Altered plasma membrane abundance of the sulfatide-binding protein NF155 links glycosphingolipid imbalances to demyelination
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
210688/Z/18/Z
Wellcome Trust - United Kingdom
MR/N020626/1
Medical Research Council - United Kingdom
PubMed
36996106
PubMed Central
PMC10083573
DOI
10.1073/pnas.2218823120
Knihovny.cz E-resources
- Keywords
- Krabbe disease, galactosylceramide, myelin, neurofascin, sulfatide,
- MeSH
- Demyelinating Diseases * pathology MeSH
- Glycosphingolipids metabolism MeSH
- Humans MeSH
- Cell Adhesion Molecules metabolism MeSH
- Myelin Sheath metabolism MeSH
- Nerve Growth Factors metabolism MeSH
- Sulfoglycosphingolipids * MeSH
- Carrier Proteins metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Glycosphingolipids MeSH
- Cell Adhesion Molecules MeSH
- Nerve Growth Factors MeSH
- Sulfoglycosphingolipids * MeSH
- Carrier Proteins MeSH
Myelin is a multilayered membrane that tightly wraps neuronal axons, enabling efficient, high-speed signal propagation. The axon and myelin sheath form tight contacts, mediated by specific plasma membrane proteins and lipids, and disruption of these contacts causes devastating demyelinating diseases. Using two cell-based models of demyelinating sphingolipidoses, we demonstrate that altered lipid metabolism changes the abundance of specific plasma membrane proteins. These altered membrane proteins have known roles in cell adhesion and signaling, with several implicated in neurological diseases. The cell surface abundance of the adhesion molecule neurofascin (NFASC), a protein critical for the maintenance of myelin-axon contacts, changes following disruption to sphingolipid metabolism. This provides a direct molecular link between altered lipid abundance and myelin stability. We show that the NFASC isoform NF155, but not NF186, interacts directly and specifically with the sphingolipid sulfatide via multiple binding sites and that this interaction requires the full-length extracellular domain of NF155. We demonstrate that NF155 adopts an S-shaped conformation and preferentially binds sulfatide-containing membranes in cis, with important implications for protein arrangement in the tight axon-myelin space. Our work links glycosphingolipid imbalances to disturbance of membrane protein abundance and demonstrates how this may be driven by direct protein-lipid interactions, providing a mechanistic framework to understand the pathogenesis of galactosphingolipidoses.
Department of Analytical Chemistry University of Pardubice Pardubice 53210 Czech Republic
Department of Pathology University of Cambridge Cambridge CB2 1QP UK
See more in PubMed
Nave K. A., Werner H. B., Myelination of the nervous system: Mechanisms and functions. Annu. Rev. Cell Dev. Biol. 30, 503–533 (2014). PubMed
Elazar N., et al. , Coordinated internodal and paranodal adhesion controls accurate myelination by oligodendrocytes. J. Cell Biol. 218, 2887–2895 (2019). PubMed PMC
McGonigal R., et al. , Glial sulfatides and neuronal complex gangliosides are functionally interdependent in maintaining myelinating axon integrity. J. Neurosci. 39, 63–77 (2019). PubMed PMC
Boggs J. M., Gao W., Hirahara Y., Myelin glycosphingolipids, galactosylceramide and sulfatide, participate in carbohydrate-carbohydrate interactions between apposed membranes and may form glycosynapses between oligodendrocyte and/or myelin membranes. Biochim. Biophys. Acta 1780, 445–455 (2008). PubMed
Marcus J., Dupree J. L., Popko B., Myelin-associated glycoprotein and myelin galactolipids stabilize developing axo-glial interactions. J. Cell Biol. 156, 567–577 (2002). PubMed PMC
Ishibashi T., Baba H., Paranodal axoglial junctions, an essential component in axonal homeostasis. Front. Cell Dev. Biol. 10, 951809 (2022). PubMed PMC
Sipione S., Monyror J., Galleguillos D., Steinberg N., Kadam V., Gangliosides in the brain: Physiology, pathophysiology and therapeutic applications. Front. Neurosci. 14, 572965 (2020). PubMed PMC
Eckhardt M., The role and metabolism of sulfatide in the nervous system. Mol. Neurobiol. 37, 93–103 (2008). PubMed
Boyle M. E., et al. , Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 30, 385–397 (2001). PubMed
Bhat M. A., et al. , Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron 30, 369–383 (2001). PubMed
Pillai A. M., et al. , Spatiotemporal ablation of myelinating glia-specific neurofascin (Nfasc NF155) in mice reveals gradual loss of paranodal axoglial junctions and concomitant disorganization of axonal domains. J. Neurosci. Res. 87, 1773–1793 (2009). PubMed PMC
Platt F. M., Sphingolipid lysosomal storage disorders. Nature 510, 68–75 (2014). PubMed
Fehmi J., Scherer S. S., Willison H. J., Rinaldi S., Nodes, paranodes and neuropathies. J. Neurol. Neurosurg. Psychiatry 89, 61–71 (2018). PubMed
Querol L., Illa I., Paranodal and other autoantibodies in chronic inflammatory neuropathies. Curr. Opin. Neurol. 28, 474–479 (2015). PubMed
Takahashi T., Suzuki T., Role of sulfatide in normal and pathological cells and tissues. J. Lipid Res. 53, 1437–1450 (2012). PubMed PMC
Bosio A., Binczek E., Stoffel W., Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis. Proc. Natl. Acad. Sci. U.S.A. 93, 13280–13285 (1996). PubMed PMC
Marcus J., Popko B., Galactolipids are molecular determinants of myelin development and axo-glial organization. Biochim. Biophys. Acta 1573, 406–413 (2002). PubMed
Kohlschutter A., Lysosomal leukodystrophies: Krabbe disease and metachromatic leukodystrophy. Handb. Clin. Neurol. 113, 1611–1618 (2013). PubMed
Suzuki K., Twenty five years of the “psychosine hypothesis”: A personal perspective of its history and present status. Neurochem. Res. 23, 251–259 (1998). PubMed
Won J. S., Kim J., Paintlia M. K., Singh I., Singh A. K., Role of endogenous psychosine accumulation in oligodendrocyte differentiation and survival: Implication for Krabbe disease. Brain Res. 1508, 44–52 (2013). PubMed PMC
Feltri M. L., et al. , Mechanisms of demyelination and neurodegeneration in globoid cell leukodystrophy. Glia 69, 2309–2331 (2021). PubMed PMC
Li Y., et al. , Genetic ablation of acid ceramidase in Krabbe disease confirms the psychosine hypothesis and identifies a new therapeutic target. Proc. Natl. Acad. Sci. U.S.A. 116, 20097–20103 (2019). PubMed PMC
Fuller M., et al. , Glucosylceramide accumulation is not confined to the lysosome in fibroblasts from patients with Gaucher disease. Mol. Genet. Metab. 93, 437–443 (2008). PubMed
Hein L. K., Meikle P. J., Hopwood J. J., Fuller M., Secondary sphingolipid accumulation in a macrophage model of Gaucher disease. Mol. Genet. Metab. 92, 336–345 (2007). PubMed
Wood P. A., McBride M. R., Baker H. J., Christian S. T., Fluorescence polarization analysis, lipid composition, and Na+, K+-ATPase kinetics of synaptosomal membranes in feline GM1 and GM2 gangliosidosis. J. Neurochem. 44, 947–956 (1985). PubMed
Saravanan K., et al. , Specific downregulation and mistargeting of the lipid raft-associated protein MAL in a glycolipid storage disorder. Neurobiol. Dis. 16, 396–406 (2004). PubMed
Deng Y., et al. , Activity of the SPCA1 calcium pump couples sphingomyelin synthesis to sorting of secretory proteins in the Trans-Golgi network. Dev. Cell 47, 464–478.e8 (2018). PubMed PMC
Deng Y., Rivera-Molina F. E., Toomre D. K., Burd C. G., Sphingomyelin is sorted at the trans Golgi network into a distinct class of secretory vesicle. Proc. Natl. Acad. Sci. U.S.A. 113, 6677–6682 (2016). PubMed PMC
Tafesse F. G., et al. , Intact sphingomyelin biosynthetic pathway is essential for intracellular transport of influenza virus glycoproteins. Proc. Natl. Acad. Sci. U.S.A. 110, 6406–6411 (2013). PubMed PMC
Marcus J., et al. , Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 53, 372–381 (2006). PubMed
Coetzee T., et al. , Myelination in the absence of galactocerebroside and sulfatide: Normal structure with abnormal function and regional instability. Cell 86, 209–219 (1996). PubMed
Dupree J. L., Suzuki K., Popko B., Galactolipids in the formation and function of the myelin sheath. Microsc. Res. Tech. 41, 431–440 (1998). PubMed
Dupree J. L., Coetzee T., Blight A., Suzuki K., Popko B., Myelin galactolipids are essential for proper node of Ranvier formation in the CNS. J. Neurosci. 18, 1642–1649 (1998). PubMed PMC
Weinstock N. I., et al. , Macrophages expressing GALC improve peripheral Krabbe disease by a mechanism independent of cross-correction. Neuron 107, 65–81.e9 (2020). PubMed PMC
Giri S., Khan M., Rattan R., Singh I., Singh A. K., Krabbe disease: Psychosine-mediated activation of phospholipase A2 in oligodendrocyte cell death. J. Lipid Res. 47, 1478–1492 (2006). PubMed
Voccoli V., Tonazzini I., Signore G., Caleo M., Cecchini M., Role of extracellular calcium and mitochondrial oxygen species in psychosine-induced oligodendrocyte cell death. Cell Death Dis. 5, e1529 (2014). PubMed PMC
Weekes M. P., et al. , Proteomic plasma membrane profiling reveals an essential role for gp96 in the cell surface expression of LDLR family members, including the LDL receptor and LRP6. J. Proteome Res. 11, 1475–1484 (2012). PubMed PMC
Mizoguchi A., et al. , Nectin: An adhesion molecule involved in formation of synapses. J. Cell Biol. 156, 555–565 (2002). PubMed PMC
Klingseisen A., et al. , Oligodendrocyte neurofascin independently regulates both myelin targeting and sheath growth in the CNS. Dev. Cell 51, 730–744.e6 (2019). PubMed PMC
Dai J., Patzke C., Liakath-Ali K., Seigneur E., Sudhof T. C., GluD1 is a signal transduction device disguised as an ionotropic receptor. Nature 595, 261–265 (2021). PubMed PMC
Mohebiany A. N., Harroch S., Bouyain S., New insights into the roles of the contactin cell adhesion molecules in neural development. Adv. Neurobiol. 8, 165–194 (2014). PubMed
Wu X., et al. , Neuroligin-1 signaling controls LTP and NMDA receptors by distinct molecular pathways. Neuron 102, 621–635.e3 (2019). PubMed PMC
Ueno M., et al. , Olig2-induced semaphorin expression drives corticospinal axon retraction after spinal cord injury. Cereb. Cortex 30, 5702–5716 (2020). PubMed PMC
Smigiel R., et al. , Homozygous mutation in the Neurofascin gene affecting the glial isoform of Neurofascin causes severe neurodevelopment disorder with hypotonia, amimia and areflexia. Hum. Mol. Genet. 27, 3669–3674 (2018). PubMed PMC
Tait S., et al. , An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axo-glial junction. J. Cell Biol. 150, 657–666 (2000). PubMed PMC
Charles P., et al. , Neurofascin is a glial receptor for the paranodin/Caspr-contactin axonal complex at the axoglial junction. Curr. Biol. 12, 217–220 (2002). PubMed
Susuki K., et al. , Gangliosides contribute to stability of paranodal junctions and ion channel clusters in myelinated nerve fibers. Glia 55, 746–757 (2007). PubMed
Kriebel M., Wuchter J., Trinks S., Volkmer H., Neurofascin: A switch between neuronal plasticity and stability. Int. J. Biochem. Cell Biol. 44, 694–697 (2012). PubMed
Susuki K., et al. , Three mechanisms assemble central nervous system nodes of Ranvier. Neuron 78, 469–482 (2013). PubMed PMC
Liu H., Focia P. J., He X., Homophilic adhesion mechanism of neurofascin, a member of the L1 family of neural cell adhesion molecules. J. Biol. Chem. 286, 797–805 (2011). PubMed PMC
Jumper J., et al. , Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). PubMed PMC
Mirdita M., et al. , ColabFold: Making protein folding accessible to all. Nat. Methods 19, 679–682 (2022). PubMed PMC
Croll T. I., ISOLDE: A physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519–530 (2018). PubMed PMC
Pettersen E. F., et al. , UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021). PubMed PMC
Rosenbluth J., Petzold C., Peles E., Dependence of paranodal junctional gap width on transverse bands. J. Comp. Neurol. 520, 2774–2784 (2012). PubMed
Nans A., Einheber S., Salzer J. L., Stokes D. L., Electron tomography of paranodal septate-like junctions and the associated axonal and glial cytoskeletons in the central nervous system. J. Neurosci. Res. 89, 310–319 (2011). PubMed PMC
Schafer D. P., Bansal R., Hedstrom K. L., Pfeiffer S. E., Rasband M. N., Does paranode formation and maintenance require partitioning of neurofascin 155 into lipid rafts? J. Neurosci. 24, 3176–3185 (2004). PubMed PMC
Pomicter A. D., et al. , Nfasc155H and MAG are specifically susceptible to detergent extraction in the absence of the myelin sphingolipid sulfatide. Neurochem. Res. 38, 2490–2502 (2013). PubMed PMC
Maier O., et al. , The function of neurofascin155 in oligodendrocytes is regulated by metalloprotease-mediated cleavage and ectodomain shedding. Exp. Cell Res. 312, 500–511 (2006). PubMed
Thaxton C., et al. , In vivo deletion of immunoglobulin domains 5 and 6 in neurofascin (Nfasc) reveals domain-specific requirements in myelinated axons. J. Neurosci. 30, 4868–4876 (2010). PubMed PMC
Meehan G. R., et al. , Differential binding patterns of anti-sulfatide antibodies to glial membranes. J. Neuroimmunol. 323, 28–35 (2018). PubMed PMC
Nikolaienko R. M., et al. , Structural basis for interactions between contactin family members and protein-tyrosine phosphatase receptor type G in neural tissues. J. Biol. Chem. 291, 21335–21349 (2016). PubMed PMC
Tang H., et al. , Architecture of cell-cell adhesion mediated by sidekicks. Proc. Natl. Acad. Sci. U.S.A. 115, 9246–9251 (2018). PubMed PMC
Chataigner L. M. P., et al. , Structural insights into the contactin 1–neurofascin 155 adhesion complex. Nat. Commun. 13, 6607 (2022). PubMed PMC
Palavicini J. P., et al. , Novel molecular insights into the critical role of sulfatide in myelin maintenance/function. J. Neurochem. 139, 40–54 (2016). PubMed PMC
Fruhbeis C., Frohlich D., Kramer-Albers E. M., Emerging roles of exosomes in neuron-glia communication. Front. Physiol. 3, 119 (2012). PubMed PMC
Castelvetri L. C., et al. , Axonopathy is a compounding factor in the pathogenesis of Krabbe disease. Acta Neuropathol. 122, 35–48 (2011). PubMed PMC
Kira J. I., Yamasaki R., Ogata H., Anti-neurofascin autoantibody and demyelination. Neurochem. Int. 130, 104360 (2019). PubMed
Kieseier B. C., Mathey E. K., Sommer C., Hartung H. P., Immune-mediated neuropathies. Nat. Rev. Dis. Primers 4, 31 (2018). PubMed
Mathey E. K., et al. , Neurofascin as a novel target for autoantibody-mediated axonal injury. J. Exp. Med. 204, 2363–2372 (2007). PubMed PMC
Ilyas A. A., Chen Z. W., Cook S. D., Antibodies to sulfatide in cerebrospinal fluid of patients with multiple sclerosis. J. Neuroimmunol. 139, 76–80 (2003). PubMed
Querol L., et al. , Antibodies against peripheral nerve antigens in chronic inflammatory demyelinating polyradiculoneuropathy. Sci. Rep. 7, 14411 (2017). PubMed PMC
Zhao N., et al. , Clinical features of Guillain-Barre syndrome with anti-neurofascin 155 antibody. Acta Neurol. Scand. 146, 553–561 (2022). PubMed
Ilyas A. A., et al. , Antibodies to sulfated glycolipids in Guillain-Barre syndrome. J. Neurol. Sci. 105, 108–117 (1991). PubMed
Burnor E., et al. , Neurofascin antibodies in autoimmune, genetic, and idiopathic neuropathies. Neurology 90, e31–e38 (2018). PubMed PMC
Kira J. I., Anti-neurofascin 155 antibody-positive chronic inflammatory demyelinating polyneuropathy/combined central and peripheral demyelination: Strategies for diagnosis and treatment based on the disease mechanism. Front Neurol. 12, 665136 (2021). PubMed PMC
Li J., et al. , Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front. Neurosci. 11, 73 (2017). PubMed PMC
Bakhti M., et al. , Loss of electrostatic cell-surface repulsion mediates myelin membrane adhesion and compaction in the central nervous system. Proc. Natl. Acad. Sci. U.S.A. 110, 3143–3148 (2013). PubMed PMC
Ran F. A., et al. , Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013). PubMed PMC
Brinkman E. K., Chen T., Amendola M., van Steensel B., Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014). PubMed PMC
Hill C. H., Graham S. C., Read R. J., Deane J. E., Structural snapshots illustrate the catalytic cycle of beta-galactocerebrosidase, the defective enzyme in Krabbe disease. Proc. Natl. Acad. Sci. U.S.A. 110, 20479–20484 (2013). PubMed PMC
Spratley S. J., et al. , Molecular mechanisms of disease pathogenesis differ in Krabbe disease variants. Traffic 17, 908–922 (2016). PubMed PMC
Wilkins M. R., et al. , Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 112, 531–552 (1999). PubMed
Scarff C. A., Fuller M. J. G., Thompson R. F., Iadanza M. G., Variations on negative stain electron microscopy methods: Tools for tackling challenging systems. J. Vis. Exp. 112, 57199 (2018). PubMed PMC
Scheres S. H., Chen S., Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012). PubMed PMC
Goddard T. D., Huang C. C., Ferrin T. E., Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007). PubMed
Perez-Riverol Y., et al. , The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022). PubMed PMC
Iudin A., et al. , EMPIAR: The electron microscopy public image archive. Nucleic Acids Res. 51, D1503–D1511 (2023). PubMed PMC
Lawson C. L., et al. , EMDataBank unified data resource for 3DEM. Nucleic Acids Res. 44, D396–D403 (2016). PubMed PMC