Bounded Wang tilings with integer programming and graph-based heuristics
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-26143X
Grantová Agentura České Republiky
PubMed
36964189
PubMed Central
PMC10039085
DOI
10.1038/s41598-023-31786-3
PII: 10.1038/s41598-023-31786-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Wang tiles enable efficient pattern compression while avoiding the periodicity in tile distribution via programmable matching rules. However, most research in Wang tilings has considered tiling the infinite plane. Motivated by emerging applications in materials engineering, we consider the bounded version of the tiling problem and offer four integer programming formulations to construct valid or nearly-valid Wang tilings: a decision, maximum-rectangular tiling, maximum cover, and maximum adjacency constraint satisfaction formulations. To facilitate a finer control over the resulting tilings, we extend these programs with tile-based, color-based, packing, and variable-sized periodic constraints. Furthermore, we introduce an efficient heuristic algorithm for the maximum-cover variant based on the shortest path search in directed acyclic graphs and derive simple modifications to provide a 1/2 approximation guarantee for arbitrary tile sets, and a 2/3 guarantee for tile sets with cyclic transducers. Finally, we benchmark the performance of the integer programming formulations and of the heuristic algorithms showing that the heuristics provide very competitive outputs in a fraction of time. As a by-product, we reveal errors in two well-known aperiodic tile sets: the Knuth tile set contains a tile unusable in two-way infinite tilings, and the Lagae corner tile set is not aperiodic.
Zobrazit více v PubMed
Wang, H. Dominoes and the AEA case of the decision problem. In Symposium on Mathematical Theory of Automata 23–55 (1963).
Wang H. Proving theorems by pattern recognition-II. Bell Syst. Tech. J. 1961;40:1–41. doi: 10.1002/j.1538-7305.1961.tb03975.x. DOI
Berger R. The undecidability of the domino problem. Mem. Am. Math. Soc. 1966 doi: 10.1090/memo/0066. DOI
Turing AM. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 1937;s2–42:230–265. doi: 10.1112/plms/s2-42.1.230. DOI
Davis M. Computability & Unsolvability. Dover Books on Computer Science Series. Dover Publications; 1958.
Kahr AS, Moore EF, Wang H. Entscheidungsproblem reduced to the PubMed DOI PMC
Lewis HR. Complexity of Solvable Cases of the Decision Problem for the Predicate Calculus. IEEE; 1978. pp. 35–47.
Lewis H, Papimitriou C. Elements of the Theory of Computation. Prentice-Hall Software Series. Pearson Education Canada; 1981.
Cohen MF, Shade J, Hiller S, Deussen O. Wang tiles for image and texture generation. ACM Trans. Graph. 2003;22:287–294. doi: 10.1145/882262.882265. DOI
Derouet-Jourdan A, Kaji S, Mizoguchi Y. A linear algorithm for brick Wang tiling. Jpn. J. Ind. Appl. Math. 2019;36:749–761. doi: 10.1007/s13160-019-00369-z. DOI
Lagae A, Dutré P. A procedural object distribution function. ACM Trans. Graph. 2005;24:1442–1461. doi: 10.1145/1095878.1095888. DOI
Ollinger, N. Two-by-two substitution systems and the undecidability of the domino problem. In Logic and Theory of Algorithms 476–485 (Springer, 2008). 10.1007/978-3-540-69407-6_51
Kovalsky SZ, Glasner D, Basri R. A global approach for solving edge-matching puzzles. SIAM J. Imaging Sci. 2015;8:916–938. doi: 10.1137/140987869. DOI
Lagae A, Dutré P. The tile packing problem. Geombinatorics. 2007;17:8–18.
Rui Yu, C. R. & Agapito, L. Solving jigsaw puzzles with linear programming. In Proceedings of the British Machine Vision Conference (BMVC) (eds Wilson, R. C., Hancock, E. R. & Smith, W. A. P.) 139.1–139.12 (BMVA Press, 2016). 10.5244/C.30.139.
Salassa, F., Vancroonenburg, W., Wauters, T., Della Croce, F. & Berghe, G. V. MILP and max-clique based heuristics for the Eternity II puzzle (2017). arXiv:1709.00252.
Garvie MR, Burkardt J. A parallelizable integer linear programming approach for tiling finite regions of the plane with polyominoes. Algorithms. 2022;15:164. doi: 10.3390/a15050164. DOI
Berger, R. The Undecidability of the Domino Problem. Ph.D. thesis, Harvard University (1964).
Wang H. Notes on a class of tiling problems. Fundam. Math. 1975;82:295–305. doi: 10.4064/fm-82-4-295-305. DOI
Robinson RM. Seven polygons which permit only nonperiodic tilings of the plane. Not. Am. Math. Soc. 1967;14:835.
Poizat B. Une théorie finiement axiomatisable et superstable. Groupe d’étude des théories stables. 1980;3:1–9.
Knuth DE. The Art of Computer Programming, Volume 1: Fundamental Algorithms. Addison-Wesley Educational Publishers Inc; 1968.
Knuth DE. The Art of Computer Programming, Volume 4B, Fascicle 5: The: Mathematical Preliminaries Redux; Backtracking; Dancing Links. Addison-Wesley Professional; 2018.
Robinson RM. Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 1971;12:177–209. doi: 10.1007/bf01418780. DOI
Grünbaum B, Shephard GC. Tilings and Patterns. Dover Publications; 2016.
Robinson RM. Undecidable tiling problems in the hyperbolic plane. Invent. Math. 1978;44:259–264. doi: 10.1007/bf01403163. DOI
Senechal M. Quasicrystals and Geometry. Cambridge University Press; 1996.
Kari J. A small aperiodic set of Wang tiles. Discrete Math. 1996;160:259–264. doi: 10.1016/0012-365x(95)00120-l. DOI
Čulík K. An aperiodic set of 13 Wang tiles. Discrete Math. 1996;160:245–251. doi: 10.1016/s0012-365x(96)00118-5. DOI
Kari J, Papasoglu P. Deterministic aperiodic tile sets. Geom. Funct. Anal. 1999;9:353–369. doi: 10.1007/s000390050090. DOI
Labbé S. A self-similar aperiodic set of 19 Wang tiles. Geom. Dedicata. 2019;201:81–109. doi: 10.1007/s10711-018-0384-8. DOI
Labbé, S. & Lepšová, J. A numeration system for Fibonacci-like Wang shifts. In Lecture Notes in Computer Science 104–116 (Springer International Publishing, 2021). 10.1007/978-3-030-85088-3_9.
Jeandel E, Rao M. An aperiodic set of 11 Wang tiles. Adv. Comb. 2021;1:1–37. doi: 10.19086/aic.18614. DOI
Lagae A, Dutré P. An alternative for Wang tiles: Colored edges versus colored corners. ACM Trans. Graph. 2006;25:1442–1459. doi: 10.1145/1183287.1183296. DOI
Lagae, A., Kari, J. & Dutré, P. Aperiodic sets of square tiles with colored corners. Report CW (2006).
Nurmi, T. From checkerboard to cloverfield: Using Wang tiles in seamless non-periodic patterns. In Bridges Finland Conference Proceedings (2016).
Kari J. Reversibility of 2D cellular automata is undecidable. Phys. D: Nonlinear Phenom. 1990;45:379–385. doi: 10.1016/0167-2789(90)90195-u. DOI
Conway J, Lagarias J. Tiling with polyominoes and combinatorial group theory. J. Comb. Theory Ser. A. 1990;53:183–208. doi: 10.1016/0097-3165(90)90057-4. DOI
Mozes S. Tilings, substitution systems and dynamical systems generated by them. J. d’Analyse Mathématique. 1989;53:139–186. doi: 10.1007/BF02793412. DOI
Stam, J. Aperiodic Texture Mapping. Technical report R046 (European Research Consortium for Informatics and Mathematics, 1997).
Liu X, Li C, Lu L, Deussen O, Tu C. Fabricable multi-scale Wang tiles. Comput. Graph. Forum. 2022;41:149–159. doi: 10.1111/cgf.14610. DOI
Hiller, S., Deussen, O. & Keller, A. Tiled blue noise samples. In Proceedings of the Vision Modeling and Visualization Conference 265–272 (Stuttgart, Germany, 2001).
Radin C. Low temperature and the origin of crystalline symmetry. Int. J. Mod. Phys. 1987;1:1157–1191. doi: 10.1142/S0217979287001675. DOI
Winfree E, Liu F, Wenzler LA, Seeman NC. Design and self-assembly of two-dimensional DNA crystals. Nature. 1998;394:539–544. doi: 10.1038/28998. PubMed DOI
Seeman NC, Mao C, LaBean TH, Reif JH. Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature. 2000;407:493–496. doi: 10.1038/35035038. PubMed DOI
Novák J, Kučerová A, Zeman J. Compressing random microstructures via stochastic Wang tilings. Phys. Rev. E. 2012;86:4–7. doi: 10.1103/PhysRevE.86.040104. PubMed DOI
Doškář M, Novák J, Zeman J. Aperiodic compression and reconstruction of real-world material systems based on Wang tiles. Phys. Rev. E. 2014;90:062118. doi: 10.1103/PhysRevE.90.062118. PubMed DOI
Braides A, Riey G, Solci M. Homogenization of Penrose tilings. C. R. Math. 2009;347:697–700. doi: 10.1016/j.crma.2009.03.019. DOI
Doškář M, Novák J. A jigsaw puzzle framework for homogenization of high porosity foams. Comput. Struct. 2016;166:33–41. doi: 10.1016/j.compstruc.2016.01.003. DOI
Doškář M, Zeman J, Rypl D, Novák J. Level-set based design of Wang tiles for modelling complex microstructures. Comput. Des. 2020;123:102827. doi: 10.1016/j.cad.2020.102827. DOI
Tyburec M, Zeman J, Doškář M, Kružík M, Lepš M. Modular-topology optimization with Wang tilings: An application to truss structures. Struct. Multidiscip. Optim. 2020;63:1099–1117. doi: 10.1007/s00158-020-02744-8. DOI
Tyburec M, Doškář M, Zeman J, Kružík M. Modular-topology optimization of structures and mechanisms with free material design and clustering. Comput. Methods Appl. Mech. Eng. 2022;395:114977. doi: 10.1016/j.cma.2022.114977. DOI
Jílek M, Somr M, Kulich M, Zeman J, Přeučil L. Towards a passive self-assembling macroscale multi-robot system. IEEE Robot. Autom. Lett. 2021;6:7293–7300. doi: 10.1109/LRA.2021.3096748. DOI
Jilek M, et al. Self-stabilizing self-assembly. IEEE Robot. Autom. Lett. 2022;7:9763–9769. doi: 10.1109/lra.2022.3191795. DOI
Doškář M, Zeman J, Jarušková D, Novák J. Wang tiling aided statistical determination of the Representative Volume Element size of random heterogeneous materials. Eur. J. Mech. A/Solids. 2018;70:280–295. doi: 10.1016/j.euromechsol.2017.12.002. DOI
Coulais C, Teomy E, de Reus K, Shokef Y, van Hecke M. Combinatorial design of textured mechanical metamaterials. Nature. 2016;535:529–532. doi: 10.1038/nature18960. PubMed DOI
Yang W, Liu Q, Gao Z, Yue Z, Xu B. Theoretical search for heterogeneously architected 2D structures. Proc. Natl. Acad. Sci. 2018;115:E7245–E7254. doi: 10.1073/pnas.1806769115. PubMed DOI PMC
Nežerka V, et al. A jigsaw puzzle metamaterial concept. Compos. Struct. 2018;202:1275–1279. doi: 10.1016/j.compstruct.2018.06.015. DOI
Yasuda H, et al. Mechanical computing. Nature. 2021;598:39–48. doi: 10.1038/s41586-021-03623-y. PubMed DOI
Knuth DE. Two notes on notation. Am. Math. Mon. 1992;99:403–422. doi: 10.1080/00029890.1992.11995869. DOI
Korte B, Vygen J. Combinatorial Optimization. Springer; 2006.
Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual (2022). http://gurobi.com.