Optimization and Experimental Investigation of 3D Printed Micro Wind Turbine Blade Made of PLA Material
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36984388
PubMed Central
PMC10059860
DOI
10.3390/ma16062508
PII: ma16062508
Knihovny.cz E-zdroje
- Klíčová slova
- MFO, PSO, airfoil profile, fusion deposition modeling, micro horizontal axis wind turbine, structure analysis,
- Publikační typ
- časopisecké články MeSH
This paper presents the design, development, and optimization of a 3D printed micro horizontal axis wind turbine blade made of PLA material. The objective of the study was to produce 100 watts of power for low-wind-speed applications. The design process involved the selection of SD7080 airfoil and the determination of the material properties of PLA and ABS. A structural analysis of the blade was carried out using ANSYS software under different wind speeds, and Taguchi's L16 orthogonal array was used for the experiments. The deformation and equivalent stress of the PLA material were identified, and the infill percentage and wind speed velocity were optimized using the moth-flame optimization (MFO) algorithm. The results demonstrate that PLA material has better structural characteristics compared to ABS material. The optimized parameters were used to fabricate the turbine blades using the fusion deposition modeling (FDM) technique, and they were tested in a wind tunnel.
Zobrazit více v PubMed
Liu W., Liu L., Wu H., Chen Y., Zheng X., Li N., Zhang Z. Performance Analysis and Offshore Applications of the Diffuser Augmented Tidal Turbines. Ships Offshore Struct. 2023;18:68–77. doi: 10.1080/17445302.2022.2027691. DOI
Park H. A Study on Structural Design and Analysis of Small Wind Turbine Blade with Natural Fibre (Flax) Composite. Adv. Compos. Mater. 2016;25:125–142. doi: 10.1080/09243046.2015.1052186. DOI
Mouhsine S.E., Oukassou K., Ichenial M.M., Kharbouch B., Hajraoui A. Aerodynamics and Structural Analysis of Wind Turbine Blade. Procedia Manuf. 2018;22:747–756. doi: 10.1016/j.promfg.2018.03.107. DOI
Chen C.P., Kam T.Y. Failure Analysis of Small Composite Sandwich Turbine Blade Subjected to Extreme Wind Load. Procedia Eng. 2011;14:1973–1981. doi: 10.1016/j.proeng.2011.07.248. DOI
Ullah H., Ullah B., Silberschmidt V.V. Structural Integrity Analysis and Damage Assessment of a Long Composite Wind Turbine Blade Under Extreme Loading. Compos. Struct. 2020;246:112426. doi: 10.1016/j.compstruct.2020.112426. DOI
Wu W.-H., Young W.-B. Structural Analysis and Design of the Composite Wind Turbine Blade. Appl. Compos. Mater. 2012;19:247–257. doi: 10.1007/s10443-011-9193-z. DOI
Lipian M., Kulak M., Stepien M. Fast Track Integration of Computational Methods with Experiments in Small Wind Turbine Development. Energies. 2019;12:1625. doi: 10.3390/en12091625. DOI
Mamouri A.R., Lakzian E., Khoshnevis A.B. Entropy Analysis of Pitching Airfoil for Offshore Wind Turbines in the Dynamic Stall Condition. Ocean Eng. 2019;187:106229. doi: 10.1016/j.oceaneng.2019.106229. DOI
Mamouri A.R., Khoshnevis A.B., Lakzian E. Entropy Generation Analysis of S825, S822, and SD7062 Offshore Wind Turbine Airfoil Geometries. Ocean Eng. 2019;173:700–715. doi: 10.1016/j.oceaneng.2018.12.068. DOI
Mamouri A.R., Khoshnevis A.B., Lakzian E. Experimental Study of the Effective Parameters on the Offshore Wind Turbine’s Airfoil in Pitching Case. Ocean Eng. 2020;198:106955. doi: 10.1016/j.oceaneng.2020.106955. DOI
Suresh A., Rajakumar S. Design of Small Horizontal Axis Wind Turbine for Low Wind Speed Rural Applications. Mater. Today Proc. 2020;23:16–22. doi: 10.1016/j.matpr.2019.06.008. DOI
Rahman M., Pate D., Sawinski J., Seeloff T., Molina G., ElShahat A., Soloiu V. Finite Element Structural Analysis of Commonly Used Horizontal Axis Wind Turbine Airfoils of Various Geometries; Proceedings of the ASME International Mechanical Engineering Congress and Exposition; Phoenix, AZ, USA. 11–17 November 2016; New York, NY, USA: American Society of Mechanical Engineers; 2016.
Akour S.N., Al-Heymari M., Ahmed T., Khalil K.A. Experimental and Theoretical Investigation of Micro Wind Turbine for Low Wind Speed Regions. Renew. Energy. 2018;116:215–223. doi: 10.1016/j.renene.2017.09.076. DOI
Singh R.K., Ahmed M.R. Blade design and Performance Testing of a Small Wind Turbine Rotor for Low Wind Speed Applications. Renew. Energy. 2013;50:812–819. doi: 10.1016/j.renene.2012.08.021. DOI
Drumheller D.P., D’Antonio G.C., Chapman B.A., Allison C.P., Pierrakos O. Design of a Micro-Wind Turbine for Implementation in Low Wind Speed Environments; Proceedings of the 2015 Systems and Information Engineering Design Symposium; Charlottesville, VA, USA. 24 April 2015.
Ligon S.C., Liska R., Stampfl J., Gurr M., Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017;117:10212–10290. doi: 10.1021/acs.chemrev.7b00074. PubMed DOI PMC
Conner B.P., Manogharan G.P., Martof A.N., Rodomsky L.M., Rodomsky C.M., Jordan D.C., Limperos J.W. Making Sense of 3-D Printing: Creating A Map of Additive Manufacturing Products and Services. Addit. Manuf. 2014;1:64–76. doi: 10.1016/j.addma.2014.08.005. DOI
Weller C., Kleer R., Piller F.T. Economic Implications of 3D Printing: Market Structure Models in Light of Additive Manufacturing revisited. Int. J. Prod. Econ. 2015;164:43–56. doi: 10.1016/j.ijpe.2015.02.020. DOI
Gebhardt A. Rapid Prototyping–Rapid Tooling–Rapid Manufacturing. CarlHanser; Munchen, Germany: 2007.
Tseng M.M., Hu S.J. CIRP Encyclopedia of Production Engineering. Springer; Berlin/Heidelberg, Germany: 2014. Mass Customization; pp. 836–843.
Wong J.Y., Pfahnl A.C. 3D Printing of Surgical Instruments for Long-Duration Space Missions. Aviat. Space Environ. Med. 2014;85:758–763. doi: 10.3357/ASEM.3898.2014. PubMed DOI
Yan X., Gu P. A Review of Rapid Prototyping Technologies and Systems. Comput. Aided Des. 1996;28:307–318. doi: 10.1016/0010-4485(95)00035-6. DOI
Tuan D.N., Alireza K., Gabriele I., Kate T.Q.N., Hui D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part B Eng. 2018;143:172–196.
Velu R., Raspall F., Singamneni S. Green Composites for Automotive Applications. Woodhead Publishing; Sawston, UK: 2019. Chapter 8 S3D Printing Technologies and Composite Materials for Structural Applications; pp. 171–196.
Bassett K., Carriveau R., Ting D.S.-K. 3D Printed Wind Turbines Part 1: Design Considerations and Rapid Manufacture Potential. Sustain. Energy Technol. Assess. 2015;11:186–193. doi: 10.1016/j.seta.2015.01.002. DOI
Poole S., Phillips R. Rapid Prototyping of Small Wind Turbine Blades Using Additive Manufacturing; Proceedings of the 2015 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech); Port Elizabeth, South Africa. 26–27 November 2015.
Davis M.S., Madani M.R. 3D-printing of a Functional Small-Scale Wind Turbine; Proceedings of the 2018 6th International Renewable and Sustainable Energy Conference (IRSEC); Rabat, Morocco. 5–8 December 2018.
Lipian M., Czapski P., Obidowski D. Fluid–Structure Interaction Numerical Analysis of a Small, Urban Wind Turbine Blade. Energies. 2020;13:1832. doi: 10.3390/en13071832. DOI
Guerrero-Villar F., Torres-Jimenez E., Dorado-Vicente R., Jiménez-González J.I. Development of Vertical Wind Turbines via FDM Prototypes. Procedia Eng. 2015;132:78–85. doi: 10.1016/j.proeng.2015.12.482. DOI
Tummala A., Velamati R.K., Sinha D.K., Indraja V., Krishna V.H. A Review on Small Scale Wind Turbines. Renew. Sustain. Energy Rev. 2016;56:1351–1371. doi: 10.1016/j.rser.2015.12.027. DOI
Yang C., Zhang J., Huang Z. Numerical Study on Cavitation–Vortex–Noise Correlation Mechanism and Dynamic Mode Decomposition of a Hydrofoil. Phys. Fluids. 2022;34:125105. doi: 10.1063/5.0128169. DOI
Kalita K., Ghadai R.K., Chakraborty S. A Comparative Study on Multi-Objective Pareto Optimization of WEDM Process Using Nature-Inspired Metaheuristic Algorithms. Int. J. Interact. Des. Manuf. 2022:1–18. doi: 10.1007/s12008-022-01007-8. DOI
Hu Y., Qing J.X., Liu Z.H., Conrad Z.J., Cao J.N., Zhang X.P. Hovering Efficiency Optimization of the Ducted Propeller with Weight Penalty Taken into Account. Aerosp. Sci. Technol. 2021;117:106937. doi: 10.1016/j.ast.2021.106937. DOI
Kalita K., Kumar V., Chakraborty S. A novel MOALO-MODA Ensemble Approach for Multi-Objective Optimization of Machining Parameters for Metal Matrix Composites. Multiscale Multidiscip. Model. Exp. Des. 2023;6:179–197. doi: 10.1007/s41939-022-00138-5. DOI
Mirjalili S. Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm. Knowl. Based Syst. 2015;89:228–249. doi: 10.1016/j.knosys.2015.07.006. DOI
Hussien A.G., Amin M., Abd El Aziz M. A Comprehensive Review of Moth-Flame Optimisation: Variants, Hybrids, and Applications. J. Exp. Theor. Artif. Intell. 2020;32:705–725. doi: 10.1080/0952813X.2020.1737246. DOI
Yıldız B.S., Yıldız A.R. Moth-Flame Optimization Algorithm to Determine Optimal Machining Parameters in Manufacturing Processes. Mater. Test. 2017;59:425–429. doi: 10.3139/120.111024. DOI
Sivalingam V., Sun J., Mahalingam S.K., Nagarajan L., Natarajan Y., Salunkhe S., Nasr E.A., Davim J.P., Hussein H.M.A.M. Optimization of Process Parameters for Turning Hastelloy X Under Different Machining Environments Using Evolutionary Algorithms: A Comparative Study. Appl. Sci. 2021;11:9725. doi: 10.3390/app11209725. DOI
Yin M., Zhu Y., Yin G., Fu G., Xie L. Deep Feature Interaction Network for Point Cloud Registration, with Applications to Optical Measurement of Blade Profiles. IEEE Trans. Industr. Inform. 2022:1–10. doi: 10.1109/TII.2022.3220889. DOI
Xie L., Zhu Y., Yin M., Wang Z., Ou D., Zheng H., Liu H., Yin G. Self-Feature-Based Point Cloud Registration Method with A Novel Convolutional Siamese Point Net for Optical Measurement of Blade Profile. Mech. Syst. Signal Process. 2022;178:109243. doi: 10.1016/j.ymssp.2022.109243. DOI
Kalita K., Ghadai R.K., Chakraborty S. A Comparative Study on the Metaheuristic-Based Optimization of Skew Composite Laminates. Eng. Comput. 2022;38:3549–3566. doi: 10.1007/s00366-021-01401-y. DOI
Shanmugasundar G., Fegade V., Mahdal M., Kalita K. Optimization of Variable Stiffness Joint In Robot Manipulator Using A Novel NSWOA-MARCOS Approach. Processes. 2022;10:1074. doi: 10.3390/pr10061074. DOI
Joshi M., Kalita K., Jangir P., Ahmadianfar I., Chakraborty S. A Conceptual Comparison of Dragonfly Algorithm Variants for CEC-2021 Global Optimization Problems. Arab. J. Sci. Eng. 2022;48:1563–1593. doi: 10.1007/s13369-022-06880-9. DOI
Mohamed A.W., Hadi A.A., Jambi K.M. Novel Mutation Strategy for Enhancing SHADE and LSHADE Algorithms for Global Numerical Optimization. Swarm Evol. Comput. 2019;50:100455. doi: 10.1016/j.swevo.2018.10.006. DOI
Wang Y., Ahmed A., Azam A., Bing D., Shan Z., Zhang Z., Tariq M.K., Sultana J., Mushtaq R.T., Mehboob A., et al. Applications of Additive Manufacturing (AM) in Sustainable Energy Generation and Battle Against COVID-19 Pandemic: The Knowledge Evolution of 3D Printing. J. Manuf. Syst. 2021;60:709–733. doi: 10.1016/j.jmsy.2021.07.023. PubMed DOI PMC
Derrac J., García S., Molina D., Herrera F. A Practical Tutorial on the Use of Nonparametric Statistical Tests as a Methodology for Comparing Evolutionary and Swarm Intelligence Algorithms. Swarm Evol. Comput. 2011;1:3–18. doi: 10.1016/j.swevo.2011.02.002. DOI
Li L., Liu W., Wang Y., Zhao Z. Mechanical Performance and Damage Monitoring of CFRP Thermoplastic Laminates with an Open Hole Repaired by 3D Printed Patches. Compos. Struct. 2023;303:116308. doi: 10.1016/j.compstruct.2022.116308. DOI