Effect of Nano- and Microzinc Supplementation on the Mineral Composition of Bones of Rats with Induced Mammary Gland Cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36981273
PubMed Central
PMC10047967
DOI
10.3390/foods12061348
PII: foods12061348
Knihovny.cz E-zdroje
- Klíčová slova
- bone, breast cancer, microzinc, mineral metabolism, nanozinc,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The aim of this study was to determine changes in the mineral composition of the bones of rats with chemically induced mammary gland cancer and to attempt to establish whether a specific diet modification involving the inclusion of zinc ions in two forms-nano and micro-will affect the mineral composition of the bones. METHODS: Female Sprague-Dawley rats were used for the research. The animals were randomly assigned to three experimental groups. All animals were fed a standard diet (Labofeed H), and selected groups additionally received zinc nanoparticles or microparticles in the amount of 4.6 mg/mL. To induce mammary cancer, the animals were given 7,12-dimethyl-1,2-benz[a]anthracene. The content of Ag, As, B, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Rb, Se, Sr, Tl, U, and V was determined using ICP-MS, while that of Ca, Fe, K, Mg, Na, and Zn was determined using FAAS. RESULTS: The use of a diet enriched with zinc nano- or microparticles significantly influenced the content of the elements tested. In the bones of rats fed a diet with zinc nanoparticles, changes were found in the content of Ca, Mg, Zn, Cd, U, V, and Tl, while in the case of the diet supplemented with zinc microparticles, there were differences in six elements-Ca, Mg, B, Cd, Ag, and Pb-compared to animals receiving an unsupplemented diet. CONCLUSIONS: The content of elements in the bone tissue of rats in the experimental model indicates disturbances of mineral metabolism in the tissue at an early stage of mammary cancer.
Zobrazit více v PubMed
Macedo F., Ladeira K., Pinho F., Saraiva N., Bonito N., Pinto L., Gonçalves F. Bone metastases: An overview. Oncol. Rev. 2017;11:321. doi: 10.4081/oncol.2017.321. PubMed DOI PMC
Coleman R., Body J.J., Aapro M., Hadji P., Herrstedt J., ESMO Guidelines Working Group Bone health in cancer patients: ESMO Clinical Practice Guidelines. Ann. Oncol. 2014;25:iii124–iii137. doi: 10.1093/annonc/mdu103. PubMed DOI
Handforth C., D’Oronzo S., Coleman R., Brown J. Cancer Treatment and Bone Health. Calcif. Tissue Int. 2018;102:251–264. doi: 10.1007/s00223-017-0369-x. PubMed DOI PMC
Castañeda S., Casas A., González-Del-Alba A., Martínez-Díaz-Guerra G., Nogués X., Thies C.O., Suau T., Rodríguez-Lescure Á. Bone loss induced by cancer treatments in breast and prostate cancer patients. Clin. Transl. Oncol. 2022;24:2090–2106. doi: 10.1007/s12094-022-02872-1. PubMed DOI PMC
Raju G.N., Sarita P., Kumar M.R., Murty G.R., Reddy B.S., Lakshminarayana S., Vijayan V., Lakshmi P.R., Gavarasana S., Reddy S.B. Trace elemental correlation study in malignant and normal breast tissue by PIXE technique. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2006;247:361–367. doi: 10.1016/j.nimb.2006.02.007. DOI
Pasha Q., Malik S.A., Iqbal J., Shaheen N., Shah M.H. Comparative Evaluation of Trace Metal Distribution and Correlation in Human Malignant and Benign Breast Tissues. Biol. Trace Elem. Res. 2008;125:30–40. doi: 10.1007/s12011-008-8158-z. PubMed DOI
Kubala-Kukus A., Banaś D., Braziewicz J., Gózd S., Majewska U., Pajek M. Analysis of elemental concentration censored distributions in breast malignant and breast benign neoplasm tissues. Spectrochim. Acta Part B At. Spectrosc. 2007;62:695–701. doi: 10.1016/j.sab.2007.03.004. DOI
Naidu B.G., Srikanth S., Raju G.J.N., Sarita P. PIXE analysis of blood serum of breast cancer patients undergoing successive chemotherapy. J. Radioanal. Nucl. Chem. 2020;323:1307–1316. doi: 10.1007/s10967-019-06988-7. DOI
Al-Ebraheem A., Farquharson M., Ryan E. The evaluation of biologically important trace metals in liver, kidney and breast tissue. Appl. Radiat. Isot. 2009;67:470–474. doi: 10.1016/j.apradiso.2008.06.018. PubMed DOI
Park K.H., Park B., Yoon D.S., Kwon S.-H., Shin D.M., Lee J.W., Lee H.G., Shim J.-H., Park J.H., Lee J.M. Zinc inhibits osteoclast differentiation by suppression of Ca2+-Calcineurin-NFATc1 signaling pathway. Cell Commun. Signal. 2013;11:1–12. doi: 10.1186/1478-811X-11-74. PubMed DOI PMC
Hu D., Li K., Xie Y., Pan H., Zhao J., Huang L., Zheng X. Different response of osteoblastic cells to Mg2+, Zn2+ and Sr2+ doped calcium silicate coatings. J. Mater. Sci. Mater. Med. 2016;27:56. doi: 10.1007/s10856-016-5672-y. PubMed DOI
Park K.H., Choi Y., Yoon D.S., Lee K.-M., Kim D., Lee J.W. Zinc Promotes Osteoblast Differentiation in Human Mesenchymal Stem Cells Via Activation of the cAMP-PKA-CREB Signaling Pathway. Stem Cells Dev. 2018;27:1125–1135. doi: 10.1089/scd.2018.0023. PubMed DOI
O’Connor J.P., Kanjilal D., Teitelbaum M., Lin S.S., Cottrell J.A. Zinc as a Therapeutic Agent in Bone Regeneration. Materials. 2020;13:2211. doi: 10.3390/ma13102211. PubMed DOI PMC
Alcantara E.H., Lomeda R.-A.R., Feldmann J., Nixon G.F., Beattie J.H., Kwun I.-S. Zinc deprivation inhibits extracellular matrix calcification through decreased synthesis of matrix proteins in osteoblasts. Mol. Nutr. Food Res. 2011;55:1552–1560. doi: 10.1002/mnfr.201000659. PubMed DOI
Ma Z.J., Yamaguchi M. Role of endogenous zinc in the enhancement of bone protein synthesis associated with bone growth of newborn rats. J. Bone Miner. Metab. 2001;19:38–44. doi: 10.1007/s007740170058. PubMed DOI
Yamaguchi M. Role of nutritional zinc in the prevention of osteoporosis. Mol. Cell. Biochem. 2010;338:241–254. doi: 10.1007/s11010-009-0358-0. PubMed DOI
Mahdavi-Roshan M., Ebrahimi M., Ebrahimi A. Copper, magnesium, zinc and calcium status in osteopenic and osteoporotic post-menopausal women. Clin. Cases Miner. Bone Metab. 2015;12:18–21. doi: 10.11138/ccmbm/2015.12.1.018. PubMed DOI PMC
Hill T., Meunier N., Andriollo-Sanchez M., Ciarapica D., Hininger-Favier I., Polito A., O’Connor J.M., Coudray C., Cashman K.D. The relationship between the zinc nutritive status and biochemical markers of bone turnover in older European adults: The ZENITH study. Eur. J. Clin. Nutr. 2005;59:S73–S78. doi: 10.1038/sj.ejcn.1602303. PubMed DOI
Horiuchi S., Hiasa M., Yasue A., Sekine K., Hamada K., Asaoka K., Tanaka E. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement. J. Mech. Behav. Biomed. Mater. 2014;29:151–160. doi: 10.1016/j.jmbbm.2013.09.005. PubMed DOI
Hinton R., Jing Y., Jing J., Feng J. Roles of Chondrocytes in Endochondral Bone Formation and Fracture Repair. J. Dent. Res. 2017;96:23–30. doi: 10.1177/0022034516668321. PubMed DOI PMC
Hie M., Iitsuka N., Otsuka T., Nakanishi A., Tsukamoto I. Zinc deficiency decreases osteoblasts and osteoclasts associated with the reduced expression of Runx2 and RANK. Bone. 2011;49:1152–1159. doi: 10.1016/j.bone.2011.08.019. PubMed DOI
Shi L.-E., Li Z.-H., Zheng W., Zhao Y.-F., Jin Y.-F., Tang Z.-X. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: A review. Food Addit. Contam. Part A. 2014;31:173–186. doi: 10.1080/19440049.2013.865147. PubMed DOI
He L., Liu Y., Mustapha A., Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 2011;166:207–215. doi: 10.1016/j.micres.2010.03.003. PubMed DOI
Bisht G., Rayamajhi S. ZnO Nanoparticles: A Promising Anticancer Agent. Nanobiomedicine. 2016;3:9. doi: 10.5772/63437. PubMed DOI PMC
Nadeem J., Dirk L. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotech. 2022;20:262. PubMed PMC
Roy R., Kumar S., Tripathi A., Das M., Dwivedi P.D. Interactive threats of nanoparticles to the biological system. Immunol Lett. 2014;158:79–87. doi: 10.1016/j.imlet.2013.11.019. PubMed DOI
Wang H., Wingett D., Engelhard M., Feris K., Reddy K.M., Turner P., Layne J., Hanley C., Bell J., Tenne D., et al. Fluorescent dye encapsulated ZnO particles with cell-specific toxicity for potential use in biomedical applications. J. Mater. Sci. Mater. Med. 2009;20:11–22. doi: 10.1007/s10856-008-3541-z. PubMed DOI
Hanley C., Layne J., Punnoose A., Reddy K.M., Coombs I., Coombs A., Feris K., Wingett D. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology. 2008;19:295103. doi: 10.1088/0957-4484/19/29/295103. PubMed DOI PMC
Rasmussen J.W., Martinez E., Louka P., Wingett D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. 2010;7:1063–1077. doi: 10.1517/17425247.2010.502560. PubMed DOI PMC
Leroueil P.R., Hong S., Mecke A., Baker J.R., Orr B.G., Holl M.M.B. Nanoparticle Interaction with Biological Membranes: Does Nanotechnology Present a Janus Face? Acc. Chem. Res. 2007;40:335–342. doi: 10.1021/ar600012y. PubMed DOI PMC
Hoshyar N., Gray S., Han H., Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11:673–692. doi: 10.2217/nnm.16.5. PubMed DOI PMC
Wahab R., Siddiqui M.A., Saquib Q., Dwivedi S., Ahmad J., Musarrat J., Al-Khedhairy A.A., Shin H.-S. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surfaces B Biointerfaces. 2014;117:267–276. doi: 10.1016/j.colsurfb.2014.02.038. PubMed DOI
Thorpe M.P., Valentine R.J., Moulton C.J., Johnson A.J.W., Evans E.M., Layman D.K. Breast tumors induced by N-methyl-N-nitrosourea are damaging to bone strength, structure, and mineralization in the absence of metastasis in rats. J. Bone Miner. Res. 2011;26:769–776. doi: 10.1002/jbmr.277. PubMed DOI
Bobrowska-Korczak B., Gątarek P., Skrajnowska D., Bielecki W., Wyrebiak R., Kovalczuk T., Wrzesień R., Kałużna-Czaplińska J. Effect of Zinc Supplementation on the Serum Metabolites Profile at the Early Stage of Breast Cancer in Rats. Nutrients. 2020;12:3457. doi: 10.3390/nu12113457. PubMed DOI PMC
Hubert M., Vandervieren E. An adjusted boxplot for skewed distributions. Comput. Stat. Data Anal. 2008;52:5186–5201. doi: 10.1016/j.csda.2007.11.008. DOI
Bąkowski M., Kiczorowska B., Samolińska W., Klebaniuk R., Lipiec A. Silver and Zinc Nanoparticles in Animal Nutrition—A Review. Ann. Anim. Sci. 2018;18:879–898. doi: 10.2478/aoas-2018-0029. DOI
Chang Y.-N., Zhang M., Xia L., Zhang J., Xing G. The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles. Materials. 2012;5:2850–2871. doi: 10.3390/ma5122850. DOI
Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer. 2005;5:161–171. doi: 10.1038/nrc1566. PubMed DOI
Amara S., Ben Slama I., Mrad I., Rihane N., Khemissi W., El Mir L., Ben Rhouma K., Abdelmelek H., Sakly M. Effects of zinc oxide nanoparticles and/or zinc chloride on biochemical parameters and mineral levels in rat liver and kidney. Hum. Exp. Toxicol. 2014;33:1150–1157. doi: 10.1177/0960327113510327. PubMed DOI
Singh N., Das M.K., Gautam R., Ramteke A., Rajamani P. Assessment of intermittent exposure of zinc oxide nanoparticle (ZNP)–mediated toxicity and biochemical alterations in the splenocytes of male Wistar rat. Environ. Sci. Pollut. Res. 2019;26:33642–33653. doi: 10.1007/s11356-019-06225-4. PubMed DOI
Zalewski P.D., Truong-Tran A.Q., Grosser D., Jayaram L., Murgia C., Ruffin R.E. Zinc metabolism in airway epithelium and airway inflammation: Basic mechanisms and clinical targets. A review. Pharmacol. Ther. 2005;105:127–149. doi: 10.1016/j.pharmthera.2004.09.004. PubMed DOI
Lee S.H., Pie J.-E., Kim Y.-R., Lee H.R., Son S.W., Kim M.-K. Effects of zinc oxide nanoparticles on gene expression profile in human keratinocytes. Mol. Cell. Toxicol. 2012;8:113–118. doi: 10.1007/s13273-012-0014-8. DOI
Muqbil I., Banu N. Enhancement of pro-oxidant effect of 7,12-dimethylbenz(a)anthracene (DMBA) in rats by pre-exposure to restraint stress. Cancer Lett. 2006;240:213–220. doi: 10.1016/j.canlet.2005.09.008. PubMed DOI
Lai H., Singh N.P. Oral artemisinin prevents and delays the development of 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer in the rat. Cancer Lett. 2006;231:43–48. doi: 10.1016/j.canlet.2005.01.019. PubMed DOI
Kelloff G.J., Boone C.W., Steele V.E., Crowell J.A., Lubet R., Doody L.A., Greenwald P. Development of breast cancer chemopreventive drugs. J. Cell Biochem. 1993;17:2–13. doi: 10.1002/jcb.240531103. PubMed DOI
Mehta R. Experimental basis for the prevention of breast cancer. Eur. J. Cancer. 2000;36:1275–1282. doi: 10.1016/S0959-8049(00)00100-3. PubMed DOI
Huggins C., Grand L.C., Brillantes F.P. Mammary Cancer Induced by a Single Feeding of Polynuclear Hydrocarbons, and its Suppression. Nature. 1961;189:204–207. doi: 10.1038/189204a0. PubMed DOI
Chen Y.-C., Sosnoski D.M., Mastro A.M. Breast cancer metastasis to the bone: Mechanisms of bone loss. Breast Cancer Res. 2010;12:1–11. doi: 10.1186/bcr2781. PubMed DOI PMC
Barros A.C.S.D., Muranaka E.N.K., Jo Mori L., Pelizon C.H.T., Iriya K., Giocondo G., Pinotti J.A. Induction of experimental mammary carcinogenesis in rats with 7,12-dimethylbenz(a)anthracene. Rev. Hosp. Clínicas. 2004;59:257–261. doi: 10.1590/S0041-87812004000500006. PubMed DOI
Bobrowska-Korczak B., Domanska K., Skrajnowska D., Wrzesien R., Giebultowicz J., Bielecki W., Wyrebiak R., Piotrowska U., Sobczak M., Kałużna-Czaplińska J. Nanosized zinc, epigenetic changes and its relationship with DMBA induced breast cancer in rats. Rev. Anal. Chem. 2020;39:200–208. doi: 10.1515/revac-2020-0104. DOI
Li K., Wang X.-F., Li D.-Y., Chen Y.-C., Zhao L.-J., Liu X.-G., Guo Y.-F., Shen J., Lin X., Deng J., et al. The good, the bad, and the ugly of calcium supplementation: A review of calcium intake on human health. Clin. Interv. Aging. 2018;13:2443–2452. doi: 10.2147/CIA.S157523. PubMed DOI PMC
Cormick G., Belizán J.M. Calcium Intake and Health. Nutrients. 2019;11:1606. doi: 10.3390/nu11071606. PubMed DOI PMC
Major P., Lortholary A., Hon J., Abdi E., Mills G., Menssen H.D., Yunus F., Bell R., Body J., Quebe-Fehling E., et al. Zoledronic Acid Is Superior to Pamidronate in the Treatment of Hypercalcemia of Malignancy: A Pooled Analysis of Two Randomized, Controlled Clinical Trials. J. Clin. Oncol. 2001;19:558–567. doi: 10.1200/JCO.2001.19.2.558. PubMed DOI
Stewart A.F. Hypercalcemia Associated with Cancer. N. Engl. J. Med. 2005;352:373–379. doi: 10.1056/NEJMcp042806. PubMed DOI
Taverna S., Giusti I., D’Ascenzo S., Pizzorno L., Dolo V. Breast Cancer Derived Extracellular Vesicles in Bone Metastasis Induction and Their Clinical Implications as Biomarkers. Int. J. Mol. Sci. 2020;21:3573. doi: 10.3390/ijms21103573. PubMed DOI PMC
Tsuzuki S., Park S.H., Eber M.R., Peters C.M., Shiozawa Y. Skeletal complications in cancer patients with bone metastases. Int. J. Urol. 2016;23:825–832. doi: 10.1111/iju.13170. PubMed DOI PMC
Xiao W., Wang Y., Pacios S., Li S., Graves D.T. Cellular and Molecular Aspects of Bone Remodeling. Front. Oral Biol. 2016;18:9–16. doi: 10.1159/000351895. PubMed DOI PMC
Hameister R., Lohmann C.H., Dheen S.T., Singh G., Kaur C. The effect of TNF-α on osteoblasts in metal wear-induced periprosthetic bone loss. Bone Jt. Res. 2020;9:827–839. doi: 10.1302/2046-3758.911.BJR-2020-0001.R2. PubMed DOI PMC
Klein G.L. The Role of Calcium in Inflammation-Associated Bone Resorption. Biomolecules. 2018;8:69. doi: 10.3390/biom8030069. PubMed DOI PMC
Canaff L., Zhou X., Hendy G.N. The Proinflammatory Cytokine, Interleukin-6, Up-regulates Calcium-sensing Receptor Gene Transcription via Stat1/3 and Sp1/3. J. Biol. Chem. 2008;283:13586–13600. doi: 10.1074/jbc.M708087200. PubMed DOI
Zaichick V., Zaichick S. The Ca, Cl, Mg, Na, and P Mass Fractions in Human Bone Affected by Ewing’s Sarcoma. Biol. Trace Elem. Res. 2014;159:32–38. doi: 10.1007/s12011-014-9966-y. PubMed DOI
Uwitonze A.M., Razzaque M.S. Role of Magnesium in Vitamin D Activation and Function. J. Osteopath. Med. 2018;118:181–189. doi: 10.7556/jaoa.2018.037. PubMed DOI
Castiglioni S., Cazzaniga A., Albisetti W., Maier J.A.M. Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions. Nutrients. 2013;5:3022–3033. doi: 10.3390/nu5083022. PubMed DOI PMC
Aina V., Lusvardi G., Annaz B., Gibson I., Imrie F.E., Malavasi G., Menabue L., Cerrato G., Martra G. Magnesium- and strontium-co-substituted hydroxyapatite: The effects of doped-ions on the structure and chemico-physical properties. J. Mater. Sci. Mater. Med. 2012;23:2867–2879. doi: 10.1007/s10856-012-4767-3. PubMed DOI
Yoshizawa S., Brown A., Barchowsky A., Sfeir C. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater. 2014;10:2834–2842. doi: 10.1016/j.actbio.2014.02.002. PubMed DOI
Dai Q., Zhu X., Manson J.A.E., Song Y., Li X., Franke A.A., Costello R.B., Rosanoff A., Nian H., Fan L., et al. Magnesium status and supplementation influence vitamin D status and metabolism: Results from a randomized trial. Am. J. Clin. Nutr. 2018;108:1249–1258. doi: 10.1093/ajcn/nqy274. PubMed DOI PMC
Zofkova I., Davis M., Blahos J. Trace Elements Have Beneficial, as Well as Detrimental Effects on Bone Homeostasis. Physiol. Res. 2017;66:391–402. doi: 10.33549/physiolres.933454. PubMed DOI
Rude R.K., Singer F.R., Gruber H.E. Skeletal and Hormonal Effects of Magnesium Deficiency. J. Am. Coll. Nutr. 2009;28:131–141. doi: 10.1080/07315724.2009.10719764. PubMed DOI
Dermience M., Lognay G., Mathieu F., Goyens P. Effects of thirty elements on bone metabolism. J. Trace Elem. Med. Biol. 2015;32:86–106. doi: 10.1016/j.jtemb.2015.06.005. PubMed DOI
Rondanelli M., Faliva M.A., Peroni G., Infantino V., Gasparri C., Iannello G., Perna S., Riva A., Petrangolini G., Tartara A. Pivotal role of boron supplementation on bone health: A narrative review. J. Trace Elem. Med. Biol. 2020;62:126577. doi: 10.1016/j.jtemb.2020.126577. PubMed DOI
Mogoşanu G.D., Biţă A., Bejenaru L.E., Bejenaru C., Croitoru O., Rău G., Rogoveanu O.-C., Florescu D.N., Neamţu J., Scorei I.D., et al. Calcium Fructoborate for Bone and Cardiovascular Health. Biol. Trace Elem. Res. 2016;172:277–281. doi: 10.1007/s12011-015-0590-2. PubMed DOI PMC
Pizzorno L. Nothing Boring About Boron. Integr. Med. 2015;14:35–48. PubMed PMC
JamaliMoghadamSiahkali S., Zarezade B., Koolaji S., SeyedAlinaghi S., Zendehdel A., Tabarestani M., Moghadam E.S., Abbasian L., Manshadi S.A.D., Salehi M., et al. Safety and effectiveness of high-dose vitamin C in patients with COVID-19: A randomized open-label clinical trial. Eur. J. Med. Res. 2021;26:20. doi: 10.1186/s40001-021-00490-1. PubMed DOI PMC
Uluisik I., Karakaya H.C., Koc A. The importance of boron in biological systems. J. Trace Elem. Med. Biol. 2018;45:156–162. doi: 10.1016/j.jtemb.2017.10.008. PubMed DOI
Gaffney-Stomberg E. The Impact of Trace Minerals on Bone Metabolism. Biol. Trace Elem. Res. 2019;188:26–34. doi: 10.1007/s12011-018-1583-8. PubMed DOI
Nielsen F.H., Meacham S.L. Growing Evidence for Human Health Benefits of Boron. J. Evid. -Based Complement. Altern. Med. 2011;16:169–180. doi: 10.1177/2156587211407638. DOI
Engström A., Michaëlsson K., Vahter M., Julin B., Wolk A., Åkesson A. Associations between dietary cadmium exposure and bone mineral density and risk of osteoporosis and fractures among women. Bone. 2012;50:1372–1378. doi: 10.1016/j.bone.2012.03.018. PubMed DOI
Kumar S., Sharma A. Cadmium toxicity: Effects on human reproduction and fertility. Rev. Environ. Health. 2019;34:327–338. doi: 10.1515/reveh-2019-0016. PubMed DOI
Youness E.R., Mohammed N.A., Morsy F. Cadmium impact and osteoporosis: Mechanism of action. Toxicol. Mech. Methods. 2012;22:560–567. doi: 10.3109/15376516.2012.702796. PubMed DOI
Al-Ghafari A., Elmorsy E., Fikry E., Alrowaili M., Carter W.G. The heavy metals lead and cadmium are cytotoxic to human bone osteoblasts via induction of redox stress. PLoS ONE. 2019;14:e0225341. doi: 10.1371/journal.pone.0225341. PubMed DOI PMC
Das S.C., Al-Naemi H.A. Cadmium Toxicity: Oxidative Stress, Inflammation and Tissue Injury. Occup. Dis. Environ. Med. 2019;7:144–163. doi: 10.4236/odem.2019.74012. DOI
Yang P., Yang X., Sun L., Han X., Xu L., Gu W., Zhang M. Effects of cadmium on oxidative stress and cell apoptosis in Drosophila melanogaster larvae. Sci. Rep. 2022;12:4762. doi: 10.1038/s41598-022-08758-0. PubMed DOI PMC
Sughis M., Penders J., Haufroid V., Nemery B., Nawrot T.S. Bone resorption and environmental exposure to cadmium in children: A cross—Sectional study. Environ. Health. 2011;10:104. doi: 10.1186/1476-069X-10-104. PubMed DOI PMC
Monteiro D.R., Gorup L.F., Silva S., Negri M., De Camargo E.R., Oliveira R., Barbosa D.B., Henriques M. Silver colloidal nanoparticles: Antifungal effect against adhered cells and biofilms ofCandida albicans and Candida glabrata. Biofouling. 2011;27:711–719. doi: 10.1080/08927014.2011.599101. PubMed DOI