Vascular Damage and Glycometabolic Control in Older Patients with Type 2 Diabetes
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
DRO (FNOL 00098892)
Ministry of Health Czech Republic
IGA LF 2022 003
Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
PubMed
36984822
PubMed Central
PMC10056387
DOI
10.3390/metabo13030382
PII: metabo13030382
Knihovny.cz E-resources
- Keywords
- arterial stiffness, elderly, plasminogen activator inhibitor-1, tissue plasminogen activator, type 2 diabetes, von Willebrand factor,
- Publication type
- Journal Article MeSH
Diabetes is one of the main risk factors for vascular damage, including endothelial dysfunction and arterial stiffness. The aim of this study was to compare selected parameters of vascular damage in patients with type 2 diabetes (T2D) in different age categories and to determine their relationship to indicators of glycometabolic control. A total of 160 patients with T2D were included in this cross-sectional study. They were divided into four age quartiles (with mean ages of 42.1 ± 4.5, 51.6 ± 1.4, 59.2 ± 3.0, and 69.8 ± 3.8, respectively). All subjects were evaluated for indicators of glycometabolic control and for arterial stiffness parameters along with markers of endothelial damage-tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and von Willebrand factor (vWF). The oldest compared to the youngest participants showed significantly increased parameters of arterial stiffness (augmentation pressure 13.4 ± 8.6 vs. 6.7 ± 4.4 mm Hg, augmentation index 26.2 ± 11.3 vs. 19.6 ± 9.2 mm Hg, aortic pulse pressure 47.7 ± 17.1 vs. 33.7 ± 10.4 mm Hg, and pulse wave velocity 11.9 (10.1-14.3) vs. 8.2 (7.7-9.8) m/s) despite having similar glycometabolic control. Arterial stiffness parameters were mainly associated with age and blood pressure. Age and systolic blood pressure were major determinants of arterial stiffness regardless of glycometabolic control. The oldest patients also had the highest levels of vWF (153.7 ± 51.9 vs. 121.7 ± 42.5 %) but the lowest levels of PAI-1 (81.8 ± 47.5 vs. 90.0 ± 44.9 ng/mL). Markers of endothelial dysfunction correlated with metabolic parameters, but did not correlate with arterial stiffness. Age and systolic blood pressure are major determinants of arterial stiffness in patients with T2D regardless of glycometabolic control, whereas an unfavorable metabolic profile is mainly related to endothelial dysfunction. These results suggest a differential contribution of cardiometabolic risk factors to vascular damage in T2D patients over their lifetime.
See more in PubMed
Halter J.B., Musi N., Horne F.M., Crandall J.P., Goldberg A., Harkless L., Hazzard W.R., Huang E.S., Kirkman M.S., Plutzky J., et al. Diabetes and cardiovascular disease in older adults: Current status and future directions. Diabetes. 2014;63:2578–2589. doi: 10.2337/db14-0020. PubMed DOI PMC
Cho N.H., Shaw J.E., Karuranga S., Huang Y., da Rocha Fernandes J.D., Ohlrogge A.W., Malanda B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018;138:271–281. doi: 10.1016/j.diabres.2018.02.023. PubMed DOI
Assar M.E., Angulo J., Rodríguez-Mañas L. Diabetes and ageing-induced vascular inflammation. J. Physiol. 2016;594:2125–2146. doi: 10.1113/JP270841. PubMed DOI PMC
Vatner S.F., Zhang J., Vyzas C., Mishra K., Graham R.M., Vatner D.E. Vascular Stiffness in Aging and Disease. Front. Physiol. 2021;12:762437. doi: 10.3389/fphys.2021.762437. PubMed DOI PMC
Miyoshi T., Ito H. Arterial stiffness in health and disease: The role of cardio-ankle vascular index. J. Cardiol. 2021;78:493–501. doi: 10.1016/j.jjcc.2021.07.011. PubMed DOI
Mitchell G.F. Arterial Stiffness in Aging: Does It Have a Place in Clinical Practice? Recent Advances in Hypertension. Hypertension. 2021;77:768–780. doi: 10.1161/HYPERTENSIONAHA.120.14515. PubMed DOI
Prenner S.B., Chirinos J.A. Arterial stiffness in diabetes mellitus. Atherosclerosis. 2015;238:370–379. doi: 10.1016/j.atherosclerosis.2014.12.023. PubMed DOI
Cardoso C.R., Salles G.F. Aortic Stiffness as a Surrogate Endpoint to Micro- and Macrovascular Complications in Patients with Type 2 Diabetes. Int. J. Mol. Sci. 2016;17:2044. doi: 10.3390/ijms17122044. PubMed DOI PMC
Cecelja M., Chowienczyk P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: A systematic review. Hypertension. 2009;54:1328–1336. doi: 10.1161/HYPERTENSIONAHA.109.137653. PubMed DOI
Cecelja M., Chowienczyk P. Molecular Mechanisms of Arterial Stiffening. Pulse. 2016;4:43–48. doi: 10.1159/000446399. PubMed DOI PMC
Anderson T.J. Arterial stiffness or endothelial dysfunction as a surrogate marker of vascular risk. Can. J. Cardiol. 2006;22:72B–80B. doi: 10.1016/S0828-282X(06)70990-4. PubMed DOI PMC
Correale M., Lamacchia O., Ciccarelli M., Dattilo G., Tricarico L., Brunetti N.D. Vascular and metabolic effects of SGLT2i and GLP-1 in heart failure patients. Heart Fail. Rev. 2021 doi: 10.1007/s10741-021-10157-y. PubMed DOI
Ikonomidis I., Pavlidis G., Thymis J., Birba D., Kalogeris A., Kousathana F., Kountouri A., Balampanis K., Parissis J., Andreadou I., et al. Effects of Glucagon-Like Peptide-1 Receptor Agonists, Sodium-Glucose Cotransporter-2 Inhibitors, and Their Combination on Endothelial Glycocalyx, Arterial Function, and Myocardial Work Index in Patients with Type 2 Diabetes Mellitus After 12-Month Treatment. J. Am. Heart Assoc. 2020;9:e015716. PubMed PMC
Laurent S., Cockcroft J., Van Bortel L., Boutouyrie P., Giannattasio C., Hayoz D., Pannier B., Vlachopoulos C., Wilkinson I., Struijker-Boudier H., et al. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006;27:2588–2605. doi: 10.1093/eurheartj/ehl254. PubMed DOI
Gajdova J., Karasek D., Goldmannova D., Krystynik O., Schovanek J., Vaverkova H., Zadrazil J. Pulse wave analysis and diabetes mellitus. A systematic review. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2017;161:223–233. doi: 10.5507/bp.2017.028. PubMed DOI
Luttrell M., Kim H., Shin S.Y., Holly D., Massett M.P., Woodman C.R. Heterogeneous effect of aging on vasorelaxation responses in large and small arteries. Physiol. Rep. 2020;8:e14341. doi: 10.14814/phy2.14341. PubMed DOI PMC
Lip G.Y., Blann A. von Willebrand factor: A marker of endothelial dysfunction in vascular disorders? Cardiovasc. Res. 1997;34:255–265. doi: 10.1016/S0008-6363(97)00039-4. PubMed DOI
Spiel A.O., Gilbert J.C., Jilma B. von Willebrand factor in cardiovascular disease: Focus on acute coronary syndromes. Circulation. 2008;117:1449–1459. doi: 10.1161/CIRCULATIONAHA.107.722827. PubMed DOI
Knittel T., Neubauer K., Armbrust T., Ramadori G. Expression of von Willebrand factor in normal and diseased rat livers and in cultivated liver cells. Hepatology. 1995;21:470–476. PubMed
Baruch Y., Neubauer K., Shenkar L., Sabo E., Ritzel A., Wilfling T., Ramadori G. Von Willebrand factor in plasma and in liver tissue after partial hepatectomy in the rat. J. Hepatol. 2002;37:471–477. doi: 10.1016/S0168-8278(02)00215-5. PubMed DOI
Cesari M., Pahor M., Incalzi R.A. Plasminogen activator inhibitor-1 (PAI-1): A key factor linking fibrinolysis and age-related subclinical and clinical conditions. Cardiovasc. Ther. 2010;28:e72–e91. doi: 10.1111/j.1755-5922.2010.00171.x. PubMed DOI PMC
Alessi M.C., Poggi M., Juhan-Vague I. Plasminogen activator inhibitor-1, adipose tissue and insulin resistance. Curr. Opin. Lipidol. 2007;18:240–245. doi: 10.1097/MOL.0b013e32814e6d29. PubMed DOI
Peng X., Wang X., Fan M., Zhao J., Lin L., Liu J. Plasma levels of von Willebrand factor in type 2 diabetes patients with and without cardiovascular diseases: A meta-analysis. Diabetes Metab. Res. Rev. 2020;36:e3193. doi: 10.1002/dmrr.3193. PubMed DOI
Seligman B.G., Biolo A., Polanczyk C.A., Gross J.L., Clausell N. Increased plasma levels of endothelin 1 and von Willebrand factor in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2000;23:1395–1400. doi: 10.2337/diacare.23.9.1395. PubMed DOI
Karasek D., Spurna J., Macakova D., Cibickova L., Krystynik O., Kucerova V., Ulehlova J., Slavik L. Hypertriglyceridemic Waist in Patients with Type 2 Diabetes: Its Relationship to Selected Markers of Vascular Damage. Metab. Syndr. Relat. Disord. 2021;19:393–400. doi: 10.1089/met.2021.0019. PubMed DOI
Yamamoto K., Takeshita K., Saito H. Plasminogen activator inhibitor-1 in aging. Semin. Thromb. Hemost. 2014;40:652–659. PubMed
Altalhi R., Pechlivani N., Ajjan R.A. PAI-1 in Diabetes: Pathophysiology and Role as a Therapeutic Target. Int. J. Mol. Sci. 2021;22:3170. doi: 10.3390/ijms22063170. PubMed DOI PMC
Eriksson P., Reynisdottir S., Lönnqvist F., Stemme V., Hamsten A., Arner P. Adipose tissue secretion of plasminogen activator inhibitor-1 in non-obese and obese individuals. Diabetologia. 1998;41:65–71. doi: 10.1007/s001250050868. PubMed DOI
Kaji H. Adipose Tissue-Derived Plasminogen Activator Inhibitor-1 Function and Regulation. Compr. Physiol. 2016;6:1873–1896. PubMed
Mertens I., Ballaux D., Funahashi T., Matsuzawa Y., Van der Planken M., Verrijken A., Ruige J.B., Van Gaal L.F. Inverse relationship between plasminogen activator inhibitor-I activity and adiponectin in overweight and obese women. Interrelationship with visceral adipose tissue, insulin resistance, HDL-chol and inflammation. Thromb. Haemost. 2005;94:1190–1195. doi: 10.1160/TH05-01-0024. PubMed DOI
Karasek D., Vaverkova H., Halenka M., Jackuliakova D., Frysak Z., Slavik L., Novotny D. Prothrombotic markers in asymptomatic dyslipidemic subjects. J. Thromb. Thrombolysis. 2011;31:27–36. doi: 10.1007/s11239-010-0474-4. PubMed DOI
Mavri A., Alessi M.C., Bastelica D., Geel-Georgelin O., Fina F., Sentocnik J.T., Stegnar M., Juhan-Vague I. Subcutaneous abdominal, but not femoral fat expression of plasminogen activator inhibitor-1 (PAI-1) is related to plasma PAI-1 levels and insulin resistance and decreases after weight loss. Diabetologia. 2001;44:2025–2031. doi: 10.1007/s001250100007. PubMed DOI
Mossberg K.E., Pournaras D.J., Welbourn R., le Roux C.W., Brogren H. Differential response of plasma plasminogen activator inhibitor 1 after weight loss surgery in patients with or without type 2 diabetes. Surg. Obes. Relat. Dis. 2017;13:53–57. doi: 10.1016/j.soard.2016.03.007. PubMed DOI
Askarpour M., Alizadeh S., Hadi A., Symonds M.E., Miraghajani M., Sheikhi A., Ghaedi E. Effect of Bariatric Surgery on the Circulating Level of Adiponectin, Chemerin, Plasminogen Activator Inhibitor-1, Leptin, Resistin, and Visfatin: A Systematic Review and Meta-Analysis. Horm. Metab. Res. 2020;52:207–215. doi: 10.1055/a-1129-6785. PubMed DOI
Yarmolinsky J., Bordin Barbieri N., Weinmann T., Ziegelmann P.K., Duncan B.B., Inês Schmidt M. Plasminogen activator inhibitor-1 and type 2 diabetes: A systematic review and meta-analysis of observational studies. Sci. Rep. 2016;6:17714. doi: 10.1038/srep17714. PubMed DOI PMC