• This record comes from PubMed

Focal adhesion is associated with lithium response in bipolar disorder: evidence from a network-based multi-omics analysis

. 2024 Jan ; 29 (1) : 6-19. [epub] 20230329

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.

Grant support
R01 MH095741 NIMH NIH HHS - United States
UL1 TR001442 NCATS NIH HHS - United States
I01 BX003431 BLRD VA - United States
U19 MH106434 NIMH NIH HHS - United States
U01 MH092758 NIMH NIH HHS - United States
T32 MH018399 NIMH NIH HHS - United States

Links

PubMed 36991131
PubMed Central PMC11078741
DOI 10.1038/s41380-022-01909-9
PII: 10.1038/s41380-022-01909-9
Knihovny.cz E-resources

Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric = 1.28E-09 and 4.10E-18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.

Center for Computational Biology and Bioinformatics University of California San Diego La Jolla CA USA

Department of Anthropology University of California San Diego La Jolla CA USA

Department of Clinical Medicine University of Bergen Bergen Norway

Department of Mental Health Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore MD USA

Department of Obstetrics Gynecology and Reproductive Sciences University of California San Diego La Jolla CA USA

Department of Psychiatry and Behavioral Neuroscience Northwestern University Chicago IL USA

Department of Psychiatry and Behavioral Neuroscience University of Chicago Chicago IL USA

Department of Psychiatry and Behavioral Sciences Johns Hopkins University Baltimore MD USA

Department of Psychiatry and Medical Neuroscience Dalhousie University Halifax NS Canada

Department of Psychiatry Brigham and Women's Hospital Harvard Medical School Boston MA USA

Department of Psychiatry Dalhousie University Halifax NS Canada

Department of Psychiatry Indiana University School of Medicine Indianapolis IN USA

Department of Psychiatry Massachusetts General Hospital Harvard Medical School Boston MA USA

Department of Psychiatry The Mayo Clinic Rochester MN USA

Department of Psychiatry University of California San Diego La Jolla CA USA

Department of Psychiatry University of Iowa Iowa City IA USA

Department of Psychiatry University of Michigan Ann Arbor MI USA

Department of Psychiatry University of Pennsylvania Philadelphia PA USA

Department of Translational Genomics University of Southern California Los Angeles CA USA

Division of Mental Health Care St Olavs University Hospital and Department of Mental Health Norwegian University of Science and Technology Trondheim Norway

Institute for Genomic Medicine University of California San Diego La Jolla CA USA

Laboratory of Genetics Salk Institute for Biological Studies La Jolla CA USA

Medical and Molecular Genetics Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA

Mood Disorders Program Case Western Reserve University School of Medicine Cleveland OH USA

Mood Disorders Program University Hospitals Cleveland Medical Center Cleveland OH USA

National Institute of Mental Health Klecany Czech Republic

Norment Division of Psychiatry Haukeland University Hospital and Department of Clinical medicine University of Bergen Bergen Norway

Psychiatry Service VA San Diego Healthcare System San Diego CA USA

University of Paris Institute of Psychiatry and Neuroscience of Paris INSERM U1261266 Laboratory of Dynamics of Neuronal Structure in Health and Disease Paris France

See more in PubMed

Miller JN, Black DW. Bipolar disorder and suicide: a review. Curr Psychiatry Rep. 2020;22:6. doi: 10.1007/s11920-020-1130-0. PubMed DOI

Balance investigators collaborators. Geddes JR, Goodwin GM, Rendell J, Azorin JM, Cipriani A, et al. Lithium plus valproate combination therapy versus monotherapy for relapse prevention in bipolar I disorder (BALANCE): a randomised open-label trial. Lancet. 2010;375:385–95. doi: 10.1016/S0140-6736(09)61828-6. PubMed DOI

Kessing LV. Lithium as the drug of choice for maintenance treatment in bipolar disorder. Acta Psychiatr Scand. 2019;140:91–93. doi: 10.1111/acps.13070. PubMed DOI

Alda M. Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics. Mol Psychiatry. 2015;20:661–70. doi: 10.1038/mp.2015.4. PubMed DOI PMC

Grof P, Duffy A, Cavazzoni P, Grof E, Garnham J, MacDougall M, et al. Is response to prophylactic lithium a familial trait? J Clin Psychiatry. 2002;63:942–7. doi: 10.4088/JCP.v63n1013. PubMed DOI

Rybakowski JK. Response to lithium in bipolar disorder: clinical and genetic findings. ACS Chem Neurosci. 2014;5:413–21. doi: 10.1021/cn5000277. PubMed DOI PMC

Vecera CM, Fries GR, Shahani LR, Soares JC, Machado-Vieira R. Pharmacogenomics of lithium response in bipolar disorder. Pharmaceuticals. 2021;14:287. doi: 10.3390/ph14040287. PubMed DOI PMC

Perlis RH, Smoller JW, Ferreira MA, McQuillin A, Bass N, Lawrence J, et al. A genomewide association study of response to lithium for prevention of recurrence in bipolar disorder. Am J Psychiatry. 2009;166:718–25. doi: 10.1176/appi.ajp.2009.08111633. PubMed DOI PMC

Schulze TG, Alda M, Adli M, Akula N, Ardau R, Bui ET, et al. The International Consortium on Lithium Genetics (ConLiGen): an initiative by the NIMH and IGSLI to study the genetic basis of response to lithium treatment. Neuropsychobiology. 2010;62:72–8. doi: 10.1159/000314708. PubMed DOI PMC

Chen CH, Lee CS, Lee MT, Ouyang WC, Chen CC, Chong MY, et al. Variant GADL1 and response to lithium therapy in bipolar I disorder. N. Engl J Med. 2014;370:119–28. doi: 10.1056/NEJMoa1212444. PubMed DOI

Hou L, Heilbronner U, Degenhardt F, Adli M, Akiyama K, Akula N, et al. Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. Lancet. 2016;387:1085–93. doi: 10.1016/S0140-6736(16)00143-4. PubMed DOI PMC

Oedegaard KJ, Alda M, Anand A, Andreassen OA, Balaraman Y, Berrettini WH, et al. The Pharmacogenomics of Bipolar Disorder study (PGBD): identification of genes for lithium response in a prospective sample. BMC Psychiatry. 2016;16:129. doi: 10.1186/s12888-016-0732-x. PubMed DOI PMC

Song J, Bergen SE, Di Florio A, Karlsson R, Charney A, Ruderfer DM, et al. Genome-wide association study identifies SESTD1 as a novel risk gene for lithium-responsive bipolar disorder. Mol Psychiatry. 2016;21:1290–7. doi: 10.1038/mp.2015.165. PubMed DOI PMC

Amare AT, Schubert KO, Hou L, Clark SR, Papiol S, Cearns M, et al. Association of polygenic score for major depression with response to lithium in patients with bipolar disorder. Mol Psychiatry. 2020. 10.1038/s41380-020-0689-5. PubMed

Soliman MA, Aboharb F, Zeltner N, Studer L. Pluripotent stem cells in neuropsychiatric disorders. Mol Psychiatry. 2017;22:1241–9. doi: 10.1038/mp.2017.40. PubMed DOI PMC

Silva MC, Haggarty SJ. Human pluripotent stem cell-derived models and drug screening in CNS precision medicine. Ann N. Y Acad Sci. 2020;1471:18–56. doi: 10.1111/nyas.14012. PubMed DOI PMC

Hoffmann A, Sportelli V, Ziller M, Spengler D. From the Psychiatrist’s couch to induced pluripotent stem cells: bipolar disease in a dish. Int J Mol Sci. 2018;19:770. doi: 10.3390/ijms19030770. PubMed DOI PMC

Mertens J, Wang QW, Kim Y, Yu DX, Pham S, Yang B, et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature. 2015;527:95–9. doi: 10.1038/nature15526. PubMed DOI PMC

Stern S, Santos R, Marchetto MC, Mendes APD, Rouleau GA, Biesmans S, et al. Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients’ responsiveness to lithium. Mol Psychiatry. 2018;23:1453–65. doi: 10.1038/mp.2016.260. PubMed DOI PMC

Cowen L, Ideker T, Raphael BJ, Sharan R. Network propagation: a universal amplifier of genetic associations. Nat Rev Genet. 2017;18:551–62. doi: 10.1038/nrg.2017.38. PubMed DOI

Li J, Shi M, Ma Z, Zhao S, Euskirchen G, Ziskin J, et al. Integrated systems analysis reveals a molecular network underlying autism spectrum disorders. Mol Syst Biol. 2014;10:774. doi: 10.15252/msb.20145487. PubMed DOI PMC

Li J, Ma Z, Shi M, Malty RH, Aoki H, Minic Z, et al. Identification of Human Neuronal Protein Complexes Reveals Biochemical Activities and Convergent Mechanisms of Action in Autism Spectrum Disorders. Cell Syst. 2015;1:361–74. doi: 10.1016/j.cels.2015.11.002. PubMed DOI PMC

Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev Genet. 2018;19:299–310. doi: 10.1038/nrg.2018.4. PubMed DOI PMC

Di Nanni N, Bersanelli M, Milanesi L, Mosca E. Network diffusion promotes the integrative analysis of multiple omics. Front Genet. 2020;11:106. doi: 10.3389/fgene.2020.00106. PubMed DOI PMC

Sullivan PF, Geschwind DH. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell. 2019;177:162–83. doi: 10.1016/j.cell.2019.01.015. PubMed DOI PMC

Zuo Y, Wei D, Zhu C, Naveed O, Hong W, Yang X. Unveiling the pathogenesis of psychiatric disorders using network models. Genes. 2021;12:1101. doi: 10.3390/genes12071101. PubMed DOI PMC

Nurnberger JI, Jr., Blehar MC, Kaufmann CA, York-Cooler C, Simpson SG, Harkavy-Friedman J, et al. Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch Gen Psychiatry. 1994;51:849–59. doi: 10.1001/archpsyc.1994.03950110009002. PubMed DOI

Manchia M, Adli M, Akula N, Ardau R, Aubry JM, Backlund L, et al. Assessment of response to lithium maintenance treatment in bipolar disorder: a Consortium on Lithium Genetics (ConLiGen) Report. PLoS One. 2013;8:e65636. doi: 10.1371/journal.pone.0065636. PubMed DOI PMC

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75. doi: 10.1086/519795. PubMed DOI PMC

Mishra A, Macgregor S. VEGAS2: Software for more flexible gene-based testing. Twin Res Hum Genet. 2015;18:86–91. doi: 10.1017/thg.2014.79. PubMed DOI

Shim JE, Bang C, Yang S, Lee T, Hwang S, Kim CY, et al. GWAB: a web server for the network-based boosting of human genome-wide association data. Nucleic Acids Res. 2017;45:W154–61. doi: 10.1093/nar/gkx284. PubMed DOI PMC

Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45:W130–7. doi: 10.1093/nar/gkx356. PubMed DOI PMC

Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H, et al. g:Profiler—a web server for functional interpretation of gene lists (2016 update) Nucleic Acids Res. 2016;44:W83–9. doi: 10.1093/nar/gkw199. PubMed DOI PMC

Blondel VD, Guillaume JL, Hendrickx JM, de Kerchove C, Lambiotte R. Local leaders in random networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2008;77:036114. doi: 10.1103/PhysRevE.77.036114. PubMed DOI

Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37:W305–11. doi: 10.1093/nar/gkp427. PubMed DOI PMC

Breen MS, White CH, Shekhtman T, Lin K, Looney D, Woelk CH, et al. Lithium-responsive genes and gene networks in bipolar disorder patient-derived lymphoblastoid cell lines. Pharmacogenomics J. 2016;16:446–53. doi: 10.1038/tpj.2016.50. PubMed DOI

Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, et al. Understanding multicellular function and disease with human tissue-specific networks. Nat Genet. 2015;47:569–76. doi: 10.1038/ng.3259. PubMed DOI PMC

UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480–9. doi: 10.1093/nar/gkaa1100. PubMed DOI PMC

Wang Q, Xu X, Li J, Liu J, Gu H, Zhang R, et al. Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells. Cell Res. 2011;21:1424–35. doi: 10.1038/cr.2011.108. PubMed DOI PMC

Ankam S, Rovini A, Baheti S, Hrstka R, Wu Y, Schmidt K, et al. DNA methylation patterns in human iPSC-derived sensory neuronal differentiation. Epigenetics. 2019;14:927–37. doi: 10.1080/15592294.2019.1625672. PubMed DOI PMC

Bar S, Benvenisty N. Epigenetic aberrations in human pluripotent stem cells. EMBO J. 2019;38:e101033. doi: 10.15252/embj.2018101033. PubMed DOI PMC

Kilpinen H, Goncalves A, Leha A, Afzal V, Alasoo K, Ashford S, et al. Common genetic variation drives molecular heterogeneity in human iPSCs. Nature. 2017;546:370–5. doi: 10.1038/nature22403. PubMed DOI PMC

de Boni L, Gasparoni G, Haubenreich C, Tierling S, Schmitt I, Peitz M, et al. DNA methylation alterations in iPSC- and hESC-derived neurons: potential implications for neurological disease modeling. Clin Epigenetics. 2018;10:13. doi: 10.1186/s13148-018-0440-0. PubMed DOI PMC

Volpato V, Webber C. Addressing variability in iPSC-derived models of human disease: guidelines to promote reproducibility. Dis Model Mech. 2020;13. PubMed PMC

Anand A, McClintick JN, Murrell J, Karne H, Nurnberger JI, Edenberg HJ. Effects of lithium monotherapy for bipolar disorder on gene expression in peripheral lymphocytes. Mol Neuropsychiatry. 2016;2:115–23. PubMed PMC

Fries GR, Colpo GD, Monroy-Jaramillo N, Zhao J, Zhao Z, Arnold JG, et al. Distinct lithium-induced gene expression effects in lymphoblastoid cell lines from patients with bipolar disorder. Eur Neuropsychopharmacol. 2017;27:1110–9. doi: 10.1016/j.euroneuro.2017.09.003. PubMed DOI PMC

Paul P, Iyer S, Nadella RK, Nayak R, Chellappa AS, Ambardar S, et al. Lithium response in bipolar disorder correlates with improved cell viability of patient-derived cell lines. Sci Rep. 2020;10:7428. doi: 10.1038/s41598-020-64202-1. PubMed DOI PMC

Santos R, Linker SB, Stern S, Mendes APD, Shokhirev MN, Erikson G, et al. Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients. Mol Psychiatry. 2021. 10.1038/s41380-020-00981-3. PubMed PMC

Akkouh IA, Skrede S, Holmgren A, Ersland KM, Hansson L, Bahrami S, et al. Exploring lithium’s transcriptional mechanisms of action in bipolar disorder: a multi-step study. Neuropsychopharmacology. 2020;45:947–55. doi: 10.1038/s41386-019-0556-8. PubMed DOI PMC

Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51:793–803. doi: 10.1038/s41588-019-0397-8. PubMed DOI PMC

Robles E, Gomez TM. Focal adhesion kinase signaling at sites of integrin-mediated adhesion controls axon pathfinding. Nat Neurosci. 2006;9:1274–83. doi: 10.1038/nn1762. PubMed DOI

Myers JP, Santiago-Medina M, Gomez TM. Regulation of axonal outgrowth and pathfinding by integrin-ECM interactions. Dev Neurobiol. 2011;71:901–23. doi: 10.1002/dneu.20931. PubMed DOI PMC

Short CA, Suarez-Zayas EA, Gomez TM. Cell adhesion and invasion mechanisms that guide developing axons. Curr Opin Neurobiol. 2016;39:77–85. doi: 10.1016/j.conb.2016.04.012. PubMed DOI PMC

Chacon MR, Navarro AI, Cuesto G, del Pino I, Scott R, Morales M, et al. Focal adhesion kinase regulates actin nucleation and neuronal filopodia formation during axonal growth. Development. 2012;139:3200–10. doi: 10.1242/dev.080564. PubMed DOI

Lilja J, Ivaska J. Integrin activity in neuronal connectivity. J Cell Sci. 2018;131:jcs212803. doi: 10.1242/jcs.212803. PubMed DOI

Geraldo S, Gordon-Weeks PR. Cytoskeletal dynamics in growth-cone steering. J Cell Sci. 2009;122:3595–604. doi: 10.1242/jcs.042309. PubMed DOI PMC

Lowery LA, Van, Vactor D. The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol. 2009;10:332–43. doi: 10.1038/nrm2679. PubMed DOI PMC

Dent EW, Gupton SL, Gertler FB. The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol. 2011;3:a001800. doi: 10.1101/cshperspect.a001800. PubMed DOI PMC

Vitriol EA, Zheng JQ. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron. 2012;73:1068–81. doi: 10.1016/j.neuron.2012.03.005. PubMed DOI PMC

Cammarata GM, Bearce EA, Lowery LA. Cytoskeletal social networking in the growth cone: How +TIPs mediate microtubule-actin cross-linking to drive axon outgrowth and guidance. Cytoskeleton (Hoboken) 2016;73:461–76. doi: 10.1002/cm.21272. PubMed DOI PMC

Roumazeilles L, Dokalis N, Kaulich E, Lelievre V. It is all about the support—The role of the extracellular matrix in regenerating axon guidance. Cell Adh Migr. 2018;12:87–92. PubMed PMC

Barros CS, Franco SJ, Muller U. Extracellular matrix: functions in the nervous system. Cold Spring Harb Perspect Biol. 2011;3:a005108. doi: 10.1101/cshperspect.a005108. PubMed DOI PMC

Benarroch EE. Extracellular matrix in the CNS: Dynamic structure and clinical correlations. Neurology. 2015;85:1417–27. doi: 10.1212/WNL.0000000000002044. PubMed DOI

Kalil K, Dent EW. Branch management: mechanisms of axon branching in the developing vertebrate CNS. Nat Rev Neurosci. 2014;15:7–18. doi: 10.1038/nrn3650. PubMed DOI PMC

Pacheco A, Gallo G. Actin filament-microtubule interactions in axon initiation and branching. Brain Res Bull. 2016;126:300–10. doi: 10.1016/j.brainresbull.2016.07.013. PubMed DOI PMC

Romano R, Bucci C. Role of EGFR in the Nervous System. Cells. 2020;9:1887. doi: 10.3390/cells9081887. PubMed DOI PMC

Rao TC, Ma VP, Blanchard A, Urner TM, Grandhi S, Salaita K, et al. EGFR activation attenuates the mechanical threshold for integrin tension and focal adhesion formation. J Cell Sci. 2020;133:jcs2388. PubMed PMC

Salcedo-Tello P, Ortiz-Matamoros A, Arias C. GSK3 function in the brain during development, neuronal plasticity, and neurodegeneration. Int J Alzheimers Dis. 2011;2011:189728. PubMed PMC

Can A, Schulze TG, Gould TD. Molecular actions and clinical pharmacogenetics of lithium therapy. Pharm Biochem Behav. 2014;123:3–16. doi: 10.1016/j.pbb.2014.02.004. PubMed DOI PMC

Kim WY, Zhou FQ, Zhou J, Yokota Y, Wang YM, Yoshimura T, et al. Essential roles for GSK-3s and GSK-3-primed substrates in neurotrophin-induced and hippocampal axon growth. Neuron. 2006;52:981–96. doi: 10.1016/j.neuron.2006.10.031. PubMed DOI PMC

Shah SM, Patel CH, Feng AS, Kollmar R. Lithium alters the morphology of neurites regenerating from cultured adult spiral ganglion neurons. Hear Res. 2013;304:137–44. doi: 10.1016/j.heares.2013.07.001. PubMed DOI PMC

Owen R, Gordon-Weeks PR. Inhibition of glycogen synthase kinase 3beta in sensory neurons in culture alters filopodia dynamics and microtubule distribution in growth cones. Mol Cell Neurosci. 2003;23:626–37. doi: 10.1016/S1044-7431(03)00095-2. PubMed DOI

Kim YT, Hur EM, Snider WD, Zhou FQ. Role of GSK3 signaling in neuronal morphogenesis. Front Mol Neurosci. 2011;4:48. doi: 10.3389/fnmol.2011.00048. PubMed DOI PMC

Williams RS, Cheng L, Mudge AW, Harwood AJ. A common mechanism of action for three mood-stabilizing drugs. Nature. 2002;417:292–5. doi: 10.1038/417292a. PubMed DOI

Rajkowska G. Cell pathology in bipolar disorder. Bipolar Disord. 2002;4:105–16. doi: 10.1034/j.1399-5618.2002.01149.x. PubMed DOI

Gigante AD, Young LT, Yatham LN, Andreazza AC, Nery FG, Grinberg LT, et al. Morphometric post-mortem studies in bipolar disorder: possible association with oxidative stress and apoptosis. Int J Neuropsychopharmacol. 2011;14:1075–89. doi: 10.1017/S146114571000146X. PubMed DOI

Konradi C, Zimmerman EI, Yang CK, Lohmann KM, Gresch P, Pantazopoulos H, et al. Hippocampal interneurons in bipolar disorder. Arch Gen Psychiatry. 2011;68:340–50. doi: 10.1001/archgenpsychiatry.2010.175. PubMed DOI PMC

Wang JL, Shamah SM, Sun AX, Waldman ID, Haggarty SJ, Perlis RH. Label-free, live optical imaging of reprogrammed bipolar disorder patient-derived cells reveals a functional correlate of lithium responsiveness. Transl Psychiatry. 2014;4:e428. doi: 10.1038/tp.2014.72. PubMed DOI PMC

Tobe BTD, Crain AM, Winquist AM, Calabrese B, Makihara H, Zhao WN, et al. Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis. Proc Natl Acad Sci USA. 2017;114:E4462–71. doi: 10.1073/pnas.1700111114. PubMed DOI PMC

Zhao WN, Tobe BTD, Udeshi ND, Xuan LL, Pernia CD, Zolg DP, et al. Discovery of suppressors of CRMP2 phosphorylation reveals compounds that mimic the behavioral effects of lithium on amphetamine-induced hyperlocomotion. Transl Psychiatry. 2020;10:76. doi: 10.1038/s41398-020-0753-6. PubMed DOI PMC

Welham NV, Ling C, Dawson JA, Kendziorski C, Thibeault SL, Yamashita M. Microarray-based characterization of differential gene expression during vocal fold wound healing in rats. Dis Model Mech. 2015;8:311–21. PubMed PMC

Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013;29:1830–1. doi: 10.1093/bioinformatics/btt285. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...