunale B., Warren W. Exit choice in an emergency evacuation scenario is influenced by exit familiarity and neighbor behavior. Saf. Sci. 2018;106:170–175.
Arthur P., Passini R. Focus Strategic Communications Inc.; Brantford, Ontario, Canada: 2002. Wayfinding: People, Signs and Architecture.
Xie H., Filippidis L., Galea E.R., Blackshields D., Lawrence P.J. Experimental analysis of the effectiveness of emergency signage and its implementation in evacuation simulation. Fire Mater. 2011;36(5–6):367–382.
Taylor L.H., Sucov E.W. The movement of people toward lights. J. Illum. Eng. Soc. 1974;3:237–241.
Vilar E., Rebelo F. In: Advances in Cognitive Ergonomics. Kaber D.B., Boy G., editors. CRC Press; Boca Raton, Florida, United States: 2010. Virtual reality in wayfinding studies; pp. 802–811.
Shih N.-J., Lin C.-Y., Yang C.-H. A virtual-reality-based feasibility study of evacuation time compared to the traditional calculation method. Fire Saf. J. 2000;34(4)
Lin J., Zhu R., Li N., Becerik-Gerber B. Do people follow the crowd in building emergency evacuation? A cross-cultural immersive virtual reality-based study. Adv. Eng. Inf. 2020;43 doi: 10.1016/j.aei.2020.101040. DOI
Kobes M., Helsloot I., De Vries B., Post J. Exit choice, (pre-)movement time and (pre-)evacuation behaviour in hotel fire evacuation – behavioural analysis and validation of the use of serious gaming in experimental research. Procedia Eng. 2010;3:37–51.
Ugwitz P., Juřík V., Herman L., Stachoň Z., Kubíček P., Šašinka Č. Spatial analysis of navigation in virtual geographic environments. Appl. Sci. 2019;9(9):1873.
Vilar E., Rebelo F., Noriega P., Teles J., Mayhorn C. The influence of environmental features on route selection in an emergency situation. Appl. Ergon. 2013;44(4):618–627. PubMed
Ronchi E., Nilsson D. Fire evacuation in high-rise buildings: a review of human behaviour and modelling research. Fire Sci. Rev. 2013;2(1):1–21. doi: 10.1186/2193-0414-2-7. DOI
Liao Weichen, et al. A generalized validation procedure for pedestrian models. Simulat. Model. Pract. Theor. 2017;77:20–31.
Chraibi Mohcine, et al. Assessment of models for pedestrian dynamics with functional principal component analysis. Phys. Stat. Mech. Appl. 2016;451:475–489.
Helbing D., Molnar P. Social force model for pedestrian dynamics. Phys. Rev. 1998;51 doi: 10.48550/arXiv.cond-mat/9805244. PubMed DOI
Burstedde C., Klauck K., Schadschneider A., Zittartz J. Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. Stat. Mech. Appl. 2001;295:507–525. doi: 10.1016/S0378-4371(01)00141-8. DOI
Veling W., Counotte J., Pot-Kolder R., van Os J., van der Gaag M. Childhood trauma, psychosis liability and social stress reactivity: a virtual reality study. Psychol. Med. 2016;46:3339–3348. PubMed
Arias S. 2021. Application of Virtual Reality in the Study of Human Behavior in Fire: Pursuing Realistic Behavior in Evacuation Experiments. PhD Thesis.
Alcañiz M., Rey B., Tembl J., Parkhutik V. A neuroscience approach to virtual reality experience using transcranial Doppler monitoring. Presence Teleoperators Virtual Environ. 2009;18(2):97–111.
Wilson P.N. In: A Handbook of Spatial Research Paradigms and Methodologies. Foreman N., Gillet R., editors. Vol. 1. Psychology Press/Erlbaum (UK) Taylor & Francis; United Kingdom: 1997. Use of virtual reality computing in spatial learning research; pp. 181–206. (Spatial Cognition in the Child and Adult).
Paradis M.A., Nicolas T., Gaugne R., Barreau J.B., Auger R., Gouranton V. Making virtual archeology great again (without scientific compromise) Int. Arch. Photogram. Rem. Sens. Spatial Inf. Sci. 2019;XLII-2/W15:879–886.
Fuad M. 2019. XR Interaction Toolkit Preview Package Is Here. Unity Technologies Blog.https://blogs.unity3d.com/2019/12/17/xr-interaction-toolkit-preview-package-is-here/
Bille R., Smith S.P., Maund K., Brewer G. Proceedings of the 2014 Conference on Interactive Entertainment (IE2014), Newcastle, New South Wales, Australia. 1–8. Association for Computing Machinery (ACM); New York, New York, United States: 2014. Extending building information models into game engines.
Ugwitz P., Šašinková A., Šašinka Č., Stachoň Z., Juřík V. Toggle toolkit: a tool for conducting experiments in Unity virtual environments. Behav. Res. Methods. 2021;53(4):1581–1591. PubMed
Kuliga S., Thrash T., Dalton R.C., Hölscher C. Virtual reality as an empirical research tool — exploring user experience in a real building and a corresponding virtual model. Comput. Environ. Urban Syst. 2015;54:363–375.
Abras C., Maloney-Krichmar D., Preece J. In: Bainbridge W.S., editor. ume 2. Berkshire Publishing Group LLC; Great Barrington, Massachusetts, United States: 2004. User-centered design. (Encyclopedia of Human-Computer Interaction).
Morganti F., Carassa A., Geminiani G. Planning optimal paths: a simple assessment of survey spatial knowledge in virtual environments. Comput. Hum. Behav. 2007;23(4):1982–1996.
Kinateder M., Ronchi E., Nilsson D., Kobes M., Müller M., Pauli P., Mülberger A. In: Federated Conference On Computer Science And Information Systems, Proceedings of the 1st Complex Events and Information Modelling at the Federated Conference on Computer Science and Information Systems, Warsaw, Poland. Krasuski A., Rein G., editors. IEEE – Institute of Electrical and Electronics Engineers Inc.; Piscataway, New Jersey, United States: 2014. Virtual reality for fire evacuation research; pp. 313–321.
Kvarda O. Abstracts Of the International Cartographic Association. 30th International Cartographic Conference, Florence, Italy. 2021. Usability of building information modeling (BIM) for generating virtual geographic environments (VGEs) eISSN 2570-2106.
Feng Z., González V., Amor R., Lovreglio R., Cabrera-Guerrero G. Immersive virtual reality serious games for evacuation training and research: a systematic literature review. Comput. Educ. 2018;127:252–266. doi: 10.1016/j.compedu.2018.09.002. DOI
Deb S., Carruth D.W., Sween R., Strawderman L., Garrison T.M. Efficacy of virtual reality in pedestrian safety research. Appl. Ergon. 2017;65:449–460. doi: 10.1016/j.apergo.2017.03.007. PubMed DOI
Moussaïd M., Kapadia M., Thrash T., Sumner R., Gross M., Helbing D., Hölscher C. Crowd behaviour during high-stress evacuations in an immersive virtual environment. J. R. Soc. Interface. 2016;13(122) PubMed PMC
Lovreglio R. 2020. Virtual and augmented reality for human behaviour in disasters: a review; pp. 1–14. (Proc. Fire and Evacuation Modeling Technical Conference FEMTC (2020). Online Conference, September 9–11).
Mizuchi Y., Inamura T. 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Proceedings of the 27th IEEE International Symposium on Robot and Human Interactive Communication, Nanjing, China. Vol. 201. 2018. Evaluation of human behavior difference with restricted field of view in real and VR environments; pp. 196–201.
Shi Y., Du J., Ahn C.R., Ragan E. Impact assessment of reinforced learning methods on construction workers' fall risk behavior using virtual reality. Autom. ConStruct. 2019;104:197–214.
van der Ham I., Faber A., Venselaar M., van Kreveld M., Lãffler M. Ecological validity of virtual environments to assess human navigation ability. Front. Psychol. 2015;6 PubMed PMC
Lessels S., Ruddle R. Three levels of metric for evaluating wayfinding. Presence Teleoperators Virtual Environ. 2006;15(6):637–654.
Marín-Morales J., Higuera-Trujillo J., De-Juan-Ripoll C., Llinares C., Guixeres J., Iñarra S., Alcañiz M. Navigation comparison between a real and a virtual museum: time-dependent differences using a head mounted display. Interact. Comput. 2019;31(2):208–220. doi: 10.1093/iwc/iwz018. DOI
Stachoň Z., Jochecová K., Kvarda O., Snopková D. The possibilities of using virtual environments in research on wayfinding. Virtual Real. 2022 doi: 10.21203/rs.3.rs-2045842/v1. Manuscript submitted for publication. DOI
Davis S., Nesbitt K., Nalivaiko E. 1–9. Association for Computing Machinery; New York, NY, USA: 2014. A systematic review of cybersickness. (Proceedings of the 2014 Conference on Interactive Entertainment (IE2014)). DOI
Hamad A., Jia B. How virtual reality technology has changed our lives: an overview of the current and potential applications and limitations. Int. J. Environ. Res. Publ. Health. 2022;19(18):11278. doi: 10.3390/ijerph191811278. PubMed DOI PMC
Higuera-Trujillo J.L., López-Tarruella Maldonado J., Llinares Millán C. Psychological and physiological human responses to simulated and real environments: a comparison between Photographs, 360° Panoramas, and Virtual Reality. Appl. Ergon. 2017;65:398–409. PubMed
Thornton C., O'Konski R., Hardeman B., Pathfinder Swenson D. In: Pedestrian and Evacuation Dynamics. Peacock R., Kuligowski E., Averill J., editors. Springer; Boston MA: 2011. An agent-based egress simulator. DOI
Rosenbaum Eric R., Gwynne Steven M.V., editors. Vol. 5. Springer; New York: 2016. Employing the hydraulic model in assessing emergency movement; pp. 2115–2151. (HURLEY, Morgan J. SFPE Handbook of Fire Protection Engineering).
Kuligowski E., Peacock R., Hoskins B. second ed. Technical Note (NIST TN), National Institute of Standards and Technology; Gaithersburg, MD: 2010. A Review of Building Evacuation Models.https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906951 [online] Accessed.
Lovreglio R., Kuligowski E., Gwynne S., Boyce K. Corrigendum to “A pre-evacuation database for use in egress simulations” [Fire Safety J. 105, 2019, 107-128] Fire Saf. J. 2019;108
Thunderhead Engineering https://support.thunderheadeng.com/docs/pathfinder/2021-2/user-manual/?_ga=2.170250851.213835569.1629969371-428854837.1627796180&_gac=1.159608271.1629969371.CjwKCAjw95yJBhAgEiwAmRrutGwxR5c6dF2hAvQ9vJnXaNUhp01IzkFnG6WObXHwaXzEFKBcqD-MdRoCg38QAvD_BwE Pathfinder - User Manual. [online], [cit. 2021-08-31]. Retrieved from:
Hart P., Nilsson N., Raphael B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 1968;4:100–107.
Thunderhead Engineering https://support.thunderheadeng.com/docs/pathfinder/2021-2/technical-reference-manual/?_ga=2.183466597.213835569.1629969371-428854837.1627796180&_gac=1.158927304.1629969371.CjwKCAjw95yJBhAgEiwAmRrutGwxR5c6dF2hAvQ9vJnXaNUhp01IzkFnG6WObXHwaXzEFKBcqD-MdRoCg38QAvD_BwE Pathfinder - Technical Reference Manual. [online], [cit. 2021-08-31]. Retrieved from:
Society of Fire Protection Engineers. SFPE Guide to Human Behavior in Fire. second ed. Springer International Publishing. ISBN10: 331994696X.
Amor Heni Ben, Murray Jan, Obst Oliver, others Fast, neat, and under control: arbitrating between steering behaviors. AI Game Programming Wisdom. 2006;3
Reynolds C. Proceedings of the Game Developers Conference. 763–82. Miller Freeman Game Group; San Francisco, California, USA: 1999. Steering behaviors for autonomous characters.
Uhlík O., Apeltauer T. Analysis of pre-evacuation time in the protection of soft targets in the conditions of the Czech Republic [in Czech] Silnice a železnice. 2019;5:122–129.
Naili M., Naili M., Bourahla M. Stability-based model for evacuation system using agent-based social simulation and Monte Carlo method. Int. J. Simulat. Process Model. 2019;14(1):1.
Ronchi E., Renke P.A., Peacock R. A method for the analysis of behavioural uncertainty in evacuation modelling. Fire Technol. 2014;50:1545–1571.
The R project for statistical computing. https://www.R-project.org/ Available online: accessed on.
Wickham H. Springer-Verlag; New York, New York: 2016. ggplot2: Elegant Graphics for Data Analysis.