Effect of Drought on the Development of Deschampsia caespitosa (L.) and Selected Soil Parameters during a Three-Year Lysimetric Experiment

. 2023 Mar 09 ; 13 (3) : . [epub] 20230309

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36983899

Grantová podpora
Institutional support support MZE-RO1722 Ministry of Agriculture of the Czech Republic

This work presents results from a field experiment which was focused on the impact of the drought period on microbial activities in rhizosphere and non-rhizosphere soil. To demonstrate the effect of drought, the pot experiment lasted from 2012 to 2015. Fifteen lysimeters (plastic containers) were prepared in our area of interest. These lysimeters were filled with the subsoil and topsoil from this area and divided into two groups. The first group consisted of two variants: V1 (control) and V2 (84 kg N/ha), which were not stressed by drought. The second group consisted of three variants, V3 (control), V4 (84 kg N/ha), and V5 (84 kg N/ha + 1.25 L lignohumate/ha), which were stressed by drought every year of the experiment for 30 days. Changes in the soil moisture content caused by drought significantly affect the growth of Deschampsia caespitosa L., the microbial activity, and the soil's capacity to retain nutrients. The measured basal respiration and dehydrogenase activity values confirm the significant effect of drought on microbial activity. These values were demonstrably higher in the period before drought simulation by more than 60%. On the other hand, significant differences between microbial activities in the rhizosphere and non-rhizosphere soil were not found. We did not find a clear effect of drought on the formation of soil water repellency.

Zobrazit více v PubMed

Gyurica C., Smutný V., Perzce A., Pósa B., Birkás M. Soil condition threats in two seasons of extreme weather conditions. Plant Soil Environ. 2015;61:151–157. doi: 10.17221/855/2014-PSE. DOI

Trnka M., Hlavinka P., Možný M., Semerádová D., Štěpánek P., Balek J., Bartošová L., Zahradníček P., Bláhová M., Skalák P., et al. Czech Drought Monitor System for monitoring and forecasting agricultural drought and drought impacts. Int. J. Climatol. 2020;40:5941–5958. doi: 10.1002/joc.6557. DOI

Geng S., Yan D.H., Zhang T.X., Weng B.S., Zhang Z.B., Gang W. Effects of extreme drought on agriculture soil and sustainability of different drought soil. Hydrol. Earth Syst. Sci. 2014;11:1–29.

Menšík L., Kincl D., Nerušil P., Srbek J., Hlisnikovský L., Smutný V. Water erosion reduction using different soil tillage approaches for maize (Zea mays L.) in the Czech Republic. Land. 2020;9:358. doi: 10.3390/land9100358. DOI

Smutný V., Neudert L., Dryšlová T., Lukas V., Handlířová M., Vrtílek P., Vach M. Current arable farming systems in the Czech Republic—Agronomic measures adapted to soil protection and climate change. Agric. Conspec. Sci. 2018;83:11–16.

Borken W., Savage K., Davidson E.A., Trumbore S.E. Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Glob. Change Biol. 2006;12:177–193. doi: 10.1111/j.1365-2486.2005.001058.x. DOI

Bimüller C.M., Dannenmann J., Tejedor J., Lützow M., Buegger F., Meier R., Haug S., Schroll R., Kögel-Knabner I. Prolonged summer droughts retard soil N processing and stabilization in organo-mineral fractions. Soil Biol. Biochem. 2014;68:241–251. doi: 10.1016/j.soilbio.2013.10.003. DOI

Mukerji K.G., Manoharachary C., Singh J. Microbial Activity in the Rhizosphere. Springer; Berlin, Germany: 2006. 350p

Li Z., Zu C., Wang C., Yang J., Yu H., Wu H. Different responses of rhizosphere and non-rhizosphere soil microbial communities to consecutive Piper nigrum L. monoculture. Sci. Rep. 2016;6:35825. doi: 10.1038/srep35825. PubMed DOI PMC

Xia L., Zhao B.Q., Luo T., Xu W., Guo T., Xia D. Microbial functional diversity in rhizosphere and non-rhizosphere soil of different dominant species in a vegetation concrete slope. Biotechnol. Biotechnol. Equip. 2022;36:379–388. doi: 10.1080/13102818.2022.2082319. DOI

Sanaullah M., Blagodatskaya E., Chabbi A., Rumpel C., Kuzyakov Y. Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition. Appl. Soil Ecol. 2011;48:38–44. doi: 10.1016/j.apsoil.2011.02.004. DOI

Bloem J., Hopkins D.W., Benedetti A. Microbiological Methods for Assessing Soil Quality. CABI Publishing; Wallingford, UK: 2006. 320p

Zhang F., Quan Q., Ma F., Tian D., Hoover D.L., Zhou Q., Niu S. When does extreme drought elicit extreme ecological responses? J. Ecol. 2019;107:2553–2563. doi: 10.1111/1365-2745.13226. DOI

Liu Z.F., Fu B.J., Zheng X.X. Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: A regional scale study. Soil Biol. Biochem. 2010;42:445–450. doi: 10.1016/j.soilbio.2009.11.027. DOI

Coats V.S., Rumpho M.E. The rhizosphere microbiota of plant invaders: An overview of recent advances in the microbiomics of invasive plants. Front. Microbiol. 2014;23:368–378. doi: 10.3389/fmicb.2014.00368. PubMed DOI PMC

Sutton M.A., editor. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives. Cambridge University Press; New York, NY, USA: 2011. 612p

Aika K. Environmental concerns about fuel ammonia. In: Aika K., Kobayashi H., editors. CO2 Free Ammonia as an Energy Carrier. 1st ed. Springer; Singapore: 2023. pp. 681–692.

Elbl J., Vaverková M., Adamcová D., Plošek L., Kintl A., Lošák T., Hynšt J., Kotovicová J. Influence of fertilization on microbial activities, soil hydrophobicity and mineral nitrogen leaching. Ecol. Chem. Eng. S. 2014;21:661–675. doi: 10.1515/eces-2014-0048. DOI

Rennenberg H., Dannenmann M., Gessler A., Kreuzwieser J., Simon J., Papen H. Nitrogen balance in forest soils: Nutritional limitation of plants under climate change stresses. Plant Biol. 2009;11:4–23. doi: 10.1111/j.1438-8677.2009.00241.x. PubMed DOI

Nyman P., Sheridan G.J., Smith H.G., Lane P.N.J. Modelling the effects of surface storage, macropore flow and water repellency on infiltration after wildfire. J. Hydrol. 2014;513:301–313. doi: 10.1016/j.jhydrol.2014.02.044. DOI

Cerda A., Robichaud P.R., editors. Fire Effects on Soils and Restoration Strategies. Science Publisher; Enfield, NH, USA: 2009. 605p

Schreiner O., Shoery E.C. Chemical Nature of Soil Organic Matter. US Department of Agriculture; Washington, DC, USA: 1910. 48p Bureau of soils Bulletin.

Buczko U., Bens O., Hüttl R.F. Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica) Geoderma. 2005;126:317–336. doi: 10.1016/j.geoderma.2004.10.003. DOI

Goobel M.O., Bachmann J., Reichstein M., Janssens I.A., Guggenberger G. Soil water repellency and its implications for organic matter decomposition—Is there a link to extreme climatic events? Glob. Change Biol. 2011;17:2640–2656. doi: 10.1111/j.1365-2486.2011.02414.x. DOI

Mataix-Solera J., Doerr S.H. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain. Geoderma. 2004;118:77–88. doi: 10.1016/S0016-7061(03)00185-X. DOI

Doerr S.H., Shakesby R.A., MacDonald L.H. Soil water repellency: A key factor in post-fire erosion. In: Cerda A., Robichaud P.R., editors. Fire Effects on Soils and Restoration Strategies. Science Publisher; Enfield, NH, USA: 2009. pp. 197–223.

Lichner L., Hallet P., Feeney D.S., Ďugová O., Šír M., Tesař M. Field measurement of soil water repellency and its impact on water flow under different vegetation. Biologia. 2007;62:537–541. doi: 10.2478/s11756-007-0106-4. DOI

Robichaud P.R., Lewis S.A., Ashmun L.E. New Procedure for Sampling Infiltration to Assess Post-Fire Soil Water Repellency. Res. Note. RMRS-RN-33. USDA, Forest Service, Rocky Mountain Re-search Station; Fort Collins, CO, USA: 2008. 14p

Cosentino D., Hallet P.D., Michel J.C., Chenu C. Do different methods for measuring the hydrophobicity of soil aggregates give the same trends in soil amended with residue? Geoderma. 2010;15:221–227. doi: 10.1016/j.geoderma.2010.07.015. DOI

Soil quality—Sampling—Part 6: Guidance on the Collection, Handling and Storage of Soil under Aerobic Conditions for the Assessment of Microbiological Processes, Biomass and Diversity in the Laboratory. International Organization for Standardization; Geneva, Switzerland: 2009. 6p

Elbl J., Plošek L., Kintl A., Přichystalová J., Záhora J., Friedel J.K. The effect of increased doses of compost on leaching of mineral nitrogen from arable land. Pol. J. Environ. Stud. 2014;23:697–703.

Kintl A., Elbl J., Lošák T., Vaverková M.D., Nědělník J. Mixed intercropping of wheat and white clover to enhance the sustainability of the conventional cropping system: Effects on biomass production and leaching of mineral nitrogen. Sustainability. 2018;10:3367. doi: 10.3390/su10103367. DOI

Mehlich A. Mehlich III soil test extractant. Commun. Soil Sci. Plant Anal. 1984;15:1409–1416. doi: 10.1080/00103628409367568. DOI

Keith H., Wong S.C. Measurement of soil CO2 efflux using soda lime absorption: Both quantitative and reliable. Soil Biol. Biochem. 2006;38:1121–1131. doi: 10.1016/j.soilbio.2005.09.012. DOI

Casida L.E., Klein D.A., Santoro T. Soil dehydrogenase activity. Soil Sci. 1964;98:371–376. doi: 10.1097/00010694-196412000-00004. DOI

Peoples M.B., Faizah A.W., Rerkasem B., Herridge D.F. Methods for Evaluating Nitrogen Fixation by Modulated Legumes in the Field. Australian Centre for International Agricultural Research; Canberra, Australia: 1989.

Elbl J., Sláma P., Vaverková M.D., Plošek L., Adamcová D., Škarpa P., Kynický J., Havlíček Z., Dvořáčková H., Brtnický M., et al. Jatropha seed cake and organic waste compost: The potential for improvement of soil fertility. Ecol. Chem. Eng. S. 2016;23:131–141. doi: 10.1515/eces-2016-0009. DOI

Zhang R. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J. 1997;61:1024–1030. doi: 10.2136/sssaj1997.03615995006100040005x. DOI

Lichner L., Orfánus T., Nováková K., Šír M., Tesař M. The Impact of vegetation on hydraulic conductivity of sandy soil. Soil Water Res. 2007;2:59–66. doi: 10.17221/2115-SWR. DOI

Greimler J., Temsch E.M., Xue Z., Weiss-Schneeweiss H., Volkova P., Peintinger M., Wasowicz P., Shang H., Schanzer I., Chiapella J.O. Genome size variation in Deschampsia cespitosa sensu lato (Poaceae) in Eurasia. Plant Syst. Evol. 2022;308:9. doi: 10.1007/s00606-021-01796-7. DOI

Chiapella J. The Deschampsia cespitosa complex in central and northern Europe: A morphological analysis. Bot. J. 2008;134:495–512. doi: 10.1111/j.1095-8339.2000.tb00547.x. DOI

Davy A.J., Taylor K. Water Characteristics of Contrasting Soils in the Chiltern Hills and their Significance for Deschampsia Caespitosa (L.) Beauv. J. Ecol. 1974;62:367–378. doi: 10.2307/2258985. DOI

Kanapeckas J., Lemežiené N., Stukonis V., Tarakanovas P. Drought tolerance of turfgrass genetic resources. Biologija. 2008;54:121–124. doi: 10.2478/v10054-008-0025-5. DOI

Deelstra J., Øygarden L., Blankenberg A.-G.B., Eggestad H.O. Climate change and runoff from agricultural catchments in Norway. Int. J. Clim. 2011;3:345–360.

Waldrop M.P., Firestone M.K. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils. Microb. 2006;52:470–479. doi: 10.1007/s00248-006-9100-6. PubMed DOI

Blagodatskaya E., Kuzyakov Y. Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biol. Biochem. 2013;67:192–211. doi: 10.1016/j.soilbio.2013.08.024. DOI

Schimel J.P. Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes. Annu. Rev. Ecol. Evol. Syst. 2018;49:409–432. doi: 10.1146/annurev-ecolsys-110617-062614. DOI

Bogati K., Walczak M. The Impact of Drought Stress on Soil Microbial Community, Enzyme Activities and Plants. Agronomy. 2022;12:189. doi: 10.3390/agronomy12010189. DOI

Habekost M., Eisenhauer N., Scheu S., Stenbeis S., Weigelt A., Gleixner G. Seasonal changes in the soil microbial community in a grassland plant diversity gradient four years after establishment. Soil Biol. Biochem. 2008;40:2588–2595. doi: 10.1016/j.soilbio.2008.06.019. DOI

Engelhardt I.C., Welty A., Blazewicz S.J., Bru D., Rouard N., Breuil M.C., Gessler A., Galiano L., Miranda J.C., Spor A., et al. Depth matters: Effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system. ISME J. 2018;12:1061–1071. doi: 10.1038/s41396-018-0079-z. PubMed DOI PMC

Rivest D., Lorente M., Olivier A., Messier C. Soil biochemical properties and microbial resilience in agroforestry systems: Effects on wheat growth under controlled drought and flooding conditions. Sci. Total Environ. 2013;463:51–60. doi: 10.1016/j.scitotenv.2013.05.071. PubMed DOI

Chen Q., Niu B., Liu B., Hu Y., Luo T., Zhang G. Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms. Sci. Total Environ. 2020;714:136787. doi: 10.1016/j.scitotenv.2020.136787. PubMed DOI

Hueso S., García C., Hermández T. Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biol. Biochem. 2012;50:167–173. doi: 10.1016/j.soilbio.2012.03.026. DOI

Elbl J., Záhora J. The comparison of microbial activity in rhizosphere and non-rhizosphere soil stressed by drought. In: Polak O., Cerkal R., Skarpa P., editors. 21st International PhD Students Conference. Mendel Univ, Fac Agron; Brno, Czech Republic: 2014. pp. 240–243.

Maková J., Javoreková S., Elbl J., Medo J., Hricáková N., Kováčik P. Impact of vermicompost on biological indicators of the quality of soil under maize in a greenhouse experiment. J. Elem. 2019;24:319–330. doi: 10.5601/jelem.2017.22.4.1548. DOI

Liang Q., Chen H., Gong Y., Yang H., Fan M., Kuzyakov Y. Effects of 15 years of manure and miner-al fertilizers on enzyme activities in particle-size fractions in a North China Plain soil. Eur. J. Soil Biol. 2014;60:112–119. doi: 10.1016/j.ejsobi.2013.11.009. DOI

Luo P., Han X., Wang Y., Han M., Shi H., Liu N., Bai H. Influence of long-term fertilization on soil microbial biomass, dehydrogenase activity, and bacterial and fungal community structure in a brown soil of northeast China. Ann. Microbiol. 2015;65:533–542. doi: 10.1007/s13213-014-0889-9. PubMed DOI PMC

Chu H., Lin X., Fujii T., Morimoto S., Yagi K., Hu J., Zhang J. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol. Biochem. 2007;39:2971–2976. doi: 10.1016/j.soilbio.2007.05.031. DOI

Jahangir M.M.R., Nitu T.T., Uddin S., Siddaka A., Sarker P., Khan S., Jahiruddin M., Müller C. Carbon and nitrogen accumulation in soils under conservation agriculture practices decreases with nitrogen application rates. Appl. Soil Ecol. 2021;168:104178. doi: 10.1016/j.apsoil.2021.104178. DOI

Nikaeen M., Nafez A.H., Bina B., Nabavi B.F., Hassnzadeh A. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting. J. Waste Manag. 2015;39:104–110. doi: 10.1016/j.wasman.2015.01.028. PubMed DOI

Nielsen K., Ros C.L., Hoffmann M., Muskolus A., Ellmer F., Kautz T. The chemical composition of biogas digestates determines their effect on soil microbial activity. Agriculture. 2020;10:244. doi: 10.3390/agriculture10060244. DOI

Nendel C., Reuter S., Kersebaum K.C., Kubiak R., Nieder R. Nitrogen mineralization from mature bio-waste compost in vineyard soils II. Test of N-mineralization parameters in a long-term in situ incubation experiment. J. Plant. Nutr. Soil Sci. 2005;168:219–227. doi: 10.1002/jpln.200420476. DOI

Zsolnay Á. Dissolved organic matter: Artefacts, definitions, and functions. Geoderma. 2003;113:187–209. doi: 10.1016/S0016-7061(02)00361-0. DOI

Pozdnyakov L.A., Stepanov A.L., Gasanov M.E., Semenov M.V., Yakimenko O.S., Suada I.K., Rai I.N., Shegolkova N.M. Effect of Lignohumate on Soil Biological Activity on the Bali Island, Indonesia. Euroasian Soil Sci. 2020;53:653–660. doi: 10.1134/S1064229320050117. DOI

Wang Z., Wu Q.J., Wu L., Ritsema C.J., Dekker L.W., Feyen J. Effects of water repellency on infiltration rate and flow instability. J. Hydrol. 2000;231–232:265–276. doi: 10.1016/S0022-1694(00)00200-6. DOI

Robichaud P.R. Infiltration rates after prescribed fire in Northern Rocky Mountain Forest. In: Ritsema C.J., Dekker L.W., editors. Soil Water Repellency: Occurrence, Consequences, and Amelioration. Elsevier Science B. V.; Amsterdam, The Netherlands: 2003. pp. 203–215.

Diamantopoulos E., Durner W., Reszkowska A., Bachmann J. Effect of soil water repellency on soil hydraulic properties estimated under dynamic conditions. J. Hydrol. 2013;486:175–186. doi: 10.1016/j.jhydrol.2013.01.020. DOI

Mao J., Nierop K.G.J., Dekker S.C., Dekker L.W., Chen B. Understanding the mechanisms of soil water repellency from nanoscale to ecosystem scale: A review. J. Soils Sediments. 2019;19:171–185. doi: 10.1007/s11368-018-2195-9. DOI

Bodí M.B., Doerr S.H., Cerda A., Mataix-Solera J. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma. 2012;191:14–23. doi: 10.1016/j.geoderma.2012.01.006. DOI

Schrama M., Bardgett R.D. Grassland invasibility varies with drought ef-fects on soil functioning. J. Ecol. 2016;104:1250–1258. doi: 10.1111/1365-2745.12606. DOI

Sándor R., Lovino M., Lichner L., Alagna V., Forster D., Fraser M., Kollár J., Šurda P., Nagy V., Szabó A., et al. Impact of climate, soil properties and grassland cover on soil water repellency. Geoderma. 2021;383:114780. doi: 10.1016/j.geoderma.2020.114780. DOI

Soil Quality—Determination of Dry Matter and Water Content on a Mass Basis—Gravimetric Method. International Organization for Standardization; Geneva, Switzerland: 1993. 3p

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...