• This record comes from PubMed

Altered plasma membrane abundance of the sulfatide-binding protein NF155 links glycosphingolipid imbalances to demyelination

. 2023 Apr 04 ; 120 (14) : e2218823120. [epub] 20230330

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
210688/Z/18/Z Wellcome Trust - United Kingdom
MR/N020626/1 Medical Research Council - United Kingdom

Myelin is a multilayered membrane that tightly wraps neuronal axons, enabling efficient, high-speed signal propagation. The axon and myelin sheath form tight contacts, mediated by specific plasma membrane proteins and lipids, and disruption of these contacts causes devastating demyelinating diseases. Using two cell-based models of demyelinating sphingolipidoses, we demonstrate that altered lipid metabolism changes the abundance of specific plasma membrane proteins. These altered membrane proteins have known roles in cell adhesion and signaling, with several implicated in neurological diseases. The cell surface abundance of the adhesion molecule neurofascin (NFASC), a protein critical for the maintenance of myelin-axon contacts, changes following disruption to sphingolipid metabolism. This provides a direct molecular link between altered lipid abundance and myelin stability. We show that the NFASC isoform NF155, but not NF186, interacts directly and specifically with the sphingolipid sulfatide via multiple binding sites and that this interaction requires the full-length extracellular domain of NF155. We demonstrate that NF155 adopts an S-shaped conformation and preferentially binds sulfatide-containing membranes in cis, with important implications for protein arrangement in the tight axon-myelin space. Our work links glycosphingolipid imbalances to disturbance of membrane protein abundance and demonstrates how this may be driven by direct protein-lipid interactions, providing a mechanistic framework to understand the pathogenesis of galactosphingolipidoses.

See more in PubMed

Nave K. A., Werner H. B., Myelination of the nervous system: Mechanisms and functions. Annu. Rev. Cell Dev. Biol. 30, 503–533 (2014). PubMed

Elazar N., et al. , Coordinated internodal and paranodal adhesion controls accurate myelination by oligodendrocytes. J. Cell Biol. 218, 2887–2895 (2019). PubMed PMC

McGonigal R., et al. , Glial sulfatides and neuronal complex gangliosides are functionally interdependent in maintaining myelinating axon integrity. J. Neurosci. 39, 63–77 (2019). PubMed PMC

Boggs J. M., Gao W., Hirahara Y., Myelin glycosphingolipids, galactosylceramide and sulfatide, participate in carbohydrate-carbohydrate interactions between apposed membranes and may form glycosynapses between oligodendrocyte and/or myelin membranes. Biochim. Biophys. Acta 1780, 445–455 (2008). PubMed

Marcus J., Dupree J. L., Popko B., Myelin-associated glycoprotein and myelin galactolipids stabilize developing axo-glial interactions. J. Cell Biol. 156, 567–577 (2002). PubMed PMC

Ishibashi T., Baba H., Paranodal axoglial junctions, an essential component in axonal homeostasis. Front. Cell Dev. Biol. 10, 951809 (2022). PubMed PMC

Sipione S., Monyror J., Galleguillos D., Steinberg N., Kadam V., Gangliosides in the brain: Physiology, pathophysiology and therapeutic applications. Front. Neurosci. 14, 572965 (2020). PubMed PMC

Eckhardt M., The role and metabolism of sulfatide in the nervous system. Mol. Neurobiol. 37, 93–103 (2008). PubMed

Boyle M. E., et al. , Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 30, 385–397 (2001). PubMed

Bhat M. A., et al. , Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron 30, 369–383 (2001). PubMed

Pillai A. M., et al. , Spatiotemporal ablation of myelinating glia-specific neurofascin (Nfasc NF155) in mice reveals gradual loss of paranodal axoglial junctions and concomitant disorganization of axonal domains. J. Neurosci. Res. 87, 1773–1793 (2009). PubMed PMC

Platt F. M., Sphingolipid lysosomal storage disorders. Nature 510, 68–75 (2014). PubMed

Fehmi J., Scherer S. S., Willison H. J., Rinaldi S., Nodes, paranodes and neuropathies. J. Neurol. Neurosurg. Psychiatry 89, 61–71 (2018). PubMed

Querol L., Illa I., Paranodal and other autoantibodies in chronic inflammatory neuropathies. Curr. Opin. Neurol. 28, 474–479 (2015). PubMed

Takahashi T., Suzuki T., Role of sulfatide in normal and pathological cells and tissues. J. Lipid Res. 53, 1437–1450 (2012). PubMed PMC

Bosio A., Binczek E., Stoffel W., Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis. Proc. Natl. Acad. Sci. U.S.A. 93, 13280–13285 (1996). PubMed PMC

Marcus J., Popko B., Galactolipids are molecular determinants of myelin development and axo-glial organization. Biochim. Biophys. Acta 1573, 406–413 (2002). PubMed

Kohlschutter A., Lysosomal leukodystrophies: Krabbe disease and metachromatic leukodystrophy. Handb. Clin. Neurol. 113, 1611–1618 (2013). PubMed

Suzuki K., Twenty five years of the “psychosine hypothesis”: A personal perspective of its history and present status. Neurochem. Res. 23, 251–259 (1998). PubMed

Won J. S., Kim J., Paintlia M. K., Singh I., Singh A. K., Role of endogenous psychosine accumulation in oligodendrocyte differentiation and survival: Implication for Krabbe disease. Brain Res. 1508, 44–52 (2013). PubMed PMC

Feltri M. L., et al. , Mechanisms of demyelination and neurodegeneration in globoid cell leukodystrophy. Glia 69, 2309–2331 (2021). PubMed PMC

Li Y., et al. , Genetic ablation of acid ceramidase in Krabbe disease confirms the psychosine hypothesis and identifies a new therapeutic target. Proc. Natl. Acad. Sci. U.S.A. 116, 20097–20103 (2019). PubMed PMC

Fuller M., et al. , Glucosylceramide accumulation is not confined to the lysosome in fibroblasts from patients with Gaucher disease. Mol. Genet. Metab. 93, 437–443 (2008). PubMed

Hein L. K., Meikle P. J., Hopwood J. J., Fuller M., Secondary sphingolipid accumulation in a macrophage model of Gaucher disease. Mol. Genet. Metab. 92, 336–345 (2007). PubMed

Wood P. A., McBride M. R., Baker H. J., Christian S. T., Fluorescence polarization analysis, lipid composition, and Na+, K+-ATPase kinetics of synaptosomal membranes in feline GM1 and GM2 gangliosidosis. J. Neurochem. 44, 947–956 (1985). PubMed

Saravanan K., et al. , Specific downregulation and mistargeting of the lipid raft-associated protein MAL in a glycolipid storage disorder. Neurobiol. Dis. 16, 396–406 (2004). PubMed

Deng Y., et al. , Activity of the SPCA1 calcium pump couples sphingomyelin synthesis to sorting of secretory proteins in the Trans-Golgi network. Dev. Cell 47, 464–478.e8 (2018). PubMed PMC

Deng Y., Rivera-Molina F. E., Toomre D. K., Burd C. G., Sphingomyelin is sorted at the trans Golgi network into a distinct class of secretory vesicle. Proc. Natl. Acad. Sci. U.S.A. 113, 6677–6682 (2016). PubMed PMC

Tafesse F. G., et al. , Intact sphingomyelin biosynthetic pathway is essential for intracellular transport of influenza virus glycoproteins. Proc. Natl. Acad. Sci. U.S.A. 110, 6406–6411 (2013). PubMed PMC

Marcus J., et al. , Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 53, 372–381 (2006). PubMed

Coetzee T., et al. , Myelination in the absence of galactocerebroside and sulfatide: Normal structure with abnormal function and regional instability. Cell 86, 209–219 (1996). PubMed

Dupree J. L., Suzuki K., Popko B., Galactolipids in the formation and function of the myelin sheath. Microsc. Res. Tech. 41, 431–440 (1998). PubMed

Dupree J. L., Coetzee T., Blight A., Suzuki K., Popko B., Myelin galactolipids are essential for proper node of Ranvier formation in the CNS. J. Neurosci. 18, 1642–1649 (1998). PubMed PMC

Weinstock N. I., et al. , Macrophages expressing GALC improve peripheral Krabbe disease by a mechanism independent of cross-correction. Neuron 107, 65–81.e9 (2020). PubMed PMC

Giri S., Khan M., Rattan R., Singh I., Singh A. K., Krabbe disease: Psychosine-mediated activation of phospholipase A2 in oligodendrocyte cell death. J. Lipid Res. 47, 1478–1492 (2006). PubMed

Voccoli V., Tonazzini I., Signore G., Caleo M., Cecchini M., Role of extracellular calcium and mitochondrial oxygen species in psychosine-induced oligodendrocyte cell death. Cell Death Dis. 5, e1529 (2014). PubMed PMC

Weekes M. P., et al. , Proteomic plasma membrane profiling reveals an essential role for gp96 in the cell surface expression of LDLR family members, including the LDL receptor and LRP6. J. Proteome Res. 11, 1475–1484 (2012). PubMed PMC

Mizoguchi A., et al. , Nectin: An adhesion molecule involved in formation of synapses. J. Cell Biol. 156, 555–565 (2002). PubMed PMC

Klingseisen A., et al. , Oligodendrocyte neurofascin independently regulates both myelin targeting and sheath growth in the CNS. Dev. Cell 51, 730–744.e6 (2019). PubMed PMC

Dai J., Patzke C., Liakath-Ali K., Seigneur E., Sudhof T. C., GluD1 is a signal transduction device disguised as an ionotropic receptor. Nature 595, 261–265 (2021). PubMed PMC

Mohebiany A. N., Harroch S., Bouyain S., New insights into the roles of the contactin cell adhesion molecules in neural development. Adv. Neurobiol. 8, 165–194 (2014). PubMed

Wu X., et al. , Neuroligin-1 signaling controls LTP and NMDA receptors by distinct molecular pathways. Neuron 102, 621–635.e3 (2019). PubMed PMC

Ueno M., et al. , Olig2-induced semaphorin expression drives corticospinal axon retraction after spinal cord injury. Cereb. Cortex 30, 5702–5716 (2020). PubMed PMC

Smigiel R., et al. , Homozygous mutation in the Neurofascin gene affecting the glial isoform of Neurofascin causes severe neurodevelopment disorder with hypotonia, amimia and areflexia. Hum. Mol. Genet. 27, 3669–3674 (2018). PubMed PMC

Tait S., et al. , An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axo-glial junction. J. Cell Biol. 150, 657–666 (2000). PubMed PMC

Charles P., et al. , Neurofascin is a glial receptor for the paranodin/Caspr-contactin axonal complex at the axoglial junction. Curr. Biol. 12, 217–220 (2002). PubMed

Susuki K., et al. , Gangliosides contribute to stability of paranodal junctions and ion channel clusters in myelinated nerve fibers. Glia 55, 746–757 (2007). PubMed

Kriebel M., Wuchter J., Trinks S., Volkmer H., Neurofascin: A switch between neuronal plasticity and stability. Int. J. Biochem. Cell Biol. 44, 694–697 (2012). PubMed

Susuki K., et al. , Three mechanisms assemble central nervous system nodes of Ranvier. Neuron 78, 469–482 (2013). PubMed PMC

Liu H., Focia P. J., He X., Homophilic adhesion mechanism of neurofascin, a member of the L1 family of neural cell adhesion molecules. J. Biol. Chem. 286, 797–805 (2011). PubMed PMC

Jumper J., et al. , Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). PubMed PMC

Mirdita M., et al. , ColabFold: Making protein folding accessible to all. Nat. Methods 19, 679–682 (2022). PubMed PMC

Croll T. I., ISOLDE: A physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519–530 (2018). PubMed PMC

Pettersen E. F., et al. , UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021). PubMed PMC

Rosenbluth J., Petzold C., Peles E., Dependence of paranodal junctional gap width on transverse bands. J. Comp. Neurol. 520, 2774–2784 (2012). PubMed

Nans A., Einheber S., Salzer J. L., Stokes D. L., Electron tomography of paranodal septate-like junctions and the associated axonal and glial cytoskeletons in the central nervous system. J. Neurosci. Res. 89, 310–319 (2011). PubMed PMC

Schafer D. P., Bansal R., Hedstrom K. L., Pfeiffer S. E., Rasband M. N., Does paranode formation and maintenance require partitioning of neurofascin 155 into lipid rafts? J. Neurosci. 24, 3176–3185 (2004). PubMed PMC

Pomicter A. D., et al. , Nfasc155H and MAG are specifically susceptible to detergent extraction in the absence of the myelin sphingolipid sulfatide. Neurochem. Res. 38, 2490–2502 (2013). PubMed PMC

Maier O., et al. , The function of neurofascin155 in oligodendrocytes is regulated by metalloprotease-mediated cleavage and ectodomain shedding. Exp. Cell Res. 312, 500–511 (2006). PubMed

Thaxton C., et al. , In vivo deletion of immunoglobulin domains 5 and 6 in neurofascin (Nfasc) reveals domain-specific requirements in myelinated axons. J. Neurosci. 30, 4868–4876 (2010). PubMed PMC

Meehan G. R., et al. , Differential binding patterns of anti-sulfatide antibodies to glial membranes. J. Neuroimmunol. 323, 28–35 (2018). PubMed PMC

Nikolaienko R. M., et al. , Structural basis for interactions between contactin family members and protein-tyrosine phosphatase receptor type G in neural tissues. J. Biol. Chem. 291, 21335–21349 (2016). PubMed PMC

Tang H., et al. , Architecture of cell-cell adhesion mediated by sidekicks. Proc. Natl. Acad. Sci. U.S.A. 115, 9246–9251 (2018). PubMed PMC

Chataigner L. M. P., et al. , Structural insights into the contactin 1–neurofascin 155 adhesion complex. Nat. Commun. 13, 6607 (2022). PubMed PMC

Palavicini J. P., et al. , Novel molecular insights into the critical role of sulfatide in myelin maintenance/function. J. Neurochem. 139, 40–54 (2016). PubMed PMC

Fruhbeis C., Frohlich D., Kramer-Albers E. M., Emerging roles of exosomes in neuron-glia communication. Front. Physiol. 3, 119 (2012). PubMed PMC

Castelvetri L. C., et al. , Axonopathy is a compounding factor in the pathogenesis of Krabbe disease. Acta Neuropathol. 122, 35–48 (2011). PubMed PMC

Kira J. I., Yamasaki R., Ogata H., Anti-neurofascin autoantibody and demyelination. Neurochem. Int. 130, 104360 (2019). PubMed

Kieseier B. C., Mathey E. K., Sommer C., Hartung H. P., Immune-mediated neuropathies. Nat. Rev. Dis. Primers 4, 31 (2018). PubMed

Mathey E. K., et al. , Neurofascin as a novel target for autoantibody-mediated axonal injury. J. Exp. Med. 204, 2363–2372 (2007). PubMed PMC

Ilyas A. A., Chen Z. W., Cook S. D., Antibodies to sulfatide in cerebrospinal fluid of patients with multiple sclerosis. J. Neuroimmunol. 139, 76–80 (2003). PubMed

Querol L., et al. , Antibodies against peripheral nerve antigens in chronic inflammatory demyelinating polyradiculoneuropathy. Sci. Rep. 7, 14411 (2017). PubMed PMC

Zhao N., et al. , Clinical features of Guillain-Barre syndrome with anti-neurofascin 155 antibody. Acta Neurol. Scand. 146, 553–561 (2022). PubMed

Ilyas A. A., et al. , Antibodies to sulfated glycolipids in Guillain-Barre syndrome. J. Neurol. Sci. 105, 108–117 (1991). PubMed

Burnor E., et al. , Neurofascin antibodies in autoimmune, genetic, and idiopathic neuropathies. Neurology 90, e31–e38 (2018). PubMed PMC

Kira J. I., Anti-neurofascin 155 antibody-positive chronic inflammatory demyelinating polyneuropathy/combined central and peripheral demyelination: Strategies for diagnosis and treatment based on the disease mechanism. Front Neurol. 12, 665136 (2021). PubMed PMC

Li J., et al. , Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front. Neurosci. 11, 73 (2017). PubMed PMC

Bakhti M., et al. , Loss of electrostatic cell-surface repulsion mediates myelin membrane adhesion and compaction in the central nervous system. Proc. Natl. Acad. Sci. U.S.A. 110, 3143–3148 (2013). PubMed PMC

Ran F. A., et al. , Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013). PubMed PMC

Brinkman E. K., Chen T., Amendola M., van Steensel B., Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014). PubMed PMC

Hill C. H., Graham S. C., Read R. J., Deane J. E., Structural snapshots illustrate the catalytic cycle of beta-galactocerebrosidase, the defective enzyme in Krabbe disease. Proc. Natl. Acad. Sci. U.S.A. 110, 20479–20484 (2013). PubMed PMC

Spratley S. J., et al. , Molecular mechanisms of disease pathogenesis differ in Krabbe disease variants. Traffic 17, 908–922 (2016). PubMed PMC

Wilkins M. R., et al. , Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 112, 531–552 (1999). PubMed

Scarff C. A., Fuller M. J. G., Thompson R. F., Iadanza M. G., Variations on negative stain electron microscopy methods: Tools for tackling challenging systems. J. Vis. Exp. 112, 57199 (2018). PubMed PMC

Scheres S. H., Chen S., Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012). PubMed PMC

Goddard T. D., Huang C. C., Ferrin T. E., Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007). PubMed

Perez-Riverol Y., et al. , The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022). PubMed PMC

Iudin A., et al. , EMPIAR: The electron microscopy public image archive. Nucleic Acids Res. 51, D1503–D1511 (2023). PubMed PMC

Lawson C. L., et al. , EMDataBank unified data resource for 3DEM. Nucleic Acids Res. 44, D396–D403 (2016). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...