Focal adhesion is associated with lithium response in bipolar disorder: evidence from a network-based multi-omics analysis
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.
Grant support
R01 MH095741
NIMH NIH HHS - United States
UL1 TR001442
NCATS NIH HHS - United States
I01 BX003431
BLRD VA - United States
U19 MH106434
NIMH NIH HHS - United States
U01 MH092758
NIMH NIH HHS - United States
T32 MH018399
NIMH NIH HHS - United States
PubMed
36991131
PubMed Central
PMC11078741
DOI
10.1038/s41380-022-01909-9
PII: 10.1038/s41380-022-01909-9
Knihovny.cz E-resources
- MeSH
- Antimanic Agents pharmacology therapeutic use MeSH
- Bipolar Disorder * drug therapy genetics MeSH
- Genome-Wide Association Study * methods MeSH
- Pharmacogenetics methods MeSH
- Focal Adhesions * drug effects genetics MeSH
- Genomics methods MeSH
- Gene Regulatory Networks * drug effects genetics MeSH
- Induced Pluripotent Stem Cells drug effects metabolism MeSH
- Humans MeSH
- Lithium * pharmacology therapeutic use MeSH
- Multiomics MeSH
- Neurons metabolism drug effects MeSH
- Lithium Compounds pharmacology therapeutic use MeSH
- Gene Expression Profiling methods MeSH
- Transcriptome * genetics drug effects MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Antimanic Agents MeSH
- Lithium * MeSH
- Lithium Compounds MeSH
Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric = 1.28E-09 and 4.10E-18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.
Department of Anthropology University of California San Diego La Jolla CA USA
Department of Clinical Medicine University of Bergen Bergen Norway
Department of Psychiatry and Behavioral Neuroscience Northwestern University Chicago IL USA
Department of Psychiatry and Behavioral Neuroscience University of Chicago Chicago IL USA
Department of Psychiatry and Behavioral Sciences Johns Hopkins University Baltimore MD USA
Department of Psychiatry and Medical Neuroscience Dalhousie University Halifax NS Canada
Department of Psychiatry Brigham and Women's Hospital Harvard Medical School Boston MA USA
Department of Psychiatry Dalhousie University Halifax NS Canada
Department of Psychiatry Indiana University School of Medicine Indianapolis IN USA
Department of Psychiatry Massachusetts General Hospital Harvard Medical School Boston MA USA
Department of Psychiatry The Mayo Clinic Rochester MN USA
Department of Psychiatry University of California San Diego La Jolla CA USA
Department of Psychiatry University of Iowa Iowa City IA USA
Department of Psychiatry University of Michigan Ann Arbor MI USA
Department of Psychiatry University of Pennsylvania Philadelphia PA USA
Department of Translational Genomics University of Southern California Los Angeles CA USA
Institute for Genomic Medicine University of California San Diego La Jolla CA USA
Laboratory of Genetics Salk Institute for Biological Studies La Jolla CA USA
Mood Disorders Program Case Western Reserve University School of Medicine Cleveland OH USA
Mood Disorders Program University Hospitals Cleveland Medical Center Cleveland OH USA
National Institute of Mental Health Klecany Czech Republic
Psychiatry Service VA San Diego Healthcare System San Diego CA USA
See more in PubMed
Miller JN, Black DW. Bipolar disorder and suicide: a review. Curr Psychiatry Rep. 2020;22:6. doi: 10.1007/s11920-020-1130-0. PubMed DOI
Balance investigators collaborators. Geddes JR, Goodwin GM, Rendell J, Azorin JM, Cipriani A, et al. Lithium plus valproate combination therapy versus monotherapy for relapse prevention in bipolar I disorder (BALANCE): a randomised open-label trial. Lancet. 2010;375:385–95. doi: 10.1016/S0140-6736(09)61828-6. PubMed DOI
Kessing LV. Lithium as the drug of choice for maintenance treatment in bipolar disorder. Acta Psychiatr Scand. 2019;140:91–93. doi: 10.1111/acps.13070. PubMed DOI
Alda M. Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics. Mol Psychiatry. 2015;20:661–70. doi: 10.1038/mp.2015.4. PubMed DOI PMC
Grof P, Duffy A, Cavazzoni P, Grof E, Garnham J, MacDougall M, et al. Is response to prophylactic lithium a familial trait? J Clin Psychiatry. 2002;63:942–7. doi: 10.4088/JCP.v63n1013. PubMed DOI
Rybakowski JK. Response to lithium in bipolar disorder: clinical and genetic findings. ACS Chem Neurosci. 2014;5:413–21. doi: 10.1021/cn5000277. PubMed DOI PMC
Vecera CM, Fries GR, Shahani LR, Soares JC, Machado-Vieira R. Pharmacogenomics of lithium response in bipolar disorder. Pharmaceuticals. 2021;14:287. doi: 10.3390/ph14040287. PubMed DOI PMC
Perlis RH, Smoller JW, Ferreira MA, McQuillin A, Bass N, Lawrence J, et al. A genomewide association study of response to lithium for prevention of recurrence in bipolar disorder. Am J Psychiatry. 2009;166:718–25. doi: 10.1176/appi.ajp.2009.08111633. PubMed DOI PMC
Schulze TG, Alda M, Adli M, Akula N, Ardau R, Bui ET, et al. The International Consortium on Lithium Genetics (ConLiGen): an initiative by the NIMH and IGSLI to study the genetic basis of response to lithium treatment. Neuropsychobiology. 2010;62:72–8. doi: 10.1159/000314708. PubMed DOI PMC
Chen CH, Lee CS, Lee MT, Ouyang WC, Chen CC, Chong MY, et al. Variant GADL1 and response to lithium therapy in bipolar I disorder. N. Engl J Med. 2014;370:119–28. doi: 10.1056/NEJMoa1212444. PubMed DOI
Hou L, Heilbronner U, Degenhardt F, Adli M, Akiyama K, Akula N, et al. Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. Lancet. 2016;387:1085–93. doi: 10.1016/S0140-6736(16)00143-4. PubMed DOI PMC
Oedegaard KJ, Alda M, Anand A, Andreassen OA, Balaraman Y, Berrettini WH, et al. The Pharmacogenomics of Bipolar Disorder study (PGBD): identification of genes for lithium response in a prospective sample. BMC Psychiatry. 2016;16:129. doi: 10.1186/s12888-016-0732-x. PubMed DOI PMC
Song J, Bergen SE, Di Florio A, Karlsson R, Charney A, Ruderfer DM, et al. Genome-wide association study identifies SESTD1 as a novel risk gene for lithium-responsive bipolar disorder. Mol Psychiatry. 2016;21:1290–7. doi: 10.1038/mp.2015.165. PubMed DOI PMC
Amare AT, Schubert KO, Hou L, Clark SR, Papiol S, Cearns M, et al. Association of polygenic score for major depression with response to lithium in patients with bipolar disorder. Mol Psychiatry. 2020. 10.1038/s41380-020-0689-5. PubMed
Soliman MA, Aboharb F, Zeltner N, Studer L. Pluripotent stem cells in neuropsychiatric disorders. Mol Psychiatry. 2017;22:1241–9. doi: 10.1038/mp.2017.40. PubMed DOI PMC
Silva MC, Haggarty SJ. Human pluripotent stem cell-derived models and drug screening in CNS precision medicine. Ann N. Y Acad Sci. 2020;1471:18–56. doi: 10.1111/nyas.14012. PubMed DOI PMC
Hoffmann A, Sportelli V, Ziller M, Spengler D. From the Psychiatrist’s couch to induced pluripotent stem cells: bipolar disease in a dish. Int J Mol Sci. 2018;19:770. doi: 10.3390/ijms19030770. PubMed DOI PMC
Mertens J, Wang QW, Kim Y, Yu DX, Pham S, Yang B, et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature. 2015;527:95–9. doi: 10.1038/nature15526. PubMed DOI PMC
Stern S, Santos R, Marchetto MC, Mendes APD, Rouleau GA, Biesmans S, et al. Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients’ responsiveness to lithium. Mol Psychiatry. 2018;23:1453–65. doi: 10.1038/mp.2016.260. PubMed DOI PMC
Cowen L, Ideker T, Raphael BJ, Sharan R. Network propagation: a universal amplifier of genetic associations. Nat Rev Genet. 2017;18:551–62. doi: 10.1038/nrg.2017.38. PubMed DOI
Li J, Shi M, Ma Z, Zhao S, Euskirchen G, Ziskin J, et al. Integrated systems analysis reveals a molecular network underlying autism spectrum disorders. Mol Syst Biol. 2014;10:774. doi: 10.15252/msb.20145487. PubMed DOI PMC
Li J, Ma Z, Shi M, Malty RH, Aoki H, Minic Z, et al. Identification of Human Neuronal Protein Complexes Reveals Biochemical Activities and Convergent Mechanisms of Action in Autism Spectrum Disorders. Cell Syst. 2015;1:361–74. doi: 10.1016/j.cels.2015.11.002. PubMed DOI PMC
Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev Genet. 2018;19:299–310. doi: 10.1038/nrg.2018.4. PubMed DOI PMC
Di Nanni N, Bersanelli M, Milanesi L, Mosca E. Network diffusion promotes the integrative analysis of multiple omics. Front Genet. 2020;11:106. doi: 10.3389/fgene.2020.00106. PubMed DOI PMC
Sullivan PF, Geschwind DH. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell. 2019;177:162–83. doi: 10.1016/j.cell.2019.01.015. PubMed DOI PMC
Zuo Y, Wei D, Zhu C, Naveed O, Hong W, Yang X. Unveiling the pathogenesis of psychiatric disorders using network models. Genes. 2021;12:1101. doi: 10.3390/genes12071101. PubMed DOI PMC
Nurnberger JI, Jr., Blehar MC, Kaufmann CA, York-Cooler C, Simpson SG, Harkavy-Friedman J, et al. Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch Gen Psychiatry. 1994;51:849–59. doi: 10.1001/archpsyc.1994.03950110009002. PubMed DOI
Manchia M, Adli M, Akula N, Ardau R, Aubry JM, Backlund L, et al. Assessment of response to lithium maintenance treatment in bipolar disorder: a Consortium on Lithium Genetics (ConLiGen) Report. PLoS One. 2013;8:e65636. doi: 10.1371/journal.pone.0065636. PubMed DOI PMC
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75. doi: 10.1086/519795. PubMed DOI PMC
Mishra A, Macgregor S. VEGAS2: Software for more flexible gene-based testing. Twin Res Hum Genet. 2015;18:86–91. doi: 10.1017/thg.2014.79. PubMed DOI
Shim JE, Bang C, Yang S, Lee T, Hwang S, Kim CY, et al. GWAB: a web server for the network-based boosting of human genome-wide association data. Nucleic Acids Res. 2017;45:W154–61. doi: 10.1093/nar/gkx284. PubMed DOI PMC
Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45:W130–7. doi: 10.1093/nar/gkx356. PubMed DOI PMC
Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H, et al. g:Profiler—a web server for functional interpretation of gene lists (2016 update) Nucleic Acids Res. 2016;44:W83–9. doi: 10.1093/nar/gkw199. PubMed DOI PMC
Blondel VD, Guillaume JL, Hendrickx JM, de Kerchove C, Lambiotte R. Local leaders in random networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2008;77:036114. doi: 10.1103/PhysRevE.77.036114. PubMed DOI
Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37:W305–11. doi: 10.1093/nar/gkp427. PubMed DOI PMC
Breen MS, White CH, Shekhtman T, Lin K, Looney D, Woelk CH, et al. Lithium-responsive genes and gene networks in bipolar disorder patient-derived lymphoblastoid cell lines. Pharmacogenomics J. 2016;16:446–53. doi: 10.1038/tpj.2016.50. PubMed DOI
Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, et al. Understanding multicellular function and disease with human tissue-specific networks. Nat Genet. 2015;47:569–76. doi: 10.1038/ng.3259. PubMed DOI PMC
UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480–9. doi: 10.1093/nar/gkaa1100. PubMed DOI PMC
Wang Q, Xu X, Li J, Liu J, Gu H, Zhang R, et al. Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells. Cell Res. 2011;21:1424–35. doi: 10.1038/cr.2011.108. PubMed DOI PMC
Ankam S, Rovini A, Baheti S, Hrstka R, Wu Y, Schmidt K, et al. DNA methylation patterns in human iPSC-derived sensory neuronal differentiation. Epigenetics. 2019;14:927–37. doi: 10.1080/15592294.2019.1625672. PubMed DOI PMC
Bar S, Benvenisty N. Epigenetic aberrations in human pluripotent stem cells. EMBO J. 2019;38:e101033. doi: 10.15252/embj.2018101033. PubMed DOI PMC
Kilpinen H, Goncalves A, Leha A, Afzal V, Alasoo K, Ashford S, et al. Common genetic variation drives molecular heterogeneity in human iPSCs. Nature. 2017;546:370–5. doi: 10.1038/nature22403. PubMed DOI PMC
de Boni L, Gasparoni G, Haubenreich C, Tierling S, Schmitt I, Peitz M, et al. DNA methylation alterations in iPSC- and hESC-derived neurons: potential implications for neurological disease modeling. Clin Epigenetics. 2018;10:13. doi: 10.1186/s13148-018-0440-0. PubMed DOI PMC
Volpato V, Webber C. Addressing variability in iPSC-derived models of human disease: guidelines to promote reproducibility. Dis Model Mech. 2020;13. PubMed PMC
Anand A, McClintick JN, Murrell J, Karne H, Nurnberger JI, Edenberg HJ. Effects of lithium monotherapy for bipolar disorder on gene expression in peripheral lymphocytes. Mol Neuropsychiatry. 2016;2:115–23. PubMed PMC
Fries GR, Colpo GD, Monroy-Jaramillo N, Zhao J, Zhao Z, Arnold JG, et al. Distinct lithium-induced gene expression effects in lymphoblastoid cell lines from patients with bipolar disorder. Eur Neuropsychopharmacol. 2017;27:1110–9. doi: 10.1016/j.euroneuro.2017.09.003. PubMed DOI PMC
Paul P, Iyer S, Nadella RK, Nayak R, Chellappa AS, Ambardar S, et al. Lithium response in bipolar disorder correlates with improved cell viability of patient-derived cell lines. Sci Rep. 2020;10:7428. doi: 10.1038/s41598-020-64202-1. PubMed DOI PMC
Santos R, Linker SB, Stern S, Mendes APD, Shokhirev MN, Erikson G, et al. Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients. Mol Psychiatry. 2021. 10.1038/s41380-020-00981-3. PubMed PMC
Akkouh IA, Skrede S, Holmgren A, Ersland KM, Hansson L, Bahrami S, et al. Exploring lithium’s transcriptional mechanisms of action in bipolar disorder: a multi-step study. Neuropsychopharmacology. 2020;45:947–55. doi: 10.1038/s41386-019-0556-8. PubMed DOI PMC
Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51:793–803. doi: 10.1038/s41588-019-0397-8. PubMed DOI PMC
Robles E, Gomez TM. Focal adhesion kinase signaling at sites of integrin-mediated adhesion controls axon pathfinding. Nat Neurosci. 2006;9:1274–83. doi: 10.1038/nn1762. PubMed DOI
Myers JP, Santiago-Medina M, Gomez TM. Regulation of axonal outgrowth and pathfinding by integrin-ECM interactions. Dev Neurobiol. 2011;71:901–23. doi: 10.1002/dneu.20931. PubMed DOI PMC
Short CA, Suarez-Zayas EA, Gomez TM. Cell adhesion and invasion mechanisms that guide developing axons. Curr Opin Neurobiol. 2016;39:77–85. doi: 10.1016/j.conb.2016.04.012. PubMed DOI PMC
Chacon MR, Navarro AI, Cuesto G, del Pino I, Scott R, Morales M, et al. Focal adhesion kinase regulates actin nucleation and neuronal filopodia formation during axonal growth. Development. 2012;139:3200–10. doi: 10.1242/dev.080564. PubMed DOI
Lilja J, Ivaska J. Integrin activity in neuronal connectivity. J Cell Sci. 2018;131:jcs212803. doi: 10.1242/jcs.212803. PubMed DOI
Geraldo S, Gordon-Weeks PR. Cytoskeletal dynamics in growth-cone steering. J Cell Sci. 2009;122:3595–604. doi: 10.1242/jcs.042309. PubMed DOI PMC
Lowery LA, Van, Vactor D. The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol. 2009;10:332–43. doi: 10.1038/nrm2679. PubMed DOI PMC
Dent EW, Gupton SL, Gertler FB. The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol. 2011;3:a001800. doi: 10.1101/cshperspect.a001800. PubMed DOI PMC
Vitriol EA, Zheng JQ. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron. 2012;73:1068–81. doi: 10.1016/j.neuron.2012.03.005. PubMed DOI PMC
Cammarata GM, Bearce EA, Lowery LA. Cytoskeletal social networking in the growth cone: How +TIPs mediate microtubule-actin cross-linking to drive axon outgrowth and guidance. Cytoskeleton (Hoboken) 2016;73:461–76. doi: 10.1002/cm.21272. PubMed DOI PMC
Roumazeilles L, Dokalis N, Kaulich E, Lelievre V. It is all about the support—The role of the extracellular matrix in regenerating axon guidance. Cell Adh Migr. 2018;12:87–92. PubMed PMC
Barros CS, Franco SJ, Muller U. Extracellular matrix: functions in the nervous system. Cold Spring Harb Perspect Biol. 2011;3:a005108. doi: 10.1101/cshperspect.a005108. PubMed DOI PMC
Benarroch EE. Extracellular matrix in the CNS: Dynamic structure and clinical correlations. Neurology. 2015;85:1417–27. doi: 10.1212/WNL.0000000000002044. PubMed DOI
Kalil K, Dent EW. Branch management: mechanisms of axon branching in the developing vertebrate CNS. Nat Rev Neurosci. 2014;15:7–18. doi: 10.1038/nrn3650. PubMed DOI PMC
Pacheco A, Gallo G. Actin filament-microtubule interactions in axon initiation and branching. Brain Res Bull. 2016;126:300–10. doi: 10.1016/j.brainresbull.2016.07.013. PubMed DOI PMC
Romano R, Bucci C. Role of EGFR in the Nervous System. Cells. 2020;9:1887. doi: 10.3390/cells9081887. PubMed DOI PMC
Rao TC, Ma VP, Blanchard A, Urner TM, Grandhi S, Salaita K, et al. EGFR activation attenuates the mechanical threshold for integrin tension and focal adhesion formation. J Cell Sci. 2020;133:jcs2388. PubMed PMC
Salcedo-Tello P, Ortiz-Matamoros A, Arias C. GSK3 function in the brain during development, neuronal plasticity, and neurodegeneration. Int J Alzheimers Dis. 2011;2011:189728. PubMed PMC
Can A, Schulze TG, Gould TD. Molecular actions and clinical pharmacogenetics of lithium therapy. Pharm Biochem Behav. 2014;123:3–16. doi: 10.1016/j.pbb.2014.02.004. PubMed DOI PMC
Kim WY, Zhou FQ, Zhou J, Yokota Y, Wang YM, Yoshimura T, et al. Essential roles for GSK-3s and GSK-3-primed substrates in neurotrophin-induced and hippocampal axon growth. Neuron. 2006;52:981–96. doi: 10.1016/j.neuron.2006.10.031. PubMed DOI PMC
Shah SM, Patel CH, Feng AS, Kollmar R. Lithium alters the morphology of neurites regenerating from cultured adult spiral ganglion neurons. Hear Res. 2013;304:137–44. doi: 10.1016/j.heares.2013.07.001. PubMed DOI PMC
Owen R, Gordon-Weeks PR. Inhibition of glycogen synthase kinase 3beta in sensory neurons in culture alters filopodia dynamics and microtubule distribution in growth cones. Mol Cell Neurosci. 2003;23:626–37. doi: 10.1016/S1044-7431(03)00095-2. PubMed DOI
Kim YT, Hur EM, Snider WD, Zhou FQ. Role of GSK3 signaling in neuronal morphogenesis. Front Mol Neurosci. 2011;4:48. doi: 10.3389/fnmol.2011.00048. PubMed DOI PMC
Williams RS, Cheng L, Mudge AW, Harwood AJ. A common mechanism of action for three mood-stabilizing drugs. Nature. 2002;417:292–5. doi: 10.1038/417292a. PubMed DOI
Rajkowska G. Cell pathology in bipolar disorder. Bipolar Disord. 2002;4:105–16. doi: 10.1034/j.1399-5618.2002.01149.x. PubMed DOI
Gigante AD, Young LT, Yatham LN, Andreazza AC, Nery FG, Grinberg LT, et al. Morphometric post-mortem studies in bipolar disorder: possible association with oxidative stress and apoptosis. Int J Neuropsychopharmacol. 2011;14:1075–89. doi: 10.1017/S146114571000146X. PubMed DOI
Konradi C, Zimmerman EI, Yang CK, Lohmann KM, Gresch P, Pantazopoulos H, et al. Hippocampal interneurons in bipolar disorder. Arch Gen Psychiatry. 2011;68:340–50. doi: 10.1001/archgenpsychiatry.2010.175. PubMed DOI PMC
Wang JL, Shamah SM, Sun AX, Waldman ID, Haggarty SJ, Perlis RH. Label-free, live optical imaging of reprogrammed bipolar disorder patient-derived cells reveals a functional correlate of lithium responsiveness. Transl Psychiatry. 2014;4:e428. doi: 10.1038/tp.2014.72. PubMed DOI PMC
Tobe BTD, Crain AM, Winquist AM, Calabrese B, Makihara H, Zhao WN, et al. Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis. Proc Natl Acad Sci USA. 2017;114:E4462–71. doi: 10.1073/pnas.1700111114. PubMed DOI PMC
Zhao WN, Tobe BTD, Udeshi ND, Xuan LL, Pernia CD, Zolg DP, et al. Discovery of suppressors of CRMP2 phosphorylation reveals compounds that mimic the behavioral effects of lithium on amphetamine-induced hyperlocomotion. Transl Psychiatry. 2020;10:76. doi: 10.1038/s41398-020-0753-6. PubMed DOI PMC
Welham NV, Ling C, Dawson JA, Kendziorski C, Thibeault SL, Yamashita M. Microarray-based characterization of differential gene expression during vocal fold wound healing in rats. Dis Model Mech. 2015;8:311–21. PubMed PMC
Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013;29:1830–1. doi: 10.1093/bioinformatics/btt285. PubMed DOI PMC