Effect of Drought on the Development of Deschampsia caespitosa (L.) and Selected Soil Parameters during a Three-Year Lysimetric Experiment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Institutional support support MZE-RO1722
Ministry of Agriculture of the Czech Republic
PubMed
36983899
PubMed Central
PMC10055780
DOI
10.3390/life13030745
PII: life13030745
Knihovny.cz E-zdroje
- Klíčová slova
- basal respiration, climate change, drought, microbial activity, mineral nitrogen,
- Publikační typ
- časopisecké články MeSH
This work presents results from a field experiment which was focused on the impact of the drought period on microbial activities in rhizosphere and non-rhizosphere soil. To demonstrate the effect of drought, the pot experiment lasted from 2012 to 2015. Fifteen lysimeters (plastic containers) were prepared in our area of interest. These lysimeters were filled with the subsoil and topsoil from this area and divided into two groups. The first group consisted of two variants: V1 (control) and V2 (84 kg N/ha), which were not stressed by drought. The second group consisted of three variants, V3 (control), V4 (84 kg N/ha), and V5 (84 kg N/ha + 1.25 L lignohumate/ha), which were stressed by drought every year of the experiment for 30 days. Changes in the soil moisture content caused by drought significantly affect the growth of Deschampsia caespitosa L., the microbial activity, and the soil's capacity to retain nutrients. The measured basal respiration and dehydrogenase activity values confirm the significant effect of drought on microbial activity. These values were demonstrably higher in the period before drought simulation by more than 60%. On the other hand, significant differences between microbial activities in the rhizosphere and non-rhizosphere soil were not found. We did not find a clear effect of drought on the formation of soil water repellency.
Zobrazit více v PubMed
Gyurica C., Smutný V., Perzce A., Pósa B., Birkás M. Soil condition threats in two seasons of extreme weather conditions. Plant Soil Environ. 2015;61:151–157. doi: 10.17221/855/2014-PSE. DOI
Trnka M., Hlavinka P., Možný M., Semerádová D., Štěpánek P., Balek J., Bartošová L., Zahradníček P., Bláhová M., Skalák P., et al. Czech Drought Monitor System for monitoring and forecasting agricultural drought and drought impacts. Int. J. Climatol. 2020;40:5941–5958. doi: 10.1002/joc.6557. DOI
Geng S., Yan D.H., Zhang T.X., Weng B.S., Zhang Z.B., Gang W. Effects of extreme drought on agriculture soil and sustainability of different drought soil. Hydrol. Earth Syst. Sci. 2014;11:1–29.
Menšík L., Kincl D., Nerušil P., Srbek J., Hlisnikovský L., Smutný V. Water erosion reduction using different soil tillage approaches for maize (Zea mays L.) in the Czech Republic. Land. 2020;9:358. doi: 10.3390/land9100358. DOI
Smutný V., Neudert L., Dryšlová T., Lukas V., Handlířová M., Vrtílek P., Vach M. Current arable farming systems in the Czech Republic—Agronomic measures adapted to soil protection and climate change. Agric. Conspec. Sci. 2018;83:11–16.
Borken W., Savage K., Davidson E.A., Trumbore S.E. Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Glob. Change Biol. 2006;12:177–193. doi: 10.1111/j.1365-2486.2005.001058.x. DOI
Bimüller C.M., Dannenmann J., Tejedor J., Lützow M., Buegger F., Meier R., Haug S., Schroll R., Kögel-Knabner I. Prolonged summer droughts retard soil N processing and stabilization in organo-mineral fractions. Soil Biol. Biochem. 2014;68:241–251. doi: 10.1016/j.soilbio.2013.10.003. DOI
Mukerji K.G., Manoharachary C., Singh J. Microbial Activity in the Rhizosphere. Springer; Berlin, Germany: 2006. 350p
Li Z., Zu C., Wang C., Yang J., Yu H., Wu H. Different responses of rhizosphere and non-rhizosphere soil microbial communities to consecutive Piper nigrum L. monoculture. Sci. Rep. 2016;6:35825. doi: 10.1038/srep35825. PubMed DOI PMC
Xia L., Zhao B.Q., Luo T., Xu W., Guo T., Xia D. Microbial functional diversity in rhizosphere and non-rhizosphere soil of different dominant species in a vegetation concrete slope. Biotechnol. Biotechnol. Equip. 2022;36:379–388. doi: 10.1080/13102818.2022.2082319. DOI
Sanaullah M., Blagodatskaya E., Chabbi A., Rumpel C., Kuzyakov Y. Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition. Appl. Soil Ecol. 2011;48:38–44. doi: 10.1016/j.apsoil.2011.02.004. DOI
Bloem J., Hopkins D.W., Benedetti A. Microbiological Methods for Assessing Soil Quality. CABI Publishing; Wallingford, UK: 2006. 320p
Zhang F., Quan Q., Ma F., Tian D., Hoover D.L., Zhou Q., Niu S. When does extreme drought elicit extreme ecological responses? J. Ecol. 2019;107:2553–2563. doi: 10.1111/1365-2745.13226. DOI
Liu Z.F., Fu B.J., Zheng X.X. Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: A regional scale study. Soil Biol. Biochem. 2010;42:445–450. doi: 10.1016/j.soilbio.2009.11.027. DOI
Coats V.S., Rumpho M.E. The rhizosphere microbiota of plant invaders: An overview of recent advances in the microbiomics of invasive plants. Front. Microbiol. 2014;23:368–378. doi: 10.3389/fmicb.2014.00368. PubMed DOI PMC
Sutton M.A., editor. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives. Cambridge University Press; New York, NY, USA: 2011. 612p
Aika K. Environmental concerns about fuel ammonia. In: Aika K., Kobayashi H., editors. CO2 Free Ammonia as an Energy Carrier. 1st ed. Springer; Singapore: 2023. pp. 681–692.
Elbl J., Vaverková M., Adamcová D., Plošek L., Kintl A., Lošák T., Hynšt J., Kotovicová J. Influence of fertilization on microbial activities, soil hydrophobicity and mineral nitrogen leaching. Ecol. Chem. Eng. S. 2014;21:661–675. doi: 10.1515/eces-2014-0048. DOI
Rennenberg H., Dannenmann M., Gessler A., Kreuzwieser J., Simon J., Papen H. Nitrogen balance in forest soils: Nutritional limitation of plants under climate change stresses. Plant Biol. 2009;11:4–23. doi: 10.1111/j.1438-8677.2009.00241.x. PubMed DOI
Nyman P., Sheridan G.J., Smith H.G., Lane P.N.J. Modelling the effects of surface storage, macropore flow and water repellency on infiltration after wildfire. J. Hydrol. 2014;513:301–313. doi: 10.1016/j.jhydrol.2014.02.044. DOI
Cerda A., Robichaud P.R., editors. Fire Effects on Soils and Restoration Strategies. Science Publisher; Enfield, NH, USA: 2009. 605p
Schreiner O., Shoery E.C. Chemical Nature of Soil Organic Matter. US Department of Agriculture; Washington, DC, USA: 1910. 48p Bureau of soils Bulletin.
Buczko U., Bens O., Hüttl R.F. Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica) Geoderma. 2005;126:317–336. doi: 10.1016/j.geoderma.2004.10.003. DOI
Goobel M.O., Bachmann J., Reichstein M., Janssens I.A., Guggenberger G. Soil water repellency and its implications for organic matter decomposition—Is there a link to extreme climatic events? Glob. Change Biol. 2011;17:2640–2656. doi: 10.1111/j.1365-2486.2011.02414.x. DOI
Mataix-Solera J., Doerr S.H. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain. Geoderma. 2004;118:77–88. doi: 10.1016/S0016-7061(03)00185-X. DOI
Doerr S.H., Shakesby R.A., MacDonald L.H. Soil water repellency: A key factor in post-fire erosion. In: Cerda A., Robichaud P.R., editors. Fire Effects on Soils and Restoration Strategies. Science Publisher; Enfield, NH, USA: 2009. pp. 197–223.
Lichner L., Hallet P., Feeney D.S., Ďugová O., Šír M., Tesař M. Field measurement of soil water repellency and its impact on water flow under different vegetation. Biologia. 2007;62:537–541. doi: 10.2478/s11756-007-0106-4. DOI
Robichaud P.R., Lewis S.A., Ashmun L.E. New Procedure for Sampling Infiltration to Assess Post-Fire Soil Water Repellency. Res. Note. RMRS-RN-33. USDA, Forest Service, Rocky Mountain Re-search Station; Fort Collins, CO, USA: 2008. 14p
Cosentino D., Hallet P.D., Michel J.C., Chenu C. Do different methods for measuring the hydrophobicity of soil aggregates give the same trends in soil amended with residue? Geoderma. 2010;15:221–227. doi: 10.1016/j.geoderma.2010.07.015. DOI
Soil quality—Sampling—Part 6: Guidance on the Collection, Handling and Storage of Soil under Aerobic Conditions for the Assessment of Microbiological Processes, Biomass and Diversity in the Laboratory. International Organization for Standardization; Geneva, Switzerland: 2009. 6p
Elbl J., Plošek L., Kintl A., Přichystalová J., Záhora J., Friedel J.K. The effect of increased doses of compost on leaching of mineral nitrogen from arable land. Pol. J. Environ. Stud. 2014;23:697–703.
Kintl A., Elbl J., Lošák T., Vaverková M.D., Nědělník J. Mixed intercropping of wheat and white clover to enhance the sustainability of the conventional cropping system: Effects on biomass production and leaching of mineral nitrogen. Sustainability. 2018;10:3367. doi: 10.3390/su10103367. DOI
Mehlich A. Mehlich III soil test extractant. Commun. Soil Sci. Plant Anal. 1984;15:1409–1416. doi: 10.1080/00103628409367568. DOI
Keith H., Wong S.C. Measurement of soil CO2 efflux using soda lime absorption: Both quantitative and reliable. Soil Biol. Biochem. 2006;38:1121–1131. doi: 10.1016/j.soilbio.2005.09.012. DOI
Casida L.E., Klein D.A., Santoro T. Soil dehydrogenase activity. Soil Sci. 1964;98:371–376. doi: 10.1097/00010694-196412000-00004. DOI
Peoples M.B., Faizah A.W., Rerkasem B., Herridge D.F. Methods for Evaluating Nitrogen Fixation by Modulated Legumes in the Field. Australian Centre for International Agricultural Research; Canberra, Australia: 1989.
Elbl J., Sláma P., Vaverková M.D., Plošek L., Adamcová D., Škarpa P., Kynický J., Havlíček Z., Dvořáčková H., Brtnický M., et al. Jatropha seed cake and organic waste compost: The potential for improvement of soil fertility. Ecol. Chem. Eng. S. 2016;23:131–141. doi: 10.1515/eces-2016-0009. DOI
Zhang R. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J. 1997;61:1024–1030. doi: 10.2136/sssaj1997.03615995006100040005x. DOI
Lichner L., Orfánus T., Nováková K., Šír M., Tesař M. The Impact of vegetation on hydraulic conductivity of sandy soil. Soil Water Res. 2007;2:59–66. doi: 10.17221/2115-SWR. DOI
Greimler J., Temsch E.M., Xue Z., Weiss-Schneeweiss H., Volkova P., Peintinger M., Wasowicz P., Shang H., Schanzer I., Chiapella J.O. Genome size variation in Deschampsia cespitosa sensu lato (Poaceae) in Eurasia. Plant Syst. Evol. 2022;308:9. doi: 10.1007/s00606-021-01796-7. DOI
Chiapella J. The Deschampsia cespitosa complex in central and northern Europe: A morphological analysis. Bot. J. 2008;134:495–512. doi: 10.1111/j.1095-8339.2000.tb00547.x. DOI
Davy A.J., Taylor K. Water Characteristics of Contrasting Soils in the Chiltern Hills and their Significance for Deschampsia Caespitosa (L.) Beauv. J. Ecol. 1974;62:367–378. doi: 10.2307/2258985. DOI
Kanapeckas J., Lemežiené N., Stukonis V., Tarakanovas P. Drought tolerance of turfgrass genetic resources. Biologija. 2008;54:121–124. doi: 10.2478/v10054-008-0025-5. DOI
Deelstra J., Øygarden L., Blankenberg A.-G.B., Eggestad H.O. Climate change and runoff from agricultural catchments in Norway. Int. J. Clim. 2011;3:345–360.
Waldrop M.P., Firestone M.K. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils. Microb. 2006;52:470–479. doi: 10.1007/s00248-006-9100-6. PubMed DOI
Blagodatskaya E., Kuzyakov Y. Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biol. Biochem. 2013;67:192–211. doi: 10.1016/j.soilbio.2013.08.024. DOI
Schimel J.P. Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes. Annu. Rev. Ecol. Evol. Syst. 2018;49:409–432. doi: 10.1146/annurev-ecolsys-110617-062614. DOI
Bogati K., Walczak M. The Impact of Drought Stress on Soil Microbial Community, Enzyme Activities and Plants. Agronomy. 2022;12:189. doi: 10.3390/agronomy12010189. DOI
Habekost M., Eisenhauer N., Scheu S., Stenbeis S., Weigelt A., Gleixner G. Seasonal changes in the soil microbial community in a grassland plant diversity gradient four years after establishment. Soil Biol. Biochem. 2008;40:2588–2595. doi: 10.1016/j.soilbio.2008.06.019. DOI
Engelhardt I.C., Welty A., Blazewicz S.J., Bru D., Rouard N., Breuil M.C., Gessler A., Galiano L., Miranda J.C., Spor A., et al. Depth matters: Effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system. ISME J. 2018;12:1061–1071. doi: 10.1038/s41396-018-0079-z. PubMed DOI PMC
Rivest D., Lorente M., Olivier A., Messier C. Soil biochemical properties and microbial resilience in agroforestry systems: Effects on wheat growth under controlled drought and flooding conditions. Sci. Total Environ. 2013;463:51–60. doi: 10.1016/j.scitotenv.2013.05.071. PubMed DOI
Chen Q., Niu B., Liu B., Hu Y., Luo T., Zhang G. Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms. Sci. Total Environ. 2020;714:136787. doi: 10.1016/j.scitotenv.2020.136787. PubMed DOI
Hueso S., García C., Hermández T. Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biol. Biochem. 2012;50:167–173. doi: 10.1016/j.soilbio.2012.03.026. DOI
Elbl J., Záhora J. The comparison of microbial activity in rhizosphere and non-rhizosphere soil stressed by drought. In: Polak O., Cerkal R., Skarpa P., editors. 21st International PhD Students Conference. Mendel Univ, Fac Agron; Brno, Czech Republic: 2014. pp. 240–243.
Maková J., Javoreková S., Elbl J., Medo J., Hricáková N., Kováčik P. Impact of vermicompost on biological indicators of the quality of soil under maize in a greenhouse experiment. J. Elem. 2019;24:319–330. doi: 10.5601/jelem.2017.22.4.1548. DOI
Liang Q., Chen H., Gong Y., Yang H., Fan M., Kuzyakov Y. Effects of 15 years of manure and miner-al fertilizers on enzyme activities in particle-size fractions in a North China Plain soil. Eur. J. Soil Biol. 2014;60:112–119. doi: 10.1016/j.ejsobi.2013.11.009. DOI
Luo P., Han X., Wang Y., Han M., Shi H., Liu N., Bai H. Influence of long-term fertilization on soil microbial biomass, dehydrogenase activity, and bacterial and fungal community structure in a brown soil of northeast China. Ann. Microbiol. 2015;65:533–542. doi: 10.1007/s13213-014-0889-9. PubMed DOI PMC
Chu H., Lin X., Fujii T., Morimoto S., Yagi K., Hu J., Zhang J. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol. Biochem. 2007;39:2971–2976. doi: 10.1016/j.soilbio.2007.05.031. DOI
Jahangir M.M.R., Nitu T.T., Uddin S., Siddaka A., Sarker P., Khan S., Jahiruddin M., Müller C. Carbon and nitrogen accumulation in soils under conservation agriculture practices decreases with nitrogen application rates. Appl. Soil Ecol. 2021;168:104178. doi: 10.1016/j.apsoil.2021.104178. DOI
Nikaeen M., Nafez A.H., Bina B., Nabavi B.F., Hassnzadeh A. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting. J. Waste Manag. 2015;39:104–110. doi: 10.1016/j.wasman.2015.01.028. PubMed DOI
Nielsen K., Ros C.L., Hoffmann M., Muskolus A., Ellmer F., Kautz T. The chemical composition of biogas digestates determines their effect on soil microbial activity. Agriculture. 2020;10:244. doi: 10.3390/agriculture10060244. DOI
Nendel C., Reuter S., Kersebaum K.C., Kubiak R., Nieder R. Nitrogen mineralization from mature bio-waste compost in vineyard soils II. Test of N-mineralization parameters in a long-term in situ incubation experiment. J. Plant. Nutr. Soil Sci. 2005;168:219–227. doi: 10.1002/jpln.200420476. DOI
Zsolnay Á. Dissolved organic matter: Artefacts, definitions, and functions. Geoderma. 2003;113:187–209. doi: 10.1016/S0016-7061(02)00361-0. DOI
Pozdnyakov L.A., Stepanov A.L., Gasanov M.E., Semenov M.V., Yakimenko O.S., Suada I.K., Rai I.N., Shegolkova N.M. Effect of Lignohumate on Soil Biological Activity on the Bali Island, Indonesia. Euroasian Soil Sci. 2020;53:653–660. doi: 10.1134/S1064229320050117. DOI
Wang Z., Wu Q.J., Wu L., Ritsema C.J., Dekker L.W., Feyen J. Effects of water repellency on infiltration rate and flow instability. J. Hydrol. 2000;231–232:265–276. doi: 10.1016/S0022-1694(00)00200-6. DOI
Robichaud P.R. Infiltration rates after prescribed fire in Northern Rocky Mountain Forest. In: Ritsema C.J., Dekker L.W., editors. Soil Water Repellency: Occurrence, Consequences, and Amelioration. Elsevier Science B. V.; Amsterdam, The Netherlands: 2003. pp. 203–215.
Diamantopoulos E., Durner W., Reszkowska A., Bachmann J. Effect of soil water repellency on soil hydraulic properties estimated under dynamic conditions. J. Hydrol. 2013;486:175–186. doi: 10.1016/j.jhydrol.2013.01.020. DOI
Mao J., Nierop K.G.J., Dekker S.C., Dekker L.W., Chen B. Understanding the mechanisms of soil water repellency from nanoscale to ecosystem scale: A review. J. Soils Sediments. 2019;19:171–185. doi: 10.1007/s11368-018-2195-9. DOI
Bodí M.B., Doerr S.H., Cerda A., Mataix-Solera J. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma. 2012;191:14–23. doi: 10.1016/j.geoderma.2012.01.006. DOI
Schrama M., Bardgett R.D. Grassland invasibility varies with drought ef-fects on soil functioning. J. Ecol. 2016;104:1250–1258. doi: 10.1111/1365-2745.12606. DOI
Sándor R., Lovino M., Lichner L., Alagna V., Forster D., Fraser M., Kollár J., Šurda P., Nagy V., Szabó A., et al. Impact of climate, soil properties and grassland cover on soil water repellency. Geoderma. 2021;383:114780. doi: 10.1016/j.geoderma.2020.114780. DOI
Soil Quality—Determination of Dry Matter and Water Content on a Mass Basis—Gravimetric Method. International Organization for Standardization; Geneva, Switzerland: 1993. 3p