Halimeda tuna (Bryopsidales, Ulvophyceae) calcification on the depth transect in the northern Adriatic Sea; carbonate production on the microscale of individual segments
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36945356
PubMed Central
PMC10024899
DOI
10.7717/peerj.15061
PII: 15061
Knihovny.cz E-zdroje
- Klíčová slova
- Calcification, Depth transect, Geometric morphometrics, Green algae, Halimeda tuna, Phenotypic plasticity, Ulvophyceae,
- MeSH
- Chlorophyta * MeSH
- ekosystém MeSH
- fyziologická kalcifikace MeSH
- mořské řasy * MeSH
- tuňák MeSH
- uhličitany MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- uhličitany MeSH
Halimeda tuna (J. Ellis & Solander) J.V. Lamouroux is the only Halimeda species found in the Mediterranean Sea, and it is an important habitat former. In the northern Adriatic, H. tuna is among the ten most abundant seaweeds in the upper-infralittoral belt in spring and autumn. The modular thalli consist of serially arranged calcified segments. Calcification is closely related to photosynthesis, which causes alkalinization of the inter-utricular space and triggers aragonite formation. Understanding of the complex patterns of segment shape plasticity in relation to CaCO3content at different depth levels is still incomplete. Geometric morphometrics was used to investigate H. tuna segment shape variation on the depth transect at Cape Madona Nature Monument in the northern Adriatic Sea. The position on the thallus and the CaCO3 content of each studied segment were recorded, allowing slight changes in mineral content to be detected at the microscale of the segments. Our results showed that shape, size, or asymmetry of H. tuna segments were not significantly affected by depth. On the other hand, plants that grew deeper were generally more calcified. The apical and subapical segments contributed to the increase in CaCO3 content at the deeper sites, whereas the basal segments did not. This indicates that reniform or oval segments positioned apically or subapically play a key role in calcification of H. tuna in Mediterranean ecosystems.
Department of Botany Faculty of Science Charles University Prague Czech Republic
Marine Biology Station Piran National Institute of Biology Piran Slovenia
Zobrazit více v PubMed
Anderson MJ. Permutational multivariate analysis of variance (PERMANOVA) In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels JL, editors. Wiley StatsRef: statistics reference online. Oxford: Wiley; 2017. pp. 1–15. DOI
Baken EK, Collyer ML, Kaliontzopoulou A, Adams DC. geomorph v4.0 and gmShiny: enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods in Ecology and Evolution. 2021;12:2355–2363. doi: 10.1111/2041-210X.13723. DOI
Ballesteros E. Seasonality of growth and production of a deep-water population of Halimeda tuna (Chlorophyceae, Caulerpales) in the north-western Mediterranean. Botanica Marina. 1991;34:291–301. doi: 10.1515/botm.1991.34.4.291. DOI
Ballesteros E. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanography and Marine Biology. 2006;44:123–195. doi: 10.1201/9781420006391-7. DOI
Bandeira-Pedrosa ME, Pereira SMB, Oliveira EC. Taxonomy and distribution of the green algal genus Halimeda (Bryopsidales, Chlorophyta) in Brazil. Brazilian Journal of Botany. 2004;27:363–377. doi: 10.1590/S0100-84042004000200015. DOI
Basso D, Bracchi VA, Bazzicalupo P, Martini M, Maspero F, Bavestrello G. Living coralligenous as geo-historical structure built by coralline algae. Frontiers in Earth Science. 2022;10:961632. doi: 10.3389/feart.2022.961632. DOI
Basso D, Granier B. Calcareous algae in changing environments. Geodiversitas. 2012;34:5–11. doi: 10.5252/g2012n1a1. DOI
Beach K, Walters L, Vroom P, Smith C, Coyer J, Hunter C. Variability in the ecophysiology of Halimeda spp. (Chlorophyta, Bryopsidales) on Conch Reef, Florida Keys, USA. Journal of Phycology. 2003;39:633–643. doi: 10.1046/j.1529-8817.2003.02147.x. DOI
Bilgin S, Ertan OO. Selected chemical constituents and their seasonal variations in Flabellia petiolata (Turra) Nizam and Halimeda tuna (Ellis & Sol.) J.V.Lamour in the Gulf of Antalya (North-eastern Mediterranean) Turkish Journal of Botany. 2002;26:87–90.
Böhm EL. Studies on the mineral content of calcareous algae. Bulletin of Marine Science. 1973;23:177–190.
Boicourt WC, Ličer M, Li M, Vodopivec M, Malačič V. Sea state: recent progress in the context of climate change. In: Malone T, Malej A, Faganeli J, editors. Coastal ecosystems in transition: a comparative analysis of the northern Adriatic and Chesapeake Bay. 1st edition. Hoboken, American Geophysical Union: Wiley; 2021. pp. 21–48. (Geophysical monograph series). DOI
Bookstein FL. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Medical Image Analysis. 1997;1:225–243. doi: 10.1016/S1361-8415(97)85012-8. PubMed DOI
Bookstein FL. A course in morphometrics for biologists. Cambridge: Cambridge University Press; 2018.
Borowitzka MA, Larkum AWD. Calcification in the green alga Halimeda. III. The sources of inorganic carbon for photosynthesis and calcification and a model of the mechanism of calcification. Journal of Experimental Botany. 1976;27:879–893. doi: 10.1093/jxb/27.5.879. DOI
Borowitzka MA, Larkum AWD. Calcification in the green alga Halimeda. I. An ultrastructure study of plant development. Journal of Phycology. 1977;13:6–16. doi: 10.1111/j.1529-8817.1977.tb02879.x. DOI
Borowitzka MA, Larkum AWD. Calcification in algae: mechanisms and the role of metabolism. Critical Reviews in Plant Sciences. 1987;6:1–45. doi: 10.1080/07352688709382246. DOI
Canals M, Ballesteros E. Production of carbonate particles by phytobenthic communities on the Mallorca-Menorca shelf. Northwestern Mediterranean Sea. Deep Sea Research II. 1997;44:611–629. doi: 10.1016/S0967-0645(96)00095-1. DOI
Crise A, Querin S, Malačič V. A strong bora event in the Gulf of Trieste: a numerical study of wind driven circulation in stratified conditions with a pre-operational model. Acta Adriatica. 2006;47(Suppl.):185–206.
De Beer D, Larkum AWD. Photosynthesis and calcification in the calcifying alga Halimeda discoidea studied with microsensors. Plant Cell Environment. 2001;24:1209–1217. doi: 10.1046/j.1365-3040.2001.00772.x. DOI
Drew EA. Halimeda biomass, growth rates and sediment generation on reefs in the Central Great Barrier Reef Province. Coral Reefs. 1983;2:101–110. doi: 10.1007/BF02395280. DOI
El-Manawy IM, Shafik MA. Morphological characterization of Halimeda (Lamouroux) from different biotopes on the Red Sea coral reefs on Egypt. American-Eurasian Journal of Agricultural & Environmental Sciences. 2008;3:532–538.
Giovanardi F, Francé J, Mozetič P, Precali R. Development of ecological classification criteria for the Biological Quality Element phytoplankton for Adriatic and Tyrrhenian coastal waters by means of chlorophyll a (2000/60/EC WFD) Ecological Indicators. 2018;93:316–332. doi: 10.1016/j.ecolind.2018.05.015. DOI
Goreau TF. Calcium carbonate deposition by coralline algae and corals in relation to their roles as reef-builders. Annals of the New York Academy of Sciences. 1963;109:127–167. doi: 10.1111/j.1749-6632.1963.tb13465.x. PubMed DOI
Granier B. The contribution of calcareous green algae to the production of limestones: a review. Geodiversitas. 2012;34:35–60. doi: 10.5252/g2012n1a3. DOI
Häder DP, Porst M, Herrmann H, Schafer J, Santas R. Photoinhibition in the Mediterranean green alga Halimeda tuna Ellis et Sol measured in situ. Photochemistry and Photobiology. 1996;64:428–434. doi: 10.1111/j.1751-1097.1996.tb03087.x. DOI
Hillis-Colinvaux L. Ecology and taxonomy of Halimeda: primary producer of coral reefs. London: Academic Press; 1980. DOI
Klingenberg CP. Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications. Symmetry. 2015;7:843–934. doi: 10.3390/sym7020843. DOI
Kooistra WHCF, Verbruggen H. Genetic patterns in the calcified tropical seaweeds Halimeda opuntia, H. distorta, H. hederacea, and H. minima (Bryopsidales, Chlorophyta) provide insights in species boundaries and interoceanic dispersal. Journal of Phycology. 2005;41:177–187. doi: 10.1111/j.1529-8817.2005.04095.x. DOI
Lipej L, Orlando-Bonaca M, Mavrič B. Biogenic formations in the slovenian sea. Piran: National Institute of Biology, Marine Biology Station Piran; 2016.
Littler DS, Littler MM. Caribbean reef plants: an identification guide to the reef plants of Caribbean, Bahamas, Florida and Gulf of Mexico. Washington, D.C.: Offshore Graphics; 2000.
Mayakun J, Prathep A. Calcium carbonate productivity by Halimeda macroloba in the tropical intertidal ecosystem: the significant contributor to global carbonate budgets. Phycological Research. 2019;67:94–101. doi: 10.1111/pre.12361. DOI
McNeil M, Nothdurft LD, Hua Q, Webster JM, Moss P. Evolution of the inter-reef Halimeda carbonate factory in response to Holocene sea-level and environmental change in the Great Barrier Reef. Quaternary Science Reviews. 2022;277:107347. doi: 10.1016/j.quascirev.2021.107347. DOI
McNeil MA, Webster JM, Beaman RJ, Graham TL. New constraints on the spatial distribution and morphology of the Halimeda bioherms of the Great Barrier Reef, Australia. Coral Reefs. 2016;35:1343–1355. doi: 10.1007/s00338-016-1492-2. DOI
McNicholl C, Koch MS, Hofmann LC. Photosynthesis and light-dependent proton pumps increase boundary layer pH in tropical macroalgae: a proposed mechanism to sustain calcification under ocean acidification. Journal of Experimental Marine Biology and Ecology. 2019;521:151208. doi: 10.1016/j.jembe.2019.151208. DOI
Multer HG. Growth rate, ultrastructure and sediment contribution of Halimeda incrassata and Halimeda monile, Nonsuch and Falmouth Bays, Antigua, W.I. Coral Reefs. 1988;6:179–186. doi: 10.1007/BF00302014. DOI
Neustupa J, Nemcova Y. Morphological allometry constrains symmetric shape variation, but not asymmetry, of Halimeda tuna (Bryopsidales, Ulvophyceae) segments. PLOS ONE. 2018;13:e0206492. doi: 10.1371/journal.pone.0206492. PubMed DOI PMC
Neustupa J, Nemcova Y. Morphometric analysis of surface utricles in Halimeda tuna (Bryopsidales, Ulvophyceae) reveals variation in their size and symmetry within individual segments. Symmetry. 2020;12:1271. doi: 10.3390/sym12081271. DOI
Neustupa J, Nemcova Y. Geometric morphometrics shows a close relationship between the shape features, position on thalli, and CaCO3 content of segments in Halimeda tuna (Bryopsidales, Ulvophyceae) Hydrobiologia. 2022;849:2581–2594. doi: 10.1007/s10750-022-04876-y. DOI
Orfanidis S, Panayotidis P, Ugland KI. Ecological Evaluation Index continuous formula (EEI-c) application: a step forward for functional groups, the formula and reference condition values. Mediterranean Marine Science. 2011;12:199–231. doi: 10.12681/mms.60. DOI
Orlando-Bonaca M, Francé J, Mavrič B, Grego M, Lipej L, Flander-Putrle V, Šiško M, Falace A. A new index (MediSkew) for the assessment of the Cymodocea nodosa (Ucria) Ascherson meadow’s status. Marine Environmental Research. 2015;110:132–141. doi: 10.1016/j.marenvres.2015.08.009. PubMed DOI
Orlando-Bonaca M, Lipej L, Orfanidis S. Benthic macrophytes as a tool for delineating, monitoring and assessing ecological status: the case of Slovenian coastal waters. Marine Pollution Bulletin. 2008;56:666–676. doi: 10.1016/j.marpolbul.2007.12.018. PubMed DOI
Orlando-Bonaca M, Pitacco V, Lipej L. Loss of canopy-forming algal richness and coverage in the northern Adriatic Sea. Ecological Indicators. 2021;125:107501. doi: 10.1016/j.ecolind.2021.107501. DOI
Orlando-Bonaca M, Rotter A. Any signs of replacement of canopy-forming algae by turf-forming algae in the northern Adriatic Sea? Ecological Indicators. 2018;87:272–284. doi: 10.1016/j.ecolind.2017.12.059. DOI
Peach KE, Koch MS, Blackwelder PL, Guerrero-Given D, Kamasawa N. Primary utricle structure of six Halimeda species and potential relevance for ocean acidification tolerance. Botanica Marina. 2017;60:1–11. doi: 10.1515/bot-2016-0055. DOI
Perrett JJ, Mundfrom DJ. Bonferroni procedure. In: Salkind NJ, editor. Encyclopedia of research design. Thousand Oaks: SAGE Publications; 2010. pp. 98–101.
Pongparadon S, Nooek S, Prathep A. Phenotypic plasticity and morphological adaptation of Halimeda opuntia (Bryopsidales, Chlorophyta) to light intensity. Phycological Research. 2020;68:115–125. doi: 10.1111/pre.12404. DOI
Pongparadon S, Zuccarello GC, Prathep A. High morpho-anatomical variability in Halimeda macroloba (Bryopsidales, Chlorophyta) in Thai waters. Phycological Research. 2017;65:136–145. doi: 10.1111/pre.12172. DOI
Prát S, Hamáčková J. The analysis of calcareous marine algae. Studia Botanica Čechoslovaca. 1946;7:112–126.
R Core Team . R Foundation for Statistical Computing; 2021. [21 October 2022].
Raven JA, Giordano M. Biomineralization by photosynthetic organisms: evidence of coevolution of the organisms and their environment? Geobiology. 2009;7:140–154. doi: 10.1111/j.1472-4669.2008.00181.x. PubMed DOI
Rindi F, Pasella MM, Lee MFE, Verbruggen H. Phylogeography of the mediterranean green seaweed Halimeda tuna (Ulvophyceae, Chlorophyta) Journal of Phycology. 2020;56:1109–1113. doi: 10.1111/jpy.13006. PubMed DOI
Rohlf FJ. The tps series of software. Hystrix the Italian Journal of Mammalogy. 2015;26:9–12. doi: 10.4404/hystrix-26.1-11264. DOI
Schaefer K, Lauc T, Mitteroecker P, Gunz P, Bookstein FL. Dental arch asymmetry in an isolated Adriatic community. American Journal of Physical Anthropology. 2006;129:132–142. doi: 10.1002/ajpa.20224. PubMed DOI
Schupp PJ, Paul VJ. Calcium carbonate and secondary metabolites in tropical seaweeds: variable effects on herbivorous fishes. Ecology. 1994;75:1172–1185. doi: 10.2307/1939440. DOI
Stravisi F. The vertical structure annual cycle of the mass field parameters in the Gulf of Trieste. Bollettino di Oceanologica Teorica ed Applicata. 1983;1:239–250.
Verbruggen H, De Clerck O, Cocquyt E, Kooistra WHCF, Coppejans E. A morphometric approach towards taxonomy in siphonous green algae: a methodological study within the genus Halimeda (Bryopsidales) Journal of Phycology. 2005;41:126–139. doi: 10.1111/j.1529-8817.2005.04080.x. DOI
Verbruggen H, De Clerck O, Coppejans E. Deviant segments hamper a morphometric approach towards Halimeda taxonomy. Cryptogamie Algologie. 2005;26:259–274.
Verbruggen H, De Clerck O, N’yeurt ADR, Spalding H, Vroom PS. Phylogeny and taxonomy of Halimeda incrassata, including descriptions of H. kanaloana and H. heteromorpha spp. nov. (Bryopsidales, Chlorophyta) European Journal of Phycology. 2006;41:337–362. doi: 10.1080/09670260600709315. DOI
Vroom PS, Smith CM, Coyer JA, Walters LJ, Hunter CL, Beach KS, Smith JE. Field biology of Halimeda tuna (Bryopsidales, Chlorophyta) across a depth gradient: comparative growth, survivorship, recruitment, and reproduction. Hydrobiologia. 2003;501:149–166. doi: 10.1023/A:1026287816324. DOI
Wilbur KM, Hillis L, Watabe N. Electron microscope study of calcification in the alga Halimeda (order Siphonales) (as Colinvaux L.) Phycologia. 1969;8:27–35. doi: 10.2216/i0031-8884-8-1-27.1. DOI
Wizemann A, Meyer FW, Westphal H. A new model for the calcification of the green macro-alga Halimeda opuntia (Lamouroux) Coral Reefs. 2014;33:951–964. doi: 10.1007/s00338-014-1183-9. DOI
Yniguez AT, McManus JW, Collado-Vides L. Capturing the dynamics in benthic structures: environmental effects on morphology in the macroalgal genera Halimeda and Dictyota. Marine Ecology Progress Series. 2010;411:17–32. doi: 10.3354/meps08643. DOI
Zelditch ML, Swiderski DL, Sheets DH. Geometric morphometrics for biologists: a primer. 2nd edition. Academic Press; London: 2012.