Inverse Design of Tetracene Polymorphs with Enhanced Singlet Fission Performance by Property-Based Genetic Algorithm Optimization
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
36999121
PubMed Central
PMC10042130
DOI
10.1021/acs.chemmater.2c03444
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The efficiency of solar cells may be improved by using singlet fission (SF), in which one singlet exciton splits into two triplet excitons. SF occurs in molecular crystals. A molecule may crystallize in more than one form, a phenomenon known as polymorphism. Crystal structure may affect SF performance. In the common form of tetracene, SF is experimentally known to be slightly endoergic. A second, metastable polymorph of tetracene has been found to exhibit better SF performance. Here, we conduct inverse design of the crystal packing of tetracene using a genetic algorithm (GA) with a fitness function tailored to simultaneously optimize the SF rate and the lattice energy. The property-based GA successfully generates more structures predicted to have higher SF rates and provides insight into packing motifs associated with improved SF performance. We find a putative polymorph predicted to have superior SF performance to the two forms of tetracene, whose structures have been determined experimentally. The putative structure has a lattice energy within 1.5 kJ/mol of the most stable common form of tetracene.
Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania15213 United States
Department of Chemistry University of Colorado Boulder Colorado80309 United States
Department of Physics Carnegie Mellon University Pittsburgh Pennsylvania15213 United States
See more in PubMed
Shockley W.; Queisser H. J. Detailed balance limit of efficiency of P-N junction solar cells. J. Appl. Phys. 1961, 32, 510–519. 10.1063/1.1736034. DOI
Schaller R. D.; Klimov V. I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601.10.1103/PhysRevLett.92.186601. PubMed DOI
Hanna M.; Nozik A. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 2006, 100, 074510.10.1063/1.2356795. DOI
Smith M. B.; Michl J. Singlet fission. Chem. Rev. 2010, 110, 6891–6936. 10.1021/cr1002613. PubMed DOI
Smith M. B.; Michl J. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 2013, 64, 361–386. 10.1146/annurev-physchem-040412-110130. PubMed DOI
Casanova D. Theoretical Modeling of Singlet Fission. Chem. Rev. 2018, 118, 7164–7207. 10.1021/acs.chemrev.7b00601. PubMed DOI
Singh S.; Jones W.; Siebrand W.; Stoicheff B.; Schneider W. Laser generation of excitons and fluorescence in anthracene crystals. J. Chem. Phys. 1965, 42, 330–342. 10.1063/1.1695695. DOI
Wilson M. W.; Rao A.; Johnson K.; Gélinas S.; Di Pietro R.; Clark J.; Friend R. H. Temperature-independent singlet exciton fission in tetracene. J. Am. Chem. Soc. 2013, 135, 16680–16688. 10.1021/ja408854u. PubMed DOI
Broch K.; Dieterle J.; Branchi F.; Hestand N.; Olivier Y.; Tamura H.; Cruz C.; Nichols V.; Hinderhofer A.; Beljonne D.; et al. Robust singlet fission in pentacene thin films with tuned charge transfer interactions. Nat. Commun. 2018, 9, 954.10.1038/s41467-018-03300-1. PubMed DOI PMC
Sanders S. N.; Kumarasamy E.; Fallon K. J.; Sfeir M. Y.; Campos L. M. Singlet fission in a hexacene dimer: energetics dictate dynamics. Chem. Sci. 2020, 11, 1079–1084. 10.1039/C9SC05066C. PubMed DOI PMC
Sun D.; Deng G.-H.; Xu B.; Xu E.; Li X.; Wu Y.; Qian Y.; Zhong Y.; Nuckolls C.; Harutyunyan A. R.; et al. Anisotropic singlet fission in single crystalline hexacene. Iscience 2019, 19, 1079–1089. 10.1016/j.isci.2019.08.053. PubMed DOI PMC
Albrecht W.; Michel-Beyerle M.; Yakhot V. Exciton fission in excimer forming crystal. Dynamics of an excimer build-up in α-perylene. Chem. Phys. 1978, 35, 193–200. 10.1016/0301-0104(78)85205-7. DOI
Eaton S. W.; Shoer L. E.; Karlen S. D.; Dyar S. M.; Margulies E. A.; Veldkamp B. S.; Ramanan C.; Hartzler D. A.; Savikhin S.; Marks T. J.; et al. Singlet exciton fission in polycrystalline thin films of a slip-stacked perylenediimide. J. Am. Chem. Soc. 2013, 135, 14701–14712. 10.1021/ja4053174. PubMed DOI
Aulin Y. V.; Felter K. M.; Günbas D. D.; Dubey R. K.; Jager W. F.; Grozema F. C. Morphology-Independent Efficient Singlet Exciton Fission in Perylene Diimide Thin Films. ChemPlusChem. 2018, 83, 230–238. 10.1002/cplu.201700449. PubMed DOI
Hall C. L.; Andrusenko I.; Potticary J.; Gao S.; Liu X.; Schmidt W.; Marom N.; Mugnaioli E.; Gemmi M.; Hall S. R. 3D electron diffraction structure determination of terrylene, a promising candidate for intermolecular singlet fission. ChemPhysChem 2021, 22, 1631–1637. 10.1002/cphc.202100320. PubMed DOI PMC
Johnson J. C.; Nozik A. J.; Michl J. High triplet yield from singlet fission in a thin film of 1, 3-diphenylisobenzofuran. J. Am. Chem. Soc. 2010, 132, 16302–16303. 10.1021/ja104123r. PubMed DOI
Ryerson J. L.; Schrauben J. N.; Ferguson A. J.; Sahoo S. C.; Naumov P.; Havlas Z.; Michl J.; Nozik A. J.; Johnson J. C. Two thin film polymorphs of the singlet fission compound 1, 3-diphenylisobenzofuran. J. Phys. Chem. C 2014, 118, 12121–12132. 10.1021/jp502122d. DOI
Gradinaru C. C.; Kennis J. T.; Papagiannakis E.; Van Stokkum I. H.; Cogdell R. J.; Fleming G. R.; Niederman R. A.; Van Grondelle R. An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 2364–2369. 10.1073/pnas.051501298. PubMed DOI PMC
Manawadu D.; Valentine D. J.; Marcus M.; Barford W. Singlet triplet-pair production and possible singlet-fission in carotenoids. J. Phys. Chem. Lett. 2022, 13, 1344–1349. 10.1021/acs.jpclett.1c03812. PubMed DOI PMC
Musser A. J.; Maiuri M.; Brida D.; Cerullo G.; Friend R. H.; Clark J. The nature of singlet exciton fission in carotenoid aggregates. J. Am. Chem. Soc. 2015, 137, 5130–5139. 10.1021/jacs.5b01130. PubMed DOI PMC
Beljonne D.; Cornil J.; Friend R.; Janssen R.; Brédas J.-L. Influence of chain length and derivatization on the lowest singlet and triplet states and intersystem crossing in oligothiophenes. J. Am. Chem. Soc. 1996, 118, 6453–6461. 10.1021/ja9531135. DOI
Busby E.; Xia J.; Low J. Z.; Wu Q.; Hoy J.; Campos L. M.; Sfeir M. Y. Fast singlet exciton decay in push-pull molecules containing oxidized thiophenes. J. Phys. Chem. B 2015, 119, 7644–7650. 10.1021/jp511704r. PubMed DOI
Dean J. C.; Zhang R.; Hallani R. K.; Pensack R. D.; Sanders S. N.; Oblinsky D. G.; Parkin S. R.; Campos L. M.; Anthony J. E.; Scholes G. D. Photophysical characterization and time-resolved spectroscopy of a anthradithiophene dimer: exploring the role of conformation in singlet fission. Phys. Chem. Chem. Phys. 2017, 19, 23162–23175. 10.1039/C7CP03774K. PubMed DOI
Zhao T.; Kloc C.; Ni W.; Sun L.; Gurzadyan G. G. Revealing ultrafast relaxation dynamics in six-thiophene thin film and single crystal. J. Photochem. Photobiol. A: Chem. 2021, 404, 112920.10.1016/j.jphotochem.2020.112920. DOI
Sharifzadeh S.; Darancet P.; Kronik L.; Neaton J. B. Low-energy charge-transfer excitons in organic solids from first-principles: The case of pentacene. J. Phys. Chem. Lett. 2013, 4, 2197–2201. 10.1021/jz401069f. DOI
Beljonne D.; Yamagata H.; Brédas J.-L.; Spano F.; Olivier Y. Charge-transfer excitations steer the Davydov splitting and mediate singlet exciton fission in pentacene. Phys. Rev. Lett. 2013, 110, 226402.10.1103/PhysRevLett.110.226402. PubMed DOI
Wang X.; Liu X.; Tom R.; Cook C.; Schatschneider B.; Marom N. Phenylated acene derivatives as candidates for intermolecular singlet fission. J. Phys. Chem. C 2019, 123, 5890–5899. 10.1021/acs.jpcc.8b12549. DOI
Wang X.; Liu X.; Cook C.; Schatschneider B.; Marom N. On the possibility of singlet fission in crystalline quaterrylene. J. Chem. Phys. 2018, 148, 184101.10.1063/1.5027553. PubMed DOI
Monahan N.; Zhu X.-Y. Charge transfer–mediated singlet fission. Annu. Rev. Phys. Chem. 2015, 66, 601–618. 10.1146/annurev-physchem-040214-121235. PubMed DOI
Rao A.; Friend R. H. Harnessing singlet exciton fission to break the Shockley–Queisser limit. Nat. Rev. Mater. 2017, 2, 17063.10.1038/natrevmats.2017.63. DOI
Lu H.; Chen X.; Anthony J. E.; Johnson J. C.; Beard M. C. Sensitizing singlet fission with perovskite nanocrystals. J. Am. Chem. Soc. 2019, 141, 4919–4927. 10.1021/jacs.8b13562. PubMed DOI
Budden P. J.; Weiss L. R.; Müller M.; Panjwani N. A.; Dowland S.; Allardice J. R.; Ganschow M.; Freudenberg J.; Behrends J.; Bunz U. H.; et al. Singlet exciton fission in a modified acene with improved stability and high photoluminescence yield. Nat. Commun. 2021, 12, 1527.10.1038/s41467-021-21719-x. PubMed DOI PMC
Liu X.; Tom R.; Gao S.; Marom N. Assessing zethrene derivatives as singlet fission candidates based on multiple descriptors. J. Phys. Chem. C 2020, 124, 26134–26143. 10.1021/acs.jpcc.0c08160. DOI
Liu X.; Tom R.; Wang X.; Cook C.; Schatschneider B.; Marom N. Pyrene-stabilized acenes as intermolecular singlet fission candidates: importance of exciton wave-function convergence. J. Phys.: Condens. Matter 2020, 32, 184001.10.1088/1361-648X/ab699e. PubMed DOI
Wang X.; Garcia T.; Monaco S.; Schatschneider B.; Marom N. Effect of crystal packing on the excitonic properties of rubrene polymorphs. CrystEngComm 2016, 18, 7353–7362. 10.1039/C6CE00873A. DOI
Liu X.; Wang X.; Gao S.; Chang V.; Tom R.; Yu M.; Ghiringhelli L. M.; Marom N. Finding predictive models for singlet fission by machine learning. npj Comput. Mater. 2022, 8, 70.10.1038/s41524-022-00758-y. DOI
Minami T.; Nakano M. Diradical character view of singlet fission. J. Phys. Chem. Lett. 2012, 3, 145–150. 10.1021/jz2015346. PubMed DOI
Padula D.; Omar Ö. H.; Nematiaram T.; Troisi A. Singlet fission molecules among known compounds: finding a few needles in a haystack. Energy Environ. Sci. 2019, 12, 2412–2416. 10.1039/C9EE01508F. DOI
Nogueira B. A.; Castiglioni C.; Fausto R. Color polymorphism in organic crystals. Commun. Chem. 2020, 3, 34.10.1038/s42004-020-0279-0. PubMed DOI PMC
Moliterni A.; Altamura D.; Lassandro R.; Olieric V.; Ferri G.; Cardarelli F.; Camposeo A.; Pisignano D.; Anthony J. E.; Giannini C. Synthesis, crystal structure, polymorphism and microscopic luminescence properties of anthracene derivative compounds. Acta. Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2020, 76, 427–435. 10.1107/S2052520620004424. PubMed DOI
Bhattacharyya K.; Datta A. Polymorphism controlled singlet fission in tips-anthracene: role of stacking orientation. J. Phys. Chem. C 2017, 121, 1412–1420. 10.1021/acs.jpcc.6b10075. DOI
Mayonado G.; Vogt K. T.; Van Schenck J. D.; Zhu L.; Fregoso G.; Anthony J.; Ostroverkhova O.; Graham M. W. High-symmetry anthradithiophene molecular packing motifs promote thermally activated singlet fission. J. Phys. Chem. C 2022, 126, 4433–4445. 10.1021/acs.jpcc.1c10977. DOI
Buchanan E. A.; Michl J. Optimal arrangements of 1, 3-diphenylisobenzofuran molecule pairs for fast singlet fission. Photochem. Photobiol. Sci. 2019, 18, 2112–2124. 10.1039/c9pp00283a. PubMed DOI
Piland G. B.; Bardeen C. J. How morphology affects singlet fission in crystalline tetracene. J. Phys. Chem. Lett. 2015, 6, 1841–1846. 10.1021/acs.jpclett.5b00569. PubMed DOI
Buchanan E. A.; Kaleta J.; Wen J.; Lapidus S. H.; Císařová I.; Havlas Z.; Johnson J. C.; Michl J. Molecular packing and singlet fission: the parent and three fluorinated 1, 3-diphenylisobenzofurans. J. Phys. Chem. Lett. 2019, 10, 1947–1953. 10.1021/acs.jpclett.8b03875. PubMed DOI
Sondermann U.; Kutoglu A.; Bassler H. X-ray diffraction study of the phase transition in crystalline tetracene. J. Phys. Chem. 1985, 89, 1735–1741. 10.1021/j100255a039. DOI
Venuti E.; Della Valle R. G.; Farina L.; Brillante A.; Masino M.; Girlando A. Phonons and structures of tetracene polymorphs at low temperature and high pressure. Phys. Rev. B 2004, 70, 104106.10.1103/PhysRevB.70.104106. DOI
Della Valle R. G.; Venuti E.; Brillante A.; Girlando A. Inherent structures of crystalline tetracene. J. Phys. Chem. A 2006, 110, 10858–10862. 10.1021/jp0611020. PubMed DOI
Groff R.; Avakian P.; Merrifield R. Coexistence of exciton fission and fusion in tetracene crystals. Phys. Rev. B 1970, 1, 815.10.1103/PhysRevB.1.815. DOI
Groom C. R.; Bruno I. J.; Lightfoot M. P.; Ward S. C. The Cambridge structural database. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 2016, 72, 171–179. 10.1107/S2052520616003954. PubMed DOI PMC
Campbell R.; Robertson J. M.; Trotter J. The crystal structure of hexacene, and a revision of the crystallographic data for tetracene. Acta crystallogr. 1962, 15, 289–290. 10.1107/S0365110X62000699. DOI
Rang Z.; Haraldsson A.; Kim D. M.; Ruden P. P.; Nathan M. I.; Chesterfield R. J.; Frisbie C. D. Hydrostatic-pressure dependence of the photoconductivity of single-crystal pentacene and tetracene. Appl. Phys. Lett. 2001, 79, 2731–2733. 10.1063/1.1410878. DOI
Vaubel G.; Baessler H. Temperature dependence of width and position of the lowest singlet-singlet transition in crystalline tetracene. Mol. Cryst. Liq. Cryst. 1970, 12, 39–45. 10.1080/15421407008082758. DOI
Holmes D.; Kumaraswamy S.; Matzger A. J.; Vollhardt K. P. C. On the nature of nonplanarity in the [N] Phenylenes. Chem. - Eur. J. 1999, 5, 3399–3412. 10.1002/(SICI)1521-3765(19991105)5:11<3399::AID-CHEM3399>3.0.CO;2-V. DOI
Pithan L.; Nabok D.; Cocchi C.; Beyer P.; Duva G.; Simbrunner J.; Rawle J.; Nicklin C.; Schäfer P.; Draxl C.; et al. Molecular structure of the substrate-induced thin-film phase of tetracene. J. Chem. Phys. 2018, 149, 144701.10.1063/1.5043379. PubMed DOI
Nahm R.; Engstrom J. Who’s on first? Tracking in real time the growth of multiple crystalline phases of an organic semiconductor: tetracene on SiO2. J. Chem. Phys. 2017, 146, 052815.10.1063/1.4971288. PubMed DOI
Arias D. H.; Ryerson J. L.; Cook J. D.; Damrauer N. H.; Johnson J. C. Polymorphism influences singlet fission rates in tetracene thin films. Chem. Sci. 2016, 7, 1185–1191. 10.1039/C5SC03535J. PubMed DOI PMC
Daiber B.; Maiti S.; Ferro S. M.; Bodin J.; Van Den Boom A. F.; Luxembourg S. L.; Kinge S.; Pujari S. P.; Zuilhof H.; Siebbeles L. D.; Ehrler B. Change in Tetracene Polymorphism Facilitates Triplet Transfer in Singlet Fission-Sensitized Silicon Solar Cells. J. Phys. Chem. Lett. 2020, 11, 8703–8709. 10.1021/acs.jpclett.0c02163. PubMed DOI PMC
Macrae C. F.; Edgington P. R.; McCabe P.; Pidcock E.; Shields G. P.; Taylor R.; Towler M.; van de Streek J. Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453–457. 10.1107/S002188980600731X. DOI
Havlas Z.; Michl J. Guidance for Mutual Disposition of Chromophores for Singlet Fission. Isr. J. Chem. 2016, 56, 96–106. 10.1002/ijch.201500054. DOI
Zaykov A.; Felkel P.; Buchanan E. A.; Jovanovic M.; Havenith R. W.; Kathir R. K.; Broer R.; Havlas Z.; Michl J. Singlet Fission Rate: Optimized Packing of a Molecular Pair. Ethylene as a Model. J. Am. Chem. Soc. 2019, 141, 17729–17743. 10.1021/jacs.9b08173. PubMed DOI
Buchanan E. A.; Havlas Z.; Michl J. Optimal arrangements of tetracene molecule pairs for fast singlet fission. Bull. Chem. Soc. Jpn. 2019, 92, 1960–1971. 10.1246/bcsj.20190229. PubMed DOI
Ryerson J. L.; Zaykov A.; Aguilar Suarez L. E.; Havenith R. W.; Stepp B. R.; Dron P. I.; Kaleta J.; Akdag A.; Teat S. J.; Magnera T. F.; et al. Structure and photophysics of indigoids for singlet fission: Cibalackrot. J. Chem. Phys. 2019, 151, 184903.10.1063/1.5121863. PubMed DOI
Rais D.; et al. Singlet Fission in Thin Solid Films of Bis(thienyl)diketopyrrolopyrroles. ChemPlusChem. 2020, 85, 2689–2703. 10.1002/cplu.202000623. PubMed DOI
Cruz-Cabeza A. J.; Reutzel-Edens S. M.; Bernstein J. Facts and fictions about polymorphism. Chem. Soc. Rev. 2015, 44, 8619–8635. 10.1039/C5CS00227C. PubMed DOI
Thakur T. S.; Dubey R.; Desiraju G. R. Crystal structure and prediction. Annu. Rev. Phys. Chem. 2015, 66, 21–42. 10.1146/annurev-physchem-040214-121452. PubMed DOI
Woodley S. M.; Catlow R. Crystal structure prediction from first principles. Nat. Mater. 2008, 7, 937–946. 10.1038/nmat2321. PubMed DOI
Bowskill D. H.; Sugden I. J.; Konstantinopoulos S.; Adjiman C. S.; Pantelides C. C. Crystal Structure Prediction Methods for Organic Molecules: State of the Art. Annu. Rev. Chem. Biomol. Eng. 2021, 12, 593–623. 10.1146/annurev-chembioeng-060718-030256. PubMed DOI
Price S. L.; Brandenburg J. G.. Non-Covalent Interactions in Quantum Chemistry and Physics; Elsevier, 2017; pp 333–363.
Bardwell D. A.; Adjiman C. S.; Arnautova Y. A.; Bartashevich E.; Boerrigter S. X.; Braun D. E.; Cruz-Cabeza A. J.; Day G. M.; Della Valle R. G.; Desiraju G. R.; et al. Towards crystal structure prediction of complex organic compounds–a report on the fifth blind test. Acta. Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2011, 67, 535–551. 10.1107/S0108768111042868. PubMed DOI PMC
Reilly A. M.; Cooper R. I.; Adjiman C. S.; Bhattacharya S.; Boese A. D.; Brandenburg J. G.; Bygrave P. J.; Bylsma R.; Campbell J. E.; Car R.; et al. Report on the sixth blind test of organic crystal structure prediction methods. Acta. Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 439–459. 10.1107/S2052520616007447. PubMed DOI PMC
Li X.; Curtis F. S.; Rose T.; Schober C.; Vazquez-Mayagoitia A.; Reuter K.; Oberhofer H.; Marom N. Genarris: Random generation of molecular crystal structures and fast screening with a Harris approximation. J. Chem. Phys. 2018, 148, 241701.10.1063/1.5014038. PubMed DOI
Tom R.; Rose T.; Bier I.; O’Brien H.; Vázquez-Mayagoitia Á.; Marom N. Genarris 2.0: A random structure generator for molecular crystals. Comput. Phys. Commun. 2020, 250, 107170.10.1016/j.cpc.2020.107170. DOI
Pickard C. J.; Needs R. Ab initio random structure searching. J. Phys.: Condens. Matter 2011, 23, 053201.10.1088/0953-8984/23/5/053201. PubMed DOI
Case D. H.; Campbell J. E.; Bygrave P. J.; Day G. M. Convergence properties of crystal structure prediction by quasi-random sampling. J. Chem. Theory Comput. 2016, 12, 910–924. 10.1021/acs.jctc.5b01112. PubMed DOI PMC
Price S. L. Predicting crystal structures of organic compounds. Chem. Soc. Rev. 2014, 43, 2098–2111. 10.1039/C3CS60279F. PubMed DOI
Oganov A. R.; Pickard C. J.; Zhu Q.; Needs R. J. Structure prediction drives materials discovery. Nat. Rev. Mater. 2019, 4, 331–348. 10.1038/s41578-019-0101-8. DOI
Moellmann J.; Grimme S. DFT-D3 study of some molecular crystals. J. Phys. Chem. C 2014, 118, 7615–7621. 10.1021/jp501237c. DOI
Reilly A. M.; Tkatchenko A. Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals. J. Chem. Phys. 2013, 139, 024705.10.1063/1.4812819. PubMed DOI
O’Connor D.; Bier I.; Hsieh Y.-T.; Marom N. Performance of Dispersion-Inclusive Density Functional Theory Methods for Energetic Materials. J. Chem. Theory Comput. 2022, 18, 4456–4471. 10.1021/acs.jctc.2c00350. PubMed DOI
Price S. L.; Braun D. E.; Reutzel-Edens S. M. Can computed crystal energy landscapes help understand pharmaceutical solids?. Chem. Commun. 2016, 52, 7065–7077. 10.1039/C6CC00721J. PubMed DOI PMC
Shtukenberg A. G.; Zhu Q.; Carter D. J.; Vogt L.; Hoja J.; Schneider E.; Song H.; Pokroy B.; Polishchuk I.; Tkatchenko A.; et al. Powder diffraction and crystal structure prediction identify four new coumarin polymorphs. Chem. Sci. 2017, 8, 4926–4940. 10.1039/C7SC00168A. PubMed DOI PMC
Zunger A. Inverse design in search of materials with target functionalities. Nat. Rev. Chem. 2018, 2, 0121.10.1038/s41570-018-0121. DOI
Franceschetti A.; Zunger A. The inverse band-structure problem of finding an atomic configuration with given electronic properties. Nature 1999, 402, 60–63. 10.1038/46995. DOI
Hiener D.; Hutchison G. Pareto Optimization of Oligomer Polarizability and Dipole Moment using a Genetic Algorithm. J. Phys. Chem. A 2022, 126, 2750–2760. 10.1021/acs.jpca.2c01266. PubMed DOI
d’Avezac M.; Luo J.-W.; Chanier T.; Zunger A. Genetic-algorithm discovery of a direct-gap and optically allowed superstructure from indirect-gap Si and Ge semiconductors. Phys. Rev. Lett. 2012, 108, 027401.10.1103/PhysRevLett.108.027401. PubMed DOI
Bhattacharya S.; Sonin B. H.; Jumonville C. J.; Ghiringhelli L. M.; Marom N. Computational design of nanoclusters by property-based genetic algorithms: tuning the electronic properties of (TiO2)n clusters. Phys. Rev. B 2015, 91, 241115.10.1103/PhysRevB.91.241115. DOI
Cheng C. Y.; Campbell J. E.; Day G. M. Evolutionary chemical space exploration for functional materials: computational organic semiconductor discovery. Chem. Sci. 2020, 11, 4922–4933. 10.1039/D0SC00554A. PubMed DOI PMC
Pfund L. Y.; Matzger A. J. Towards exhaustive and automated high-throughput screening for crystalline polymorphs. ACS Comb. Sci. 2014, 16, 309–313. 10.1021/co500043q. PubMed DOI PMC
Gu C.-H.; Young Jr V.; Grant D. J. Polymorph screening: Influence of solvents on the rate of solvent-mediated polymorphic transformation. J. Pharm. Sci. 2001, 90, 1878–1890. 10.1002/jps.1137. PubMed DOI
Lee E. H. A practical guide to pharmaceutical polymorph screening & selection. Asian J. Pharm. Sci. 2014, 9, 163–175. 10.1016/j.ajps.2014.05.002. DOI
Neumann M.; Van De Streek J.; Fabbiani F.; Hidber P.; Grassmann O. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening. Nat. Commun. 2015, 6, 7793.10.1038/ncomms8793. PubMed DOI PMC
Weissbuch I.; Lahav M.; Leiserowitz L. Toward stereochemical control, monitoring, and understanding of crystal nucleation. Cryst. Growth Des. 2003, 3, 125–150. 10.1021/cg0200560. DOI
Torbeev V. Y.; Shavit E.; Weissbuch I.; Leiserowitz L.; Lahav M. Control of crystal polymorphism by tuning the structure of auxiliary molecules as nucleation inhibitors. The β-polymorph of glycine grown in aqueous solutions. Cryst. Growth Des. 2005, 5, 2190–2196. 10.1021/cg050200s. DOI
Ma W.; Reinspach J.; Zhou Y.; Diao Y.; McAfee T.; Mannsfeld S. C.; Bao Z.; Ade H. Tuning local molecular orientation-composition correlations in binary organic thin films by solution shearing. Adv. Funct. Mater. 2015, 25, 3131–3137. 10.1002/adfm.201500468. DOI
Riera-Galindo S.; Tamayo A.; Mas-Torrent M. Role of polymorphism and thin-film morphology in organic semiconductors processed by solution shearing. ACS omega 2018, 3, 2329–2339. 10.1021/acsomega.8b00043. PubMed DOI PMC
Kim K.; Santos E. J.; Lee T. H.; Nishi Y.; Bao Z. Epitaxially grown strained pentacene thin film on graphene membrane. Small 2015, 11, 2037–2043. 10.1002/smll.201403006. PubMed DOI
Jiang Q.; Hu C.; Ward M. D. Stereochemical control of polymorph transitions in nanoscale reactors. J. Am. Chem. Soc. 2013, 135, 2144–2147. 10.1021/ja312511v. PubMed DOI
Jiang Q.; Ward M. D. Crystallization under nanoscale confinement. Chem. Soc. Rev. 2014, 43, 2066–2079. 10.1039/C3CS60234F. PubMed DOI
Diao Y.; Lenn K. M.; Lee W.-Y.; Blood-Forsythe M. A.; Xu J.; Mao Y.; Kim Y.; Reinspach J. A.; Park S.; Aspuru-Guzik A.; et al. Understanding polymorphism in organic semiconductor thin films through nanoconfinement. J. Am. Chem. Soc. 2014, 136, 17046–17057. 10.1021/ja507179d. PubMed DOI
Zhang Y.; Chen A.; Kim M.-W.; Alaei A.; Lee S. S. Nanoconfining solution-processed organic semiconductors for emerging optoelectronics. Chem. Soc. Rev. 2021, 50, 9375–9390. 10.1039/D1CS00430A. PubMed DOI
Curtis F.; Li X.; Rose T.; Vázquez-Mayagoitia Á.; Bhattacharya S.; Ghiringhelli L. M.; Marom N. GAtor: A first-principles genetic algorithm for molecular crystal structure prediction. J. Chem. Theory Comput. 2018, 14, 2246–2264. 10.1021/acs.jctc.7b01152. PubMed DOI
Curtis F.; Rose T.; Marom N. Evolutionary niching in the GAtor genetic algorithm for molecular crystal structure prediction. Faraday Discuss. 2018, 211, 61–77. 10.1039/C8FD00067K. PubMed DOI
Bier I.; O’Connor D.; Hsieh Y.-T.; Wen W.; Hiszpanski A. M.; Han T. Y.-J.; Marom N. Crystal structure prediction of energetic materials and a twisted arene with Genarris and GAtor. CrystEngComm 2021, 23, 6023–6038. 10.1039/D1CE00745A. DOI
Bier I.; Marom N. Machine learned model for solid form volume estimation based on packing-accessible surface and molecular topological fragments. J. Phys. Chem. A 2020, 124, 10330–10345. 10.1021/acs.jpca.0c06791. PubMed DOI
Behler J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 2011, 134, 074106.10.1063/1.3553717. PubMed DOI
Frey B. J.; Dueck D. Clustering by passing messages between data points. Science 2007, 315, 972–976. 10.1126/science.1136800. PubMed DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.10.1103/PhysRevLett.77.3865. PubMed DOI
Tkatchenko A.; Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005.10.1103/PhysRevLett.102.073005. PubMed DOI
Tkatchenko A.; DiStasio Jr R. A.; Car R.; Scheffler M. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 2012, 108, 236402.10.1103/PhysRevLett.108.236402. PubMed DOI
Ambrosetti A.; Reilly A.; DiStasio R.; Tkatchenko A. Long-range correlation energy calculated from coupled atomic response functions. J. Chem. Phys. 2014, 140, 18A508.10.1063/1.4865104. PubMed DOI
Adamo C.; Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. 10.1063/1.478522. DOI
Reilly A.; Tkatchenko A. Seamless and Accurate Modeling of Organic Molecular Materials. J. Phys. Chem. Lett. 2013, 4, 1028–1033. 10.1021/jz400226x. PubMed DOI
Hoja J.; Tkatchenko A. First-principles stability ranking of molecular crystal polymorphs with the DFT+MBD approach. Faraday Discuss. 2018, 211, 253–274. 10.1039/C8FD00066B. PubMed DOI
Marom N.; DiStasio R.; Atalla V.; Levchenko S.; Reilly A.; Chelikowsky J.; Leiserowitz L.; Tkatchenko A. Many-Body Dispersion Interactions in Molecular Crystal Polymorphism. Angew. Chem., Int. Ed. 2013, 52, 6629–6632. 10.1002/anie.201301938. PubMed DOI
Nyman J.; Day G. M. Static and lattice vibrational energy differences between polymorphs. CrystEngComm 2015, 17, 5154–5165. 10.1039/C5CE00045A. DOI
Hedin L. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 1965, 139, A796.10.1103/PhysRev.139.A796. DOI
Marom N. Accurate description of the electronic structure of organic semiconductors by GW methods. J. Phys.: Condens. Matter 2017, 29, 103003.10.1088/1361-648X/29/10/103003. PubMed DOI
Sharifzadeh S. Many-body perturbation theory for understanding optical excitations in organic molecules and solids. J. Phys.: Condens. Matter 2018, 30, 153002.10.1088/1361-648X/aab0d1. PubMed DOI
Golze D.; Dvorak M.; Rinke P. The GW Compendium: A Practical Guide to Theoretical Photoemission Spectroscopy. Front. Chem. 2019, 7, 377.10.3389/fchem.2019.00377. PubMed DOI PMC
Rohlfing M.; Louie S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 2000, 62, 4927.10.1103/PhysRevB.62.4927. DOI
Blase X.; Duchemin I.; Jacquemin D. The Bethe-Salpeter equation in chemistry: Relations with TD-DFT, applications and challenges. Chem. Soc. Rev. 2018, 47, 1022–1043. 10.1039/C7CS00049A. PubMed DOI
Ong S. P.; Richards W. D.; Jain A.; Hautier G.; Kocher M.; Cholia S.; Gunter D.; Chevrier V. L.; Persson K. A.; Ceder G. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 2013, 68, 314–319. 10.1016/j.commatsci.2012.10.028. DOI
Frisch M. J.; et al.Gaussian ’16, rev. C.01; Gaussian, Inc.: Wallingford, CT, 2016.
Blum V.; Gehrke R.; Hanke F.; Havu P.; Havu V.; Ren X.; Reuter K.; Scheffler M. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 2009, 180, 2175–2196. 10.1016/j.cpc.2009.06.022. DOI
Deslippe J.; Samsonidze G.; Strubbe D. A.; Jain M.; Cohen M. L.; Louie S. G. BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 2012, 183, 1269–1289. 10.1016/j.cpc.2011.12.006. DOI
Giannozzi P.; Baroni S.; Bonini N.; Calandra M.; Car R.; Cavazzoni C.; Ceresoli D.; Chiarotti G. L.; Cococcioni M.; Dabo I.; et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.10.1088/0953-8984/21/39/395502. PubMed DOI
Troullier N.; Martins J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993.10.1103/PhysRevB.43.1993. PubMed DOI
Alagna N.; Han J.; Wollscheid N.; Perez Lustres J. L.; Herz J.; Hahn S.; Koser S.; Paulus F.; Bunz U. H.; Dreuw A.; et al. Tailoring ultrafast singlet fission by the chemical modification of phenazinothiadiazoles. J. Am. Chem. Soc. 2019, 141, 8834–8845. 10.1021/jacs.9b01079. PubMed DOI
Van Schenck J.; Mayonado G.; Anthony J.; Graham M.; Ostroverkhova O. Molecular packing-dependent exciton dynamics in functionalized anthradithiophene derivatives: From solutions to crystals. J. Chem. Phys. 2020, 153, 164715.10.1063/5.0026072. PubMed DOI
Pensack R. D.; Purdum G. E.; Mazza S. M.; Grieco C.; Asbury J. B.; Anthony J. E.; Loo Y.-L.; Scholes G. D. Excited-State Dynamics of 5, 14-vs 6, 13-Bis (trialkylsilylethynyl)-Substituted Pentacenes: Implications for Singlet Fission. J. Phys. Chem. C 2022, 126, 9784–9793. 10.1021/acs.jpcc.2c00897. PubMed DOI PMC
Burdett J. J.; Müller A. M.; Gosztola D.; Bardeen C. J. Excited state dynamics in solid and monomeric tetracene: The roles of superradiance and exciton fission. J. Chem. Phys. 2010, 133, 144506.10.1063/1.3495764. PubMed DOI
Burdett J. J.; Bardeen C. J. The Dynamics of Singlet Fission in Crystalline Tetracene and Covalent Analogs. Acc. Chem. Res. 2013, 46, 1312–1320. 10.1021/ar300191w. PubMed DOI
Kim V. O.; et al. Singlet exciton fission via an intermolecular charge transfer state in coevaporated pentacene-perfluoropentacene thin films. J. Chem. Phys. 2019, 151, 164706.10.1063/1.5130400. PubMed DOI
Miyata K.; Conrad-Burton F. S.; Geyer F. L.; Zhu X. Y. Triplet Pair States in Singlet Fission. Chem. Rev. 2019, 119, 4261–4292. 10.1021/acs.chemrev.8b00572. PubMed DOI
Margulies E. A.; et al. Direct observation of a charge-transfer state preceding high-yield singlet fission in terrylenediimide thin films. J. Am. Chem. Soc. 2017, 139, 663–671. 10.1021/jacs.6b07721. PubMed DOI
Chan W. L.; et al. The quantum coherent mechanism for singlet fission: Experiment and theory. Acc. Chem. Res. 2013, 46, 1321–1329. 10.1021/ar300286s. PubMed DOI
Sharifzadeh S.; et al. Relating the Physical Structure and Optoelectronic Function of Crystalline TIPS-Pentacene. Adv. Funct. Mater. 2015, 25, 2038–2046. 10.1002/adfm.201403005. DOI
Hart S. M.; Silva W. R.; Frontiera R. R. Femtosecond stimulated Raman evidence for charge-Transfer character in pentacene singlet fission. Chem. Sci. 2018, 9, 1242–1250. 10.1039/C7SC03496B. PubMed DOI PMC
Tseng R. J.; Chan R.; Tung V. C.; Yang Y. Anisotropy in Organic Single-Crystal Photovoltaic Characteristics. Adv. Mater. 2008, 20, 435–438. 10.1002/adma.200701374. DOI
Moon H.; Zeis R.; Borkent E.-J.; Besnard C.; Lovinger A. J.; Siegrist T.; Kloc C.; Bao Z. Synthesis, crystal structure, and transistor performance of tetracene derivatives. J. Am. Chem. Soc. 2004, 126, 15322–15323. 10.1021/ja045208p. PubMed DOI
Price S. L. Why don’t we find more polymorphs?. Acta Crystallographica Section B 2013, 69, 313–328. 10.1107/S2052519213018861. PubMed DOI
Rogal J.; Schneider E.; Tuckerman M. E. Neural-Network-Based Path Collective Variables for Enhanced Sampling of Phase Transformations. Phys. Rev. Lett. 2019, 123, 245701.10.1103/PhysRevLett.123.245701. PubMed DOI
The seventh blind test of crystal structure prediction: structure ranking methods