Statistical mechanics of biomolecular condensates via cavity methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36994084
PubMed Central
PMC10040705
DOI
10.1016/j.isci.2023.106300
PII: S2589-0042(23)00377-2
Knihovny.cz E-zdroje
- Klíčová slova
- Molecular interaction, Statistical mechanics, Statistical physics,
- Publikační typ
- časopisecké články MeSH
Physical mechanisms of phase separation in living systems play key physiological roles and have recently been the focus of intensive studies. The strongly heterogeneous nature of such phenomena poses difficult modeling challenges that require going beyond mean-field approaches based on postulating a free energy landscape. The pathway we take here is to calculate the partition function starting from microscopic interactions by means of cavity methods, based on a tree approximation for the interaction graph. We illustrate them on the binary case and then apply them successfully to ternary systems, in which simpler one-factor approximations are proved inadequate. We demonstrate the agreement with lattice simulations and contrast our theory with coacervation experiments of associative de-mixing of nucleotides and poly-lysine. Different types of evidence are provided to support cavity methods as ideal tools for modeling biomolecular condensation, giving an optimal balance between the consideration of spatial aspects and fast computational results.
Biofisika Institute Barrio Sarriena s n 48940 Leioa Bizkaia Spain
Department of Philosophy Avenida de Tolosa 70 20018 Donostia San Sebastian Gipuzkoa Spain
Department of Physics Universitá di Roma la Sapienza Piazzale Aldo Moro 5 00185 Rome Italy
Ikerbasque Foundation Alameda Urquijo 36 48011 Bilbao Bizkaia Spain
Institute for Theoretical Chemistry University of Vienna Vienna Austria
Zobrazit více v PubMed
Harold F.M. Oxford University Press; 2003. The Way of the Cell: Molecules, Organisms, and the Order of Life.
M Berg J., Stryer L., Tymoczko J.L. Springer-Verlag; 2015. Biochemistry.
Landau L., Lifshitz E.M., Pitaevskii L.P. Course of theory physics. Statistical Physics. 1980;vol. 9 chap. IX.
Wurtz J.D., Lee C.F. Stress granule formation via ATP depletiontriggered phase separation. New J. Phys. 2018;20:045008.
Shin Y., Brangwynne C.P. Liquid phase condensation in cell physiology and disease. Science. 2017;357:eaaf4382. doi: 10.1126/science.aaf4382. PubMed DOI
Conte M., Irani E., Chiariello A.M., Abraham A., Bianco S., Esposito A., Nicodemi M. Loop-extrusion and polymer phase-separation can co-exist at the single-molecule level to shape chromatin folding. Nat. Commun. 2022;13:4070. doi: 10.1038/s41467-022-31856-6. PubMed DOI PMC
Sartori P., Leibler S. Lessons from equilibrium statistical physics regarding the assembly of protein complexes. Proc. Natl. Acad. Sci. USA. 2020;117:114–120. doi: 10.1073/pnas.1911028117. PubMed DOI PMC
Frayn K.N. John Wiley & Sons; 2009. Metabolic Regulation: A Human Perspective.
Zhang Y., Bertulat B., Tencer A.H., Ren X., Wright G.M., Black J., Cardoso M.C., Kutateladze T.G. MORC3 forms nuclear condensates through phase separation. iScience. 2019;17:182–189. doi: 10.1016/j.isci.2019.06.030. PubMed DOI PMC
Petronilho E.C., Pedrote M.M., Marques M.A., Passos Y.M., Mota M.F., Jakobus B., de Sousa G.D.S., Pereira da Costa F., Felix A.L., Ferretti G.D.S., et al. Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands. Chem. Sci. 2021;12:7334–7349. doi: 10.1039/D1SC01739J. PubMed DOI PMC
Lu J., Qian J., Xu Z., Yin S., Zhou L., Zheng S., Zhang W. Emerging roles of liquid-liquid phase separation in cancer: from protein aggregation to immune-associated signaling. Front. Cell Dev. Biol. 2021;9:631486. doi: 10.3389/fcell.2021.631486. PubMed DOI PMC
Ahn J.H., Davis E.S., Daugird T.A., Zhao S., Quiroga I.Y., Uryu H., Li J., Storey A.J., Tsai Y.H., Keeley D.P., et al. Phase separation drives aberrant chromatin looping and cancer development. Nature. 2021;595:591–595. doi: 10.1038/s41586-021-03662-5. PubMed DOI PMC
Dora Tang T.Y., Rohaida Che Hak C., Thompson A.J., Kuimova M.K., Williams D.S., Perriman A.W., Mann S. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 2014;6:527–533. doi: 10.1038/nchem.1921. PubMed DOI
Zwicker D., Seyboldt R., Weber C.A., Hyman A.A., Jülicher F. Growth and division of active droplets provides a model for protocells. Nat. Phys. 2017;13:408–413. doi: 10.1038/nphys3984. DOI
Donau C., Späth F., Sosson M., Kriebisch B.A.K., Schnitter F., Tena-Solsona M., Kang H.S., Salibi E., Sattler M., Mutschler H., Boekhoven J. Active coacervate droplets as a model for membraneless organelles and protocells. Nat. Commun. 2020;11:5167. doi: 10.1038/s41467-020-18815-9. PubMed DOI PMC
Seyboldt R., Jülicher F. Role of hydrodynamic flows in chemically driven droplet division. New J. Phys. 2018;20:105010. doi: 10.1088/1367-2630/aae735. DOI
AI O. Moscowskii, Rabochii (Repr. in transl. Bernal 1967, S 1-214) 1924. Proiskhozhdenie Zhizny, Moscow; Izd.
Lauber N., Flamm C., Ruiz-Mirazo K. “Minimal metabolism”: a key concept to investigate the origins and nature of biological systems. Bioessays. 2021;43:2100103. doi: 10.1002/bies.202100103. PubMed DOI
Floris E., Piras A., Dall'Asta L., Gamba A., Hirsch E., Campa C.C. Physics of compartmentalization: how phase separation and signaling shape membrane and organelle identity. Comput. Struct. Biotechnol. J. 2021;19:3225–3233. doi: 10.1016/j.csbj.2021.05.029. PubMed DOI PMC
Milo R., Phillips R. Garland Science; 2015. Cell Biology by the Numbers.
Sear R.P., Cuesta J.A. Instabilities in complex mixtures with a large number of components. Phys. Rev. Lett. 2003;91:245701. doi: 10.1103/PhysRevLett.91.245701. PubMed DOI
Jacobs W.M., Frenkel D. Phase transitions in biological systems with many components. Biophys. J. 2017;112:683–691. doi: 10.1016/j.bpj.2016.10.043. PubMed DOI PMC
Jacobs W.M. Self-assembly of biomolecular condensates with shared components. Phys. Rev. Lett. 2021;126:258101. doi: 10.1103/PhysRevLett.126.258101. PubMed DOI
Carugno G., Neri I., Vivo P. Physical Biology. 2022. Instabilities of complex fluids with partially structured and partially random interactions. PubMed
Krishna S., Brenner M.P. Phase separation in fluids with many interacting components. Proc. Natl. Acad. Sci. USA. 2021;118 e2108551118. PubMed PMC
Flory P.J. Thermodynamics of high polymer solutions. J. Chem. Phys. 1942;10:51–61. doi: 10.1063/1.1723621. DOI
Huggins M.L. Some properties of solutions of long-chain compounds. J. Phys. Chem. 1942;46:151–158. doi: 10.1021/j150415a018. DOI
Overbeek J.T.G., Voorn M.J. Phase separation in polyelectrolyte solutions Theory of complex coacervation. J. Cell. Comp. Physiol. 1957;49:7–26. doi: 10.1002/jcp.1030490404. PubMed DOI
Lin Y.-H., Forman-Kay J.D., Chan H.S. Sequence-specific polyampholyte phase separation in membraneless organelles. Phys. Rev. Lett. 2016;117:178101. doi: 10.1103/PhysRevLett.117.178101. PubMed DOI
Lin Y.-H., Brady J.P., Forman-Kay J.D., Chan H.S. Charge pattern matching as a ’fuzzy’mode of molecular recognition for the functional phase separations of intrinsically disordered proteins. New J. Phys. 2017;19:115003. doi: 10.1088/1367-2630/aa9369. DOI
Cardy J. Vol. 5. Cambridge university press; 1996. (Scaling and Renormalization in Statistical Physics).
Bethe H.A. Statistical theory of superlattices. Proc. R. Soc. London Series A Math. Phys. Sci. 1935;150:552–575. doi: 10.1098/rspa.1935.0122. DOI
Peierls R. Statistical theory of superlattices with unequal concentrations of the components. Proc. R. Soc. London Series A Math. Phys. Sci. 1936;154:207–222. doi: 10.1098/rspa.1936.0047. DOI
Mézard M., Parisi G. The cavity method at zero temperature. J. Stat. Phys. 2003;111:1–34. doi: 10.1023/A:1022221005097. DOI
Yedidia J.S., Freeman W.T., Weiss Y. Understanding belief propagation and its generalizations. Exploring artificial Intelligence in the New Millennium, 8; 2003. p. 236–239.
Mezard M., Montanari A. Oxford University Press; 2009. Information, Physics, and Computation.
Baxter R.J. Elsevier; 2016. Exactly Solved Models in Statistical Mechanics.
Mertens S. Computational complexity for physicists. Comput. Sci. Eng. 2002;4:31–47. doi: 10.1109/5992.998639. DOI
Duke T., Graham I. Equilibrium mechanisms of receptor clustering. Prog. Biophys. Mol. Biol. 2009;100:18–24. PubMed
Sarker R., Mohammadian M., Yao X. Vol. 48. Springer Science & Business Media; 2002. (Evolutionary Optimization).
Kawasaki K. Diffusion constants near the critical point for time-dependent Ising models. I. Phys. Rev. 1966;145:224–230. doi: 10.1103/PhysRev.145.224. DOI
Schupper N., Shnerb N.M. Inverse melting and inverse freezing: a spin model. Phys. Rev. E. 2005;72:046107. doi: 10.1103/PhysRevE.72.046107. PubMed DOI
Gross D., Kanter I., Sompolinsky H. Mean-field theory of the Potts glass. Phys. Rev. Lett. 1985;55:304–307. doi: 10.1103/PhysRevLett.55.304. PubMed DOI
Krząkała F., Zdeborová L. Potts glass on random graphs. Europhys. Lett. 2008;81:57005. doi: 10.1209/0295-5075/81/57005. DOI
McCarty J., Delaney K.T., Danielsen S.P.O., Fredrickson G.H., Shea J.E. Complete phase diagram for liquid-liquid phase separation of intrinsically disordered proteins. J. Phys. Chem. Lett. 2019;10:1644–1652. doi: 10.1021/acs.jpclett.9b00099. PubMed DOI PMC
Pal T., Wessén J., Das S., Chan H.S. Subcompartmentalization of polyampholyte species in organelle-like condensates is promoted by charge-pattern mismatch and strong excluded-volume interaction. Phys. Rev. E. 2021;103 doi: 10.1103/PhysRevE.103.042406. PubMed DOI
Wessén J., Das S., Pal T., Chan H.S. Analytical formulation and field-theoretic simulation of sequence- specific phase separation of protein-like heteropolymers with short-and long-spatial-range interactions. J. Phys. Chem. B. 2022;126:9222–9245. doi: 10.1021/acs.jpcb.2c06181. PubMed DOI
Lin Y.-H., Wessén J., Pal T., Das S., Chan H.S. Phase-Separated Biomolecular Condensates. Springer; 2023. Numerical techniques for applications of analytical theories to sequence-dependent phase separations of intrinsically disordered proteins; pp. 51–94. PubMed
Binder K., Landau D.P. Finite-size scaling at first-order phase transitions. Phys. Rev. B. 1984;30:1477–1485.