2D FeSx Nanosheets by Atomic Layer Deposition: Electrocatalytic Properties for the Hydrogen Evolution Reaction
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LM 2018103
Ministry of Education, Youth and Sports of the Czech Republic
LM2023037
Ministry of Education, Youth and Sports of the Czech Republic
LM2018110
MEYS CR
PubMed
36939153
DOI
10.1002/cssc.202300115
Knihovny.cz E-zdroje
- Klíčová slova
- atomic layer deposition, electrocatalysis, hydrogen evolution reaction, iron sulfide, thin films,
- Publikační typ
- časopisecké články MeSH
2-dimensional FeSx nanosheets of different sizes are synthesized by applying different numbers of atomic layer deposition (ALD) cycles on TiO2 nanotube layers and graphite sheets as supporting materials and used as an electrocatalyst for the hydrogen evolution reaction (HER). The electrochemical results confirm electrocatalytic activity in alkaline media with outstanding long-term stability (>65 h) and enhanced catalytic activity, reflected by a notable drop in the initial HER overpotential value (up to 26 %). By using a range of characterization techniques, the origin of the enhanced catalytic activity was found to be caused by the synergistic interplay between in situ morphological and compositional changes in the 2D FeSx nanosheets during HER. Under the application of a cathodic potential in alkaline media, the as-synthesized 2D FeSx nanosheets transformed into iron oxyhydroxide-iron oxysulfide core-shell nanoparticles, which exhibited a higher active catalytic surface and newly created Fe-based HER catalytic sites.
Zobrazit více v PubMed
International Energy Agency, “IEA (2022), Hydrogen, IEA, Paris, http://www.iea.org/reports/hydrogen,” 2022.
Z. P. Ifkovits, J. M. Evans, M. C. Meier, K. M. Papadantonakis, N. S. Lewis, Energy Environ. Sci. 2021, 14, 4740-4759.
X. Liu, R. Guo, K. Ni, F. Xia, C. Niu, B. Wen, J. Meng, P. Wu, J. Wu, X. Wu, L. Mai, Adv. Mater. 2020, 32, 2001136.
N. Mahmood, Y. Yao, J.-W. Zhang, L. Pan, X. Zhang, J.-J. Zou, Adv. Sci. 2018, 5, 1700464.
S. A. Grigoriev, V. N. Fateev, D. G. Bessarabov, P. Millet, Int. J. Hydrogen Energy 2020, 45, 26036-26058.
J. Wei, M. Zhou, A. Long, Y. Xue, H. Liao, C. Wei, Z. J. Xu, Nano-Micro Lett. 2018, 10, 75.
P. Yu, F. Wang, T. A. Shifa, X. Zhan, X. Lou, F. Xia, J. He, Nano Energy 2019, 58, 244-276.
T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100-102.
J. Bonde, P. G. Moses, T. F. Jaramillo, J. K. Nørskov, I. Chorkendorff, Faraday Discuss. 2009, 140, 219-231.
M. Jiang, J. Zhang, M. Wu, W. Jian, H. Xue, T. W. Ng, C. S. Lee, J. Xu, J. Mater. Chem. A 2016, 4, 14949-14953.
J. C. McGlynn, T. Dankwort, L. Kienle, N. A. G. Bandeira, J. P. Fraser, E. K. Gibson, I. Cascallana-Matías, K. Kamarás, M. D. Symes, H. N. Miras, A. Y. Ganin, Nat. Commun. 2019, 10, 4916.
M. Motola, M. Baudys, R. Zazpe, M. Krbal, J. Michalička, J. Rodriguez-Pereira, D. Pavliňák, J. Přikryl, L. Hromádko, H. Sopha, J. Krýsa, J. M. Macak, Nanoscale 2019, 11, 23126-23131.
R. Zazpe, H. Sopha, J. Charvot, R. Krumpolec, J. Rodriguez-Pereira, J. Michalička, J. Mistrík, D. Bača, M. Motola, F. Bureš, J. M. Macak, Appl. Mater. Today 2021, 23, 101017.
L. Zheng, F. Teng, X. Ye, H. Zheng, X. Fang, Adv. Energy Mater. 2020, 10, 1902355.
S. H. Noh, J. Hwang, J. Kang, M. H. Seo, D. Choi, B. Han, J. Mater. Chem. A 2018, 6, 20005-20014.
D. Voiry, J. Yang, M. Chhowalla, Adv. Mater. 2016, 28, 6197-6206.
Z. Pan, M. Yaseen, P. Kang Shen, Y. Zhan, J. Colloid Interface Sci. 2022, 616, 422-432.
X. Zou, Y. Wu, Y. Liu, D. Liu, W. Li, L. Gu, H. Liu, P. Wang, L. Sun, Y. Zhang, Chem 2018, 4, 1139-1152.
C. Di Giovanni, W. A. Wang, S. Nowak, J. M. Grenèche, H. Lecoq, L. Mouton, M. Giraud, C. Tard, ACS Catal. 2014, 4, 681-687.
Z. Li, M. Xiao, Y. Zhou, D. Zhang, H. Wang, X. Liu, D. Wang, W. Wang, Dalton Trans. 2018, 47, 14917-14923.
M. Villalba, J. Peron, M. Giraud, C. Tard, Electrochem. Commun. 2018, 91, 10-14.
C. Di Giovanni, Á. Reyes-Carmona, A. Coursier, S. Nowak, J. M. Grenèche, H. Lecoq, L. Mouton, J. Rozière, D. Jones, J. Peron, M. Giraud, C. Tard, ACS Catal. 2016, 6, 2626-2631.
T. R. Kuo, H. J. Liao, Y. T. Chen, C. Y. Wei, C. C. Chang, Y. C. Chen, Y. H. Chang, J. C. Lin, Y. C. Lee, C. Y. Wen, S.-S. Li, K.-H. Lin, D.-Y. Wang, Green Chem. 2018, 20, 1640-1647.
Y. Xin, Z. Li, W. Wu, B. Fu, Z. Zhang, ACS Sustainable Chem. Eng. 2016, 4, 6659-6667.
J. Jiang, L. Zhu, H. Chen, Y. Sun, W. Qian, H. Lin, S. Han, J. Mater. Sci. 2019, 54, 1422-1433.
G. Zhou, Y. Shan, L. Wang, Y. Hu, J. Guo, F. Hu, J. Shen, Y. Gu, J. Cui, L. Liu, X. Wu, Nat. Commun. 2019, 10, 399.
D. Jasion, J. M. Barforoush, Q. Qiao, Y. Zhu, S. Ren, K. C. Leonard, ACS Catal. 2015, 5, 6653-6657.
R. Miao, B. Dutta, S. Sahoo, J. He, W. Zhong, S. A. Cetegen, T. Jiang, S. P. Alpay, S. L. Suib, J. Am. Chem. Soc. 2017, 139, 13604-13607.
D. R. Cummins, H. B. Russell, J. B. Jasinski, M. Menon, M. K. Sunkara, Nano Lett. 2013, 13, 2423-2430.
L. Samad, M. Cabán-Acevedo, M. J. Shearer, K. Park, R. J. Hamers, S. Jin, Chem. Mater. 2015, 27, 3108-3114.
N. Berry, M. Cheng, C. L. Perkins, M. Limpinsel, J. C. Hemminger, M. Law, Adv. Energy Mater. 2012, 2, 1124-1135.
M. Guo, A. Qayum, S. Dong, X. Jiao, D. Chen, T. Wang, J. Mater. Chem. A 2020, 8, 9239-9247.
Y. Chen, S. Xu, Y. Li, R. J. Jacob, Y. Kuang, B. Liu, Y. Wang, G. Pastel, L. G. Salamanca-Riba, M. R. Zachariah, L. Hu, Adv. Energy Mater. 2017, 7, 1700482.
J. Cai, X. Han, X. Wang, X. Meng, Matter 2020, 2, 587-630.
H. G. Kim, H.-B.-R. Lee, Chem. Mater. 2017, 29, 3809-3826.
Y. Shao, Z. Guo, H. Li, Y. Su, X. Wang, Angew. Chem. Int. Ed. 2017, 56, 3226-3231;
Angew. Chem. 2017, 129, 3274-3279.
Z. Guo, X. Wang, Angew. Chem. Int. Ed. 2018, 57, 5898-5902;
Angew. Chem. 2018, 130, 6000-6004.
W. Xiong, Z. Guo, H. Li, R. Zhao, X. Wang, ACS Energy Lett. 2017, 2, 2778-2785.
Y. Yuan, L. Wang, L. Gao, Front. Chem. 2020, 8, 1-16.
P. Chiriţă, M. L. Schlegel, Int. J. Miner. Process. 2015, 135, 57-64.
N. A. Khan, N. Rashid, I. Ahmad, Zahidullah, R. Zairov, H. ur Rehman, M. F. Nazar, U. Jabeen, Int. J. Hydrogen Energy 2022, 47, 22340-22347.
R. Weerasooriya, M. Makehelwala, A. Bandara, Colloids Surf. A 2010, 367, 65-69.
P. Chiriţă, M. Descostes, M. L. Schlegel, J. Colloid Interface Sci. 2008, 321, 84-95.
A. Matamoros-Veloza, O. Cespedes, B. R. G. Johnson, T. M. Stawski, U. Terranova, N. H. de Leeuw, L. G. Benning, Nat. Commun. 2018, 9, 3125.
G. Panzmer, B. Egert, Surf. Sci. 1984, 144, 651-664.
M. Mullet, S. Boursiquot, M. Abdelmoula, J.-M. Génin, J.-J. Ehrhardt, Geochim. Cosmochim. Acta 2002, 66, 829-836.
A. Pratt, I. Muir, H. Nesbitt, Geochim. Cosmochim. Acta 1994, 58, 827-841.
W. Han, M. Gao, Cryst. Growth Des. 2008, 8, 1023-1030.
Y. Xu, F. Bahmani, R. Wei, Microsyst Nanoeng 2020, 6, 75.
G. Li, B. Zhang, F. Yu, A. A. Novakova, M. S. Krivenkov, T. Y. Kiseleva, L. Chang, J. Rao, A. O. Polyakov, G. R. Blake, R. A. de Groot, T. T. M. Palstra, Chem. Mater. 2014, 26, 5821-5829.
L. M. White, R. Bhartia, G. D. Stucky, I. Kanik, M. J. Russell, Earth Planet. Sci. Lett. 2015, 430, 105-114.
A. T. Ward, J. Phys. Chem. 1968, 72, 4133-4139.
M. Motola, M. Čaplovičová, M. Krbal, H. Sopha, G. K. Thirunavukkarasu, M. Gregor, G. Plesch, J. M. Macak, Electrochim. Acta 2020, 331, 135374.
C. Hu, L. Zhang, J. Gong, Energy Environ. Sci. 2019, 12, 2620-2645.
H. Valdés, L. M. Molina, J. A. Alonso, Appl. Surf. Sci. 2019, 487, 244-252.
R. Weber, A. J. Louli, K. P. Plucknett, J. R. Dahn, J. Electrochem. Soc. 2019, 166, A1779-A1784.
Z. Zhou, L. Wei, Y. Wang, H. E. Karahan, Z. Chen, Y. Lei, X. Chen, S. Zhai, X. Liao, Y. Chen, J. Mater. Chem. A 2017, 5, 20390-20397.
Y. Liu, J. Wu, K. P. Hackenberg, J. Zhang, Y. M. Wang, Y. Yang, K. Keyshar, J. Gu, T. Ogitsu, R. Vajtai, J. Lou, P. M. Ajayan, B. C. Wood, B. I. Yakobson, Nat. Energy 2017, 2, 17127.
M. Wang, L. Zhang, M. Huang, Y. Liu, Y. Zhong, J. Pan, Y. Wang, H. Zhu, Energy Environ. Mater. 2020, 3, 12-18.
A. S. Lim, A. Atrens, Appl. Phys. A 1990, 51, 411-418.
P. Marcus, I. Olefjord, Corros. Sci. 1988, 28, 589-602.
M. Sun, Q. Zhang, Q. Chen, X. Hou, W. Peng, Y. Li, F. Zhang, Q. Xia, X. Fan, Catalysts 2022, 12, 594.
B. Xing, N. Graham, W. Yu, Commun. Chem. 2020, 3, 38.
T. L. Barr, J. Phys. Chem. 1978, 82, 1801-1810.
V. Di Castro, S. Ciampi, Surf. Sci. 1995, 331-333, 294-299.
D. Rickard, G. W. Luther, Chem. Rev. 2007, 107, 514-562.
A. Anderko, P. J. Shuler, Comput. Geosci. 1997, 23, 647-658.
S. N. A. Zakaria, N. Hollingsworth, H. U. Islam, A. Roffey, D. Santos-Carballal, A. Roldan, W. Bras, G. Sankar, G. Hogarth, K. B. Holt, N. H. de Leeuw, ACS Appl. Mater. Interfaces 2018, 10, 32078-32085.
R. Ovcharenko, E. Voloshina, J. Sauer, Phys. Chem. Chem. Phys. 2016, 18, 25560-25568.
S. Das, H. Sopha, M. Krbal, R. Zazpe, V. Podzemna, J. Prikryl, J. M. Macak, ChemElectroChem 2017, 4, 495-499.
M. Motola, L. Hromadko, J. Prikryl, H. Sopha, M. Krbal, J. M. Macak, Electrochim. Acta 2020, 352, 136479.
H. Sopha, Z. Spotz, M. Sepúlveda, M. Alijani, M. Motola, L. Hromadko, J. M. Macak, Ceram. Int. 2022, 1-9. https://doi.org/10.1016/j.ceramint.2022.11.032.
V. C. Anitha, R. Zazpe, M. Krbal, J. Yoo, H. Sopha, J. Prikryl, G. Cha, S. Slang, P. Schmuki, J. M. Macak, J. Catal. 2018, 365, 86-93.
D. M. Morales, M. Risch, J. Phys. Energy 2021, 3, 034013.