Inverse Design of Tetracene Polymorphs with Enhanced Singlet Fission Performance by Property-Based Genetic Algorithm Optimization

. 2023 Feb 14 ; 35 (3) : 1373-1386. [epub] 20230121

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36999121

The efficiency of solar cells may be improved by using singlet fission (SF), in which one singlet exciton splits into two triplet excitons. SF occurs in molecular crystals. A molecule may crystallize in more than one form, a phenomenon known as polymorphism. Crystal structure may affect SF performance. In the common form of tetracene, SF is experimentally known to be slightly endoergic. A second, metastable polymorph of tetracene has been found to exhibit better SF performance. Here, we conduct inverse design of the crystal packing of tetracene using a genetic algorithm (GA) with a fitness function tailored to simultaneously optimize the SF rate and the lattice energy. The property-based GA successfully generates more structures predicted to have higher SF rates and provides insight into packing motifs associated with improved SF performance. We find a putative polymorph predicted to have superior SF performance to the two forms of tetracene, whose structures have been determined experimentally. The putative structure has a lattice energy within 1.5 kJ/mol of the most stable common form of tetracene.

Zobrazit více v PubMed

Shockley W.; Queisser H. J. Detailed balance limit of efficiency of P-N junction solar cells. J. Appl. Phys. 1961, 32, 510–519. 10.1063/1.1736034. DOI

Schaller R. D.; Klimov V. I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601.10.1103/PhysRevLett.92.186601. PubMed DOI

Hanna M.; Nozik A. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 2006, 100, 074510.10.1063/1.2356795. DOI

Smith M. B.; Michl J. Singlet fission. Chem. Rev. 2010, 110, 6891–6936. 10.1021/cr1002613. PubMed DOI

Smith M. B.; Michl J. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 2013, 64, 361–386. 10.1146/annurev-physchem-040412-110130. PubMed DOI

Casanova D. Theoretical Modeling of Singlet Fission. Chem. Rev. 2018, 118, 7164–7207. 10.1021/acs.chemrev.7b00601. PubMed DOI

Singh S.; Jones W.; Siebrand W.; Stoicheff B.; Schneider W. Laser generation of excitons and fluorescence in anthracene crystals. J. Chem. Phys. 1965, 42, 330–342. 10.1063/1.1695695. DOI

Wilson M. W.; Rao A.; Johnson K.; Gélinas S.; Di Pietro R.; Clark J.; Friend R. H. Temperature-independent singlet exciton fission in tetracene. J. Am. Chem. Soc. 2013, 135, 16680–16688. 10.1021/ja408854u. PubMed DOI

Broch K.; Dieterle J.; Branchi F.; Hestand N.; Olivier Y.; Tamura H.; Cruz C.; Nichols V.; Hinderhofer A.; Beljonne D.; et al. Robust singlet fission in pentacene thin films with tuned charge transfer interactions. Nat. Commun. 2018, 9, 954.10.1038/s41467-018-03300-1. PubMed DOI PMC

Sanders S. N.; Kumarasamy E.; Fallon K. J.; Sfeir M. Y.; Campos L. M. Singlet fission in a hexacene dimer: energetics dictate dynamics. Chem. Sci. 2020, 11, 1079–1084. 10.1039/C9SC05066C. PubMed DOI PMC

Sun D.; Deng G.-H.; Xu B.; Xu E.; Li X.; Wu Y.; Qian Y.; Zhong Y.; Nuckolls C.; Harutyunyan A. R.; et al. Anisotropic singlet fission in single crystalline hexacene. Iscience 2019, 19, 1079–1089. 10.1016/j.isci.2019.08.053. PubMed DOI PMC

Albrecht W.; Michel-Beyerle M.; Yakhot V. Exciton fission in excimer forming crystal. Dynamics of an excimer build-up in α-perylene. Chem. Phys. 1978, 35, 193–200. 10.1016/0301-0104(78)85205-7. DOI

Eaton S. W.; Shoer L. E.; Karlen S. D.; Dyar S. M.; Margulies E. A.; Veldkamp B. S.; Ramanan C.; Hartzler D. A.; Savikhin S.; Marks T. J.; et al. Singlet exciton fission in polycrystalline thin films of a slip-stacked perylenediimide. J. Am. Chem. Soc. 2013, 135, 14701–14712. 10.1021/ja4053174. PubMed DOI

Aulin Y. V.; Felter K. M.; Günbas D. D.; Dubey R. K.; Jager W. F.; Grozema F. C. Morphology-Independent Efficient Singlet Exciton Fission in Perylene Diimide Thin Films. ChemPlusChem. 2018, 83, 230–238. 10.1002/cplu.201700449. PubMed DOI

Hall C. L.; Andrusenko I.; Potticary J.; Gao S.; Liu X.; Schmidt W.; Marom N.; Mugnaioli E.; Gemmi M.; Hall S. R. 3D electron diffraction structure determination of terrylene, a promising candidate for intermolecular singlet fission. ChemPhysChem 2021, 22, 1631–1637. 10.1002/cphc.202100320. PubMed DOI PMC

Johnson J. C.; Nozik A. J.; Michl J. High triplet yield from singlet fission in a thin film of 1, 3-diphenylisobenzofuran. J. Am. Chem. Soc. 2010, 132, 16302–16303. 10.1021/ja104123r. PubMed DOI

Ryerson J. L.; Schrauben J. N.; Ferguson A. J.; Sahoo S. C.; Naumov P.; Havlas Z.; Michl J.; Nozik A. J.; Johnson J. C. Two thin film polymorphs of the singlet fission compound 1, 3-diphenylisobenzofuran. J. Phys. Chem. C 2014, 118, 12121–12132. 10.1021/jp502122d. DOI

Gradinaru C. C.; Kennis J. T.; Papagiannakis E.; Van Stokkum I. H.; Cogdell R. J.; Fleming G. R.; Niederman R. A.; Van Grondelle R. An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 2364–2369. 10.1073/pnas.051501298. PubMed DOI PMC

Manawadu D.; Valentine D. J.; Marcus M.; Barford W. Singlet triplet-pair production and possible singlet-fission in carotenoids. J. Phys. Chem. Lett. 2022, 13, 1344–1349. 10.1021/acs.jpclett.1c03812. PubMed DOI PMC

Musser A. J.; Maiuri M.; Brida D.; Cerullo G.; Friend R. H.; Clark J. The nature of singlet exciton fission in carotenoid aggregates. J. Am. Chem. Soc. 2015, 137, 5130–5139. 10.1021/jacs.5b01130. PubMed DOI PMC

Beljonne D.; Cornil J.; Friend R.; Janssen R.; Brédas J.-L. Influence of chain length and derivatization on the lowest singlet and triplet states and intersystem crossing in oligothiophenes. J. Am. Chem. Soc. 1996, 118, 6453–6461. 10.1021/ja9531135. DOI

Busby E.; Xia J.; Low J. Z.; Wu Q.; Hoy J.; Campos L. M.; Sfeir M. Y. Fast singlet exciton decay in push-pull molecules containing oxidized thiophenes. J. Phys. Chem. B 2015, 119, 7644–7650. 10.1021/jp511704r. PubMed DOI

Dean J. C.; Zhang R.; Hallani R. K.; Pensack R. D.; Sanders S. N.; Oblinsky D. G.; Parkin S. R.; Campos L. M.; Anthony J. E.; Scholes G. D. Photophysical characterization and time-resolved spectroscopy of a anthradithiophene dimer: exploring the role of conformation in singlet fission. Phys. Chem. Chem. Phys. 2017, 19, 23162–23175. 10.1039/C7CP03774K. PubMed DOI

Zhao T.; Kloc C.; Ni W.; Sun L.; Gurzadyan G. G. Revealing ultrafast relaxation dynamics in six-thiophene thin film and single crystal. J. Photochem. Photobiol. A: Chem. 2021, 404, 112920.10.1016/j.jphotochem.2020.112920. DOI

Sharifzadeh S.; Darancet P.; Kronik L.; Neaton J. B. Low-energy charge-transfer excitons in organic solids from first-principles: The case of pentacene. J. Phys. Chem. Lett. 2013, 4, 2197–2201. 10.1021/jz401069f. DOI

Beljonne D.; Yamagata H.; Brédas J.-L.; Spano F.; Olivier Y. Charge-transfer excitations steer the Davydov splitting and mediate singlet exciton fission in pentacene. Phys. Rev. Lett. 2013, 110, 226402.10.1103/PhysRevLett.110.226402. PubMed DOI

Wang X.; Liu X.; Tom R.; Cook C.; Schatschneider B.; Marom N. Phenylated acene derivatives as candidates for intermolecular singlet fission. J. Phys. Chem. C 2019, 123, 5890–5899. 10.1021/acs.jpcc.8b12549. DOI

Wang X.; Liu X.; Cook C.; Schatschneider B.; Marom N. On the possibility of singlet fission in crystalline quaterrylene. J. Chem. Phys. 2018, 148, 184101.10.1063/1.5027553. PubMed DOI

Monahan N.; Zhu X.-Y. Charge transfer–mediated singlet fission. Annu. Rev. Phys. Chem. 2015, 66, 601–618. 10.1146/annurev-physchem-040214-121235. PubMed DOI

Rao A.; Friend R. H. Harnessing singlet exciton fission to break the Shockley–Queisser limit. Nat. Rev. Mater. 2017, 2, 17063.10.1038/natrevmats.2017.63. DOI

Lu H.; Chen X.; Anthony J. E.; Johnson J. C.; Beard M. C. Sensitizing singlet fission with perovskite nanocrystals. J. Am. Chem. Soc. 2019, 141, 4919–4927. 10.1021/jacs.8b13562. PubMed DOI

Budden P. J.; Weiss L. R.; Müller M.; Panjwani N. A.; Dowland S.; Allardice J. R.; Ganschow M.; Freudenberg J.; Behrends J.; Bunz U. H.; et al. Singlet exciton fission in a modified acene with improved stability and high photoluminescence yield. Nat. Commun. 2021, 12, 1527.10.1038/s41467-021-21719-x. PubMed DOI PMC

Liu X.; Tom R.; Gao S.; Marom N. Assessing zethrene derivatives as singlet fission candidates based on multiple descriptors. J. Phys. Chem. C 2020, 124, 26134–26143. 10.1021/acs.jpcc.0c08160. DOI

Liu X.; Tom R.; Wang X.; Cook C.; Schatschneider B.; Marom N. Pyrene-stabilized acenes as intermolecular singlet fission candidates: importance of exciton wave-function convergence. J. Phys.: Condens. Matter 2020, 32, 184001.10.1088/1361-648X/ab699e. PubMed DOI

Wang X.; Garcia T.; Monaco S.; Schatschneider B.; Marom N. Effect of crystal packing on the excitonic properties of rubrene polymorphs. CrystEngComm 2016, 18, 7353–7362. 10.1039/C6CE00873A. DOI

Liu X.; Wang X.; Gao S.; Chang V.; Tom R.; Yu M.; Ghiringhelli L. M.; Marom N. Finding predictive models for singlet fission by machine learning. npj Comput. Mater. 2022, 8, 70.10.1038/s41524-022-00758-y. DOI

Minami T.; Nakano M. Diradical character view of singlet fission. J. Phys. Chem. Lett. 2012, 3, 145–150. 10.1021/jz2015346. PubMed DOI

Padula D.; Omar Ö. H.; Nematiaram T.; Troisi A. Singlet fission molecules among known compounds: finding a few needles in a haystack. Energy Environ. Sci. 2019, 12, 2412–2416. 10.1039/C9EE01508F. DOI

Nogueira B. A.; Castiglioni C.; Fausto R. Color polymorphism in organic crystals. Commun. Chem. 2020, 3, 34.10.1038/s42004-020-0279-0. PubMed DOI PMC

Moliterni A.; Altamura D.; Lassandro R.; Olieric V.; Ferri G.; Cardarelli F.; Camposeo A.; Pisignano D.; Anthony J. E.; Giannini C. Synthesis, crystal structure, polymorphism and microscopic luminescence properties of anthracene derivative compounds. Acta. Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2020, 76, 427–435. 10.1107/S2052520620004424. PubMed DOI

Bhattacharyya K.; Datta A. Polymorphism controlled singlet fission in tips-anthracene: role of stacking orientation. J. Phys. Chem. C 2017, 121, 1412–1420. 10.1021/acs.jpcc.6b10075. DOI

Mayonado G.; Vogt K. T.; Van Schenck J. D.; Zhu L.; Fregoso G.; Anthony J.; Ostroverkhova O.; Graham M. W. High-symmetry anthradithiophene molecular packing motifs promote thermally activated singlet fission. J. Phys. Chem. C 2022, 126, 4433–4445. 10.1021/acs.jpcc.1c10977. DOI

Buchanan E. A.; Michl J. Optimal arrangements of 1, 3-diphenylisobenzofuran molecule pairs for fast singlet fission. Photochem. Photobiol. Sci. 2019, 18, 2112–2124. 10.1039/c9pp00283a. PubMed DOI

Piland G. B.; Bardeen C. J. How morphology affects singlet fission in crystalline tetracene. J. Phys. Chem. Lett. 2015, 6, 1841–1846. 10.1021/acs.jpclett.5b00569. PubMed DOI

Buchanan E. A.; Kaleta J.; Wen J.; Lapidus S. H.; Císařová I.; Havlas Z.; Johnson J. C.; Michl J. Molecular packing and singlet fission: the parent and three fluorinated 1, 3-diphenylisobenzofurans. J. Phys. Chem. Lett. 2019, 10, 1947–1953. 10.1021/acs.jpclett.8b03875. PubMed DOI

Sondermann U.; Kutoglu A.; Bassler H. X-ray diffraction study of the phase transition in crystalline tetracene. J. Phys. Chem. 1985, 89, 1735–1741. 10.1021/j100255a039. DOI

Venuti E.; Della Valle R. G.; Farina L.; Brillante A.; Masino M.; Girlando A. Phonons and structures of tetracene polymorphs at low temperature and high pressure. Phys. Rev. B 2004, 70, 104106.10.1103/PhysRevB.70.104106. DOI

Della Valle R. G.; Venuti E.; Brillante A.; Girlando A. Inherent structures of crystalline tetracene. J. Phys. Chem. A 2006, 110, 10858–10862. 10.1021/jp0611020. PubMed DOI

Groff R.; Avakian P.; Merrifield R. Coexistence of exciton fission and fusion in tetracene crystals. Phys. Rev. B 1970, 1, 815.10.1103/PhysRevB.1.815. DOI

Groom C. R.; Bruno I. J.; Lightfoot M. P.; Ward S. C. The Cambridge structural database. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 2016, 72, 171–179. 10.1107/S2052520616003954. PubMed DOI PMC

Campbell R.; Robertson J. M.; Trotter J. The crystal structure of hexacene, and a revision of the crystallographic data for tetracene. Acta crystallogr. 1962, 15, 289–290. 10.1107/S0365110X62000699. DOI

Rang Z.; Haraldsson A.; Kim D. M.; Ruden P. P.; Nathan M. I.; Chesterfield R. J.; Frisbie C. D. Hydrostatic-pressure dependence of the photoconductivity of single-crystal pentacene and tetracene. Appl. Phys. Lett. 2001, 79, 2731–2733. 10.1063/1.1410878. DOI

Vaubel G.; Baessler H. Temperature dependence of width and position of the lowest singlet-singlet transition in crystalline tetracene. Mol. Cryst. Liq. Cryst. 1970, 12, 39–45. 10.1080/15421407008082758. DOI

Holmes D.; Kumaraswamy S.; Matzger A. J.; Vollhardt K. P. C. On the nature of nonplanarity in the [N] Phenylenes. Chem. - Eur. J. 1999, 5, 3399–3412. 10.1002/(SICI)1521-3765(19991105)5:11<3399::AID-CHEM3399>3.0.CO;2-V. DOI

Pithan L.; Nabok D.; Cocchi C.; Beyer P.; Duva G.; Simbrunner J.; Rawle J.; Nicklin C.; Schäfer P.; Draxl C.; et al. Molecular structure of the substrate-induced thin-film phase of tetracene. J. Chem. Phys. 2018, 149, 144701.10.1063/1.5043379. PubMed DOI

Nahm R.; Engstrom J. Who’s on first? Tracking in real time the growth of multiple crystalline phases of an organic semiconductor: tetracene on SiO2. J. Chem. Phys. 2017, 146, 052815.10.1063/1.4971288. PubMed DOI

Arias D. H.; Ryerson J. L.; Cook J. D.; Damrauer N. H.; Johnson J. C. Polymorphism influences singlet fission rates in tetracene thin films. Chem. Sci. 2016, 7, 1185–1191. 10.1039/C5SC03535J. PubMed DOI PMC

Daiber B.; Maiti S.; Ferro S. M.; Bodin J.; Van Den Boom A. F.; Luxembourg S. L.; Kinge S.; Pujari S. P.; Zuilhof H.; Siebbeles L. D.; Ehrler B. Change in Tetracene Polymorphism Facilitates Triplet Transfer in Singlet Fission-Sensitized Silicon Solar Cells. J. Phys. Chem. Lett. 2020, 11, 8703–8709. 10.1021/acs.jpclett.0c02163. PubMed DOI PMC

Macrae C. F.; Edgington P. R.; McCabe P.; Pidcock E.; Shields G. P.; Taylor R.; Towler M.; van de Streek J. Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453–457. 10.1107/S002188980600731X. DOI

Havlas Z.; Michl J. Guidance for Mutual Disposition of Chromophores for Singlet Fission. Isr. J. Chem. 2016, 56, 96–106. 10.1002/ijch.201500054. DOI

Zaykov A.; Felkel P.; Buchanan E. A.; Jovanovic M.; Havenith R. W.; Kathir R. K.; Broer R.; Havlas Z.; Michl J. Singlet Fission Rate: Optimized Packing of a Molecular Pair. Ethylene as a Model. J. Am. Chem. Soc. 2019, 141, 17729–17743. 10.1021/jacs.9b08173. PubMed DOI

Buchanan E. A.; Havlas Z.; Michl J. Optimal arrangements of tetracene molecule pairs for fast singlet fission. Bull. Chem. Soc. Jpn. 2019, 92, 1960–1971. 10.1246/bcsj.20190229. PubMed DOI

Ryerson J. L.; Zaykov A.; Aguilar Suarez L. E.; Havenith R. W.; Stepp B. R.; Dron P. I.; Kaleta J.; Akdag A.; Teat S. J.; Magnera T. F.; et al. Structure and photophysics of indigoids for singlet fission: Cibalackrot. J. Chem. Phys. 2019, 151, 184903.10.1063/1.5121863. PubMed DOI

Rais D.; et al. Singlet Fission in Thin Solid Films of Bis(thienyl)diketopyrrolopyrroles. ChemPlusChem. 2020, 85, 2689–2703. 10.1002/cplu.202000623. PubMed DOI

Cruz-Cabeza A. J.; Reutzel-Edens S. M.; Bernstein J. Facts and fictions about polymorphism. Chem. Soc. Rev. 2015, 44, 8619–8635. 10.1039/C5CS00227C. PubMed DOI

Thakur T. S.; Dubey R.; Desiraju G. R. Crystal structure and prediction. Annu. Rev. Phys. Chem. 2015, 66, 21–42. 10.1146/annurev-physchem-040214-121452. PubMed DOI

Woodley S. M.; Catlow R. Crystal structure prediction from first principles. Nat. Mater. 2008, 7, 937–946. 10.1038/nmat2321. PubMed DOI

Bowskill D. H.; Sugden I. J.; Konstantinopoulos S.; Adjiman C. S.; Pantelides C. C. Crystal Structure Prediction Methods for Organic Molecules: State of the Art. Annu. Rev. Chem. Biomol. Eng. 2021, 12, 593–623. 10.1146/annurev-chembioeng-060718-030256. PubMed DOI

Price S. L.; Brandenburg J. G.. Non-Covalent Interactions in Quantum Chemistry and Physics; Elsevier, 2017; pp 333–363.

Bardwell D. A.; Adjiman C. S.; Arnautova Y. A.; Bartashevich E.; Boerrigter S. X.; Braun D. E.; Cruz-Cabeza A. J.; Day G. M.; Della Valle R. G.; Desiraju G. R.; et al. Towards crystal structure prediction of complex organic compounds–a report on the fifth blind test. Acta. Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2011, 67, 535–551. 10.1107/S0108768111042868. PubMed DOI PMC

Reilly A. M.; Cooper R. I.; Adjiman C. S.; Bhattacharya S.; Boese A. D.; Brandenburg J. G.; Bygrave P. J.; Bylsma R.; Campbell J. E.; Car R.; et al. Report on the sixth blind test of organic crystal structure prediction methods. Acta. Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 439–459. 10.1107/S2052520616007447. PubMed DOI PMC

Li X.; Curtis F. S.; Rose T.; Schober C.; Vazquez-Mayagoitia A.; Reuter K.; Oberhofer H.; Marom N. Genarris: Random generation of molecular crystal structures and fast screening with a Harris approximation. J. Chem. Phys. 2018, 148, 241701.10.1063/1.5014038. PubMed DOI

Tom R.; Rose T.; Bier I.; O’Brien H.; Vázquez-Mayagoitia Á.; Marom N. Genarris 2.0: A random structure generator for molecular crystals. Comput. Phys. Commun. 2020, 250, 107170.10.1016/j.cpc.2020.107170. DOI

Pickard C. J.; Needs R. Ab initio random structure searching. J. Phys.: Condens. Matter 2011, 23, 053201.10.1088/0953-8984/23/5/053201. PubMed DOI

Case D. H.; Campbell J. E.; Bygrave P. J.; Day G. M. Convergence properties of crystal structure prediction by quasi-random sampling. J. Chem. Theory Comput. 2016, 12, 910–924. 10.1021/acs.jctc.5b01112. PubMed DOI PMC

Price S. L. Predicting crystal structures of organic compounds. Chem. Soc. Rev. 2014, 43, 2098–2111. 10.1039/C3CS60279F. PubMed DOI

Oganov A. R.; Pickard C. J.; Zhu Q.; Needs R. J. Structure prediction drives materials discovery. Nat. Rev. Mater. 2019, 4, 331–348. 10.1038/s41578-019-0101-8. DOI

Moellmann J.; Grimme S. DFT-D3 study of some molecular crystals. J. Phys. Chem. C 2014, 118, 7615–7621. 10.1021/jp501237c. DOI

Reilly A. M.; Tkatchenko A. Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals. J. Chem. Phys. 2013, 139, 024705.10.1063/1.4812819. PubMed DOI

O’Connor D.; Bier I.; Hsieh Y.-T.; Marom N. Performance of Dispersion-Inclusive Density Functional Theory Methods for Energetic Materials. J. Chem. Theory Comput. 2022, 18, 4456–4471. 10.1021/acs.jctc.2c00350. PubMed DOI

Price S. L.; Braun D. E.; Reutzel-Edens S. M. Can computed crystal energy landscapes help understand pharmaceutical solids?. Chem. Commun. 2016, 52, 7065–7077. 10.1039/C6CC00721J. PubMed DOI PMC

Shtukenberg A. G.; Zhu Q.; Carter D. J.; Vogt L.; Hoja J.; Schneider E.; Song H.; Pokroy B.; Polishchuk I.; Tkatchenko A.; et al. Powder diffraction and crystal structure prediction identify four new coumarin polymorphs. Chem. Sci. 2017, 8, 4926–4940. 10.1039/C7SC00168A. PubMed DOI PMC

Zunger A. Inverse design in search of materials with target functionalities. Nat. Rev. Chem. 2018, 2, 0121.10.1038/s41570-018-0121. DOI

Franceschetti A.; Zunger A. The inverse band-structure problem of finding an atomic configuration with given electronic properties. Nature 1999, 402, 60–63. 10.1038/46995. DOI

Hiener D.; Hutchison G. Pareto Optimization of Oligomer Polarizability and Dipole Moment using a Genetic Algorithm. J. Phys. Chem. A 2022, 126, 2750–2760. 10.1021/acs.jpca.2c01266. PubMed DOI

d’Avezac M.; Luo J.-W.; Chanier T.; Zunger A. Genetic-algorithm discovery of a direct-gap and optically allowed superstructure from indirect-gap Si and Ge semiconductors. Phys. Rev. Lett. 2012, 108, 027401.10.1103/PhysRevLett.108.027401. PubMed DOI

Bhattacharya S.; Sonin B. H.; Jumonville C. J.; Ghiringhelli L. M.; Marom N. Computational design of nanoclusters by property-based genetic algorithms: tuning the electronic properties of (TiO2)n clusters. Phys. Rev. B 2015, 91, 241115.10.1103/PhysRevB.91.241115. DOI

Cheng C. Y.; Campbell J. E.; Day G. M. Evolutionary chemical space exploration for functional materials: computational organic semiconductor discovery. Chem. Sci. 2020, 11, 4922–4933. 10.1039/D0SC00554A. PubMed DOI PMC

Pfund L. Y.; Matzger A. J. Towards exhaustive and automated high-throughput screening for crystalline polymorphs. ACS Comb. Sci. 2014, 16, 309–313. 10.1021/co500043q. PubMed DOI PMC

Gu C.-H.; Young Jr V.; Grant D. J. Polymorph screening: Influence of solvents on the rate of solvent-mediated polymorphic transformation. J. Pharm. Sci. 2001, 90, 1878–1890. 10.1002/jps.1137. PubMed DOI

Lee E. H. A practical guide to pharmaceutical polymorph screening & selection. Asian J. Pharm. Sci. 2014, 9, 163–175. 10.1016/j.ajps.2014.05.002. DOI

Neumann M.; Van De Streek J.; Fabbiani F.; Hidber P.; Grassmann O. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening. Nat. Commun. 2015, 6, 7793.10.1038/ncomms8793. PubMed DOI PMC

Weissbuch I.; Lahav M.; Leiserowitz L. Toward stereochemical control, monitoring, and understanding of crystal nucleation. Cryst. Growth Des. 2003, 3, 125–150. 10.1021/cg0200560. DOI

Torbeev V. Y.; Shavit E.; Weissbuch I.; Leiserowitz L.; Lahav M. Control of crystal polymorphism by tuning the structure of auxiliary molecules as nucleation inhibitors. The β-polymorph of glycine grown in aqueous solutions. Cryst. Growth Des. 2005, 5, 2190–2196. 10.1021/cg050200s. DOI

Ma W.; Reinspach J.; Zhou Y.; Diao Y.; McAfee T.; Mannsfeld S. C.; Bao Z.; Ade H. Tuning local molecular orientation-composition correlations in binary organic thin films by solution shearing. Adv. Funct. Mater. 2015, 25, 3131–3137. 10.1002/adfm.201500468. DOI

Riera-Galindo S.; Tamayo A.; Mas-Torrent M. Role of polymorphism and thin-film morphology in organic semiconductors processed by solution shearing. ACS omega 2018, 3, 2329–2339. 10.1021/acsomega.8b00043. PubMed DOI PMC

Kim K.; Santos E. J.; Lee T. H.; Nishi Y.; Bao Z. Epitaxially grown strained pentacene thin film on graphene membrane. Small 2015, 11, 2037–2043. 10.1002/smll.201403006. PubMed DOI

Jiang Q.; Hu C.; Ward M. D. Stereochemical control of polymorph transitions in nanoscale reactors. J. Am. Chem. Soc. 2013, 135, 2144–2147. 10.1021/ja312511v. PubMed DOI

Jiang Q.; Ward M. D. Crystallization under nanoscale confinement. Chem. Soc. Rev. 2014, 43, 2066–2079. 10.1039/C3CS60234F. PubMed DOI

Diao Y.; Lenn K. M.; Lee W.-Y.; Blood-Forsythe M. A.; Xu J.; Mao Y.; Kim Y.; Reinspach J. A.; Park S.; Aspuru-Guzik A.; et al. Understanding polymorphism in organic semiconductor thin films through nanoconfinement. J. Am. Chem. Soc. 2014, 136, 17046–17057. 10.1021/ja507179d. PubMed DOI

Zhang Y.; Chen A.; Kim M.-W.; Alaei A.; Lee S. S. Nanoconfining solution-processed organic semiconductors for emerging optoelectronics. Chem. Soc. Rev. 2021, 50, 9375–9390. 10.1039/D1CS00430A. PubMed DOI

Curtis F.; Li X.; Rose T.; Vázquez-Mayagoitia Á.; Bhattacharya S.; Ghiringhelli L. M.; Marom N. GAtor: A first-principles genetic algorithm for molecular crystal structure prediction. J. Chem. Theory Comput. 2018, 14, 2246–2264. 10.1021/acs.jctc.7b01152. PubMed DOI

Curtis F.; Rose T.; Marom N. Evolutionary niching in the GAtor genetic algorithm for molecular crystal structure prediction. Faraday Discuss. 2018, 211, 61–77. 10.1039/C8FD00067K. PubMed DOI

Bier I.; O’Connor D.; Hsieh Y.-T.; Wen W.; Hiszpanski A. M.; Han T. Y.-J.; Marom N. Crystal structure prediction of energetic materials and a twisted arene with Genarris and GAtor. CrystEngComm 2021, 23, 6023–6038. 10.1039/D1CE00745A. DOI

Bier I.; Marom N. Machine learned model for solid form volume estimation based on packing-accessible surface and molecular topological fragments. J. Phys. Chem. A 2020, 124, 10330–10345. 10.1021/acs.jpca.0c06791. PubMed DOI

Behler J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 2011, 134, 074106.10.1063/1.3553717. PubMed DOI

Frey B. J.; Dueck D. Clustering by passing messages between data points. Science 2007, 315, 972–976. 10.1126/science.1136800. PubMed DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.10.1103/PhysRevLett.77.3865. PubMed DOI

Tkatchenko A.; Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005.10.1103/PhysRevLett.102.073005. PubMed DOI

Tkatchenko A.; DiStasio Jr R. A.; Car R.; Scheffler M. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 2012, 108, 236402.10.1103/PhysRevLett.108.236402. PubMed DOI

Ambrosetti A.; Reilly A.; DiStasio R.; Tkatchenko A. Long-range correlation energy calculated from coupled atomic response functions. J. Chem. Phys. 2014, 140, 18A508.10.1063/1.4865104. PubMed DOI

Adamo C.; Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. 10.1063/1.478522. DOI

Reilly A.; Tkatchenko A. Seamless and Accurate Modeling of Organic Molecular Materials. J. Phys. Chem. Lett. 2013, 4, 1028–1033. 10.1021/jz400226x. PubMed DOI

Hoja J.; Tkatchenko A. First-principles stability ranking of molecular crystal polymorphs with the DFT+MBD approach. Faraday Discuss. 2018, 211, 253–274. 10.1039/C8FD00066B. PubMed DOI

Marom N.; DiStasio R.; Atalla V.; Levchenko S.; Reilly A.; Chelikowsky J.; Leiserowitz L.; Tkatchenko A. Many-Body Dispersion Interactions in Molecular Crystal Polymorphism. Angew. Chem., Int. Ed. 2013, 52, 6629–6632. 10.1002/anie.201301938. PubMed DOI

Nyman J.; Day G. M. Static and lattice vibrational energy differences between polymorphs. CrystEngComm 2015, 17, 5154–5165. 10.1039/C5CE00045A. DOI

Hedin L. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 1965, 139, A796.10.1103/PhysRev.139.A796. DOI

Marom N. Accurate description of the electronic structure of organic semiconductors by GW methods. J. Phys.: Condens. Matter 2017, 29, 103003.10.1088/1361-648X/29/10/103003. PubMed DOI

Sharifzadeh S. Many-body perturbation theory for understanding optical excitations in organic molecules and solids. J. Phys.: Condens. Matter 2018, 30, 153002.10.1088/1361-648X/aab0d1. PubMed DOI

Golze D.; Dvorak M.; Rinke P. The GW Compendium: A Practical Guide to Theoretical Photoemission Spectroscopy. Front. Chem. 2019, 7, 377.10.3389/fchem.2019.00377. PubMed DOI PMC

Rohlfing M.; Louie S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 2000, 62, 4927.10.1103/PhysRevB.62.4927. DOI

Blase X.; Duchemin I.; Jacquemin D. The Bethe-Salpeter equation in chemistry: Relations with TD-DFT, applications and challenges. Chem. Soc. Rev. 2018, 47, 1022–1043. 10.1039/C7CS00049A. PubMed DOI

Ong S. P.; Richards W. D.; Jain A.; Hautier G.; Kocher M.; Cholia S.; Gunter D.; Chevrier V. L.; Persson K. A.; Ceder G. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 2013, 68, 314–319. 10.1016/j.commatsci.2012.10.028. DOI

Frisch M. J.; et al.Gaussian ’16, rev. C.01; Gaussian, Inc.: Wallingford, CT, 2016.

Blum V.; Gehrke R.; Hanke F.; Havu P.; Havu V.; Ren X.; Reuter K.; Scheffler M. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 2009, 180, 2175–2196. 10.1016/j.cpc.2009.06.022. DOI

Deslippe J.; Samsonidze G.; Strubbe D. A.; Jain M.; Cohen M. L.; Louie S. G. BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 2012, 183, 1269–1289. 10.1016/j.cpc.2011.12.006. DOI

Giannozzi P.; Baroni S.; Bonini N.; Calandra M.; Car R.; Cavazzoni C.; Ceresoli D.; Chiarotti G. L.; Cococcioni M.; Dabo I.; et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.10.1088/0953-8984/21/39/395502. PubMed DOI

Troullier N.; Martins J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993.10.1103/PhysRevB.43.1993. PubMed DOI

Alagna N.; Han J.; Wollscheid N.; Perez Lustres J. L.; Herz J.; Hahn S.; Koser S.; Paulus F.; Bunz U. H.; Dreuw A.; et al. Tailoring ultrafast singlet fission by the chemical modification of phenazinothiadiazoles. J. Am. Chem. Soc. 2019, 141, 8834–8845. 10.1021/jacs.9b01079. PubMed DOI

Van Schenck J.; Mayonado G.; Anthony J.; Graham M.; Ostroverkhova O. Molecular packing-dependent exciton dynamics in functionalized anthradithiophene derivatives: From solutions to crystals. J. Chem. Phys. 2020, 153, 164715.10.1063/5.0026072. PubMed DOI

Pensack R. D.; Purdum G. E.; Mazza S. M.; Grieco C.; Asbury J. B.; Anthony J. E.; Loo Y.-L.; Scholes G. D. Excited-State Dynamics of 5, 14-vs 6, 13-Bis (trialkylsilylethynyl)-Substituted Pentacenes: Implications for Singlet Fission. J. Phys. Chem. C 2022, 126, 9784–9793. 10.1021/acs.jpcc.2c00897. PubMed DOI PMC

Burdett J. J.; Müller A. M.; Gosztola D.; Bardeen C. J. Excited state dynamics in solid and monomeric tetracene: The roles of superradiance and exciton fission. J. Chem. Phys. 2010, 133, 144506.10.1063/1.3495764. PubMed DOI

Burdett J. J.; Bardeen C. J. The Dynamics of Singlet Fission in Crystalline Tetracene and Covalent Analogs. Acc. Chem. Res. 2013, 46, 1312–1320. 10.1021/ar300191w. PubMed DOI

Kim V. O.; et al. Singlet exciton fission via an intermolecular charge transfer state in coevaporated pentacene-perfluoropentacene thin films. J. Chem. Phys. 2019, 151, 164706.10.1063/1.5130400. PubMed DOI

Miyata K.; Conrad-Burton F. S.; Geyer F. L.; Zhu X. Y. Triplet Pair States in Singlet Fission. Chem. Rev. 2019, 119, 4261–4292. 10.1021/acs.chemrev.8b00572. PubMed DOI

Margulies E. A.; et al. Direct observation of a charge-transfer state preceding high-yield singlet fission in terrylenediimide thin films. J. Am. Chem. Soc. 2017, 139, 663–671. 10.1021/jacs.6b07721. PubMed DOI

Chan W. L.; et al. The quantum coherent mechanism for singlet fission: Experiment and theory. Acc. Chem. Res. 2013, 46, 1321–1329. 10.1021/ar300286s. PubMed DOI

Sharifzadeh S.; et al. Relating the Physical Structure and Optoelectronic Function of Crystalline TIPS-Pentacene. Adv. Funct. Mater. 2015, 25, 2038–2046. 10.1002/adfm.201403005. DOI

Hart S. M.; Silva W. R.; Frontiera R. R. Femtosecond stimulated Raman evidence for charge-Transfer character in pentacene singlet fission. Chem. Sci. 2018, 9, 1242–1250. 10.1039/C7SC03496B. PubMed DOI PMC

Tseng R. J.; Chan R.; Tung V. C.; Yang Y. Anisotropy in Organic Single-Crystal Photovoltaic Characteristics. Adv. Mater. 2008, 20, 435–438. 10.1002/adma.200701374. DOI

Moon H.; Zeis R.; Borkent E.-J.; Besnard C.; Lovinger A. J.; Siegrist T.; Kloc C.; Bao Z. Synthesis, crystal structure, and transistor performance of tetracene derivatives. J. Am. Chem. Soc. 2004, 126, 15322–15323. 10.1021/ja045208p. PubMed DOI

Price S. L. Why don’t we find more polymorphs?. Acta Crystallographica Section B 2013, 69, 313–328. 10.1107/S2052519213018861. PubMed DOI

Rogal J.; Schneider E.; Tuckerman M. E. Neural-Network-Based Path Collective Variables for Enhanced Sampling of Phase Transformations. Phys. Rev. Lett. 2019, 123, 245701.10.1103/PhysRevLett.123.245701. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The seventh blind test of crystal structure prediction: structure ranking methods

. 2024 Dec 01 ; 80 (Pt 6) : 548-74. [epub] 20241201

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...