• This record comes from PubMed

Inverse Design of Tetracene Polymorphs with Enhanced Singlet Fission Performance by Property-Based Genetic Algorithm Optimization

. 2023 Feb 14 ; 35 (3) : 1373-1386. [epub] 20230121

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

The efficiency of solar cells may be improved by using singlet fission (SF), in which one singlet exciton splits into two triplet excitons. SF occurs in molecular crystals. A molecule may crystallize in more than one form, a phenomenon known as polymorphism. Crystal structure may affect SF performance. In the common form of tetracene, SF is experimentally known to be slightly endoergic. A second, metastable polymorph of tetracene has been found to exhibit better SF performance. Here, we conduct inverse design of the crystal packing of tetracene using a genetic algorithm (GA) with a fitness function tailored to simultaneously optimize the SF rate and the lattice energy. The property-based GA successfully generates more structures predicted to have higher SF rates and provides insight into packing motifs associated with improved SF performance. We find a putative polymorph predicted to have superior SF performance to the two forms of tetracene, whose structures have been determined experimentally. The putative structure has a lattice energy within 1.5 kJ/mol of the most stable common form of tetracene.

See more in PubMed

Shockley W.; Queisser H. J. Detailed balance limit of efficiency of P-N junction solar cells. J. Appl. Phys. 1961, 32, 510–519. 10.1063/1.1736034. DOI

Schaller R. D.; Klimov V. I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601.10.1103/PhysRevLett.92.186601. PubMed DOI

Hanna M.; Nozik A. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 2006, 100, 074510.10.1063/1.2356795. DOI

Smith M. B.; Michl J. Singlet fission. Chem. Rev. 2010, 110, 6891–6936. 10.1021/cr1002613. PubMed DOI

Smith M. B.; Michl J. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 2013, 64, 361–386. 10.1146/annurev-physchem-040412-110130. PubMed DOI

Casanova D. Theoretical Modeling of Singlet Fission. Chem. Rev. 2018, 118, 7164–7207. 10.1021/acs.chemrev.7b00601. PubMed DOI

Singh S.; Jones W.; Siebrand W.; Stoicheff B.; Schneider W. Laser generation of excitons and fluorescence in anthracene crystals. J. Chem. Phys. 1965, 42, 330–342. 10.1063/1.1695695. DOI

Wilson M. W.; Rao A.; Johnson K.; Gélinas S.; Di Pietro R.; Clark J.; Friend R. H. Temperature-independent singlet exciton fission in tetracene. J. Am. Chem. Soc. 2013, 135, 16680–16688. 10.1021/ja408854u. PubMed DOI

Broch K.; Dieterle J.; Branchi F.; Hestand N.; Olivier Y.; Tamura H.; Cruz C.; Nichols V.; Hinderhofer A.; Beljonne D.; et al. Robust singlet fission in pentacene thin films with tuned charge transfer interactions. Nat. Commun. 2018, 9, 954.10.1038/s41467-018-03300-1. PubMed DOI PMC

Sanders S. N.; Kumarasamy E.; Fallon K. J.; Sfeir M. Y.; Campos L. M. Singlet fission in a hexacene dimer: energetics dictate dynamics. Chem. Sci. 2020, 11, 1079–1084. 10.1039/C9SC05066C. PubMed DOI PMC

Sun D.; Deng G.-H.; Xu B.; Xu E.; Li X.; Wu Y.; Qian Y.; Zhong Y.; Nuckolls C.; Harutyunyan A. R.; et al. Anisotropic singlet fission in single crystalline hexacene. Iscience 2019, 19, 1079–1089. 10.1016/j.isci.2019.08.053. PubMed DOI PMC

Albrecht W.; Michel-Beyerle M.; Yakhot V. Exciton fission in excimer forming crystal. Dynamics of an excimer build-up in α-perylene. Chem. Phys. 1978, 35, 193–200. 10.1016/0301-0104(78)85205-7. DOI

Eaton S. W.; Shoer L. E.; Karlen S. D.; Dyar S. M.; Margulies E. A.; Veldkamp B. S.; Ramanan C.; Hartzler D. A.; Savikhin S.; Marks T. J.; et al. Singlet exciton fission in polycrystalline thin films of a slip-stacked perylenediimide. J. Am. Chem. Soc. 2013, 135, 14701–14712. 10.1021/ja4053174. PubMed DOI

Aulin Y. V.; Felter K. M.; Günbas D. D.; Dubey R. K.; Jager W. F.; Grozema F. C. Morphology-Independent Efficient Singlet Exciton Fission in Perylene Diimide Thin Films. ChemPlusChem. 2018, 83, 230–238. 10.1002/cplu.201700449. PubMed DOI

Hall C. L.; Andrusenko I.; Potticary J.; Gao S.; Liu X.; Schmidt W.; Marom N.; Mugnaioli E.; Gemmi M.; Hall S. R. 3D electron diffraction structure determination of terrylene, a promising candidate for intermolecular singlet fission. ChemPhysChem 2021, 22, 1631–1637. 10.1002/cphc.202100320. PubMed DOI PMC

Johnson J. C.; Nozik A. J.; Michl J. High triplet yield from singlet fission in a thin film of 1, 3-diphenylisobenzofuran. J. Am. Chem. Soc. 2010, 132, 16302–16303. 10.1021/ja104123r. PubMed DOI

Ryerson J. L.; Schrauben J. N.; Ferguson A. J.; Sahoo S. C.; Naumov P.; Havlas Z.; Michl J.; Nozik A. J.; Johnson J. C. Two thin film polymorphs of the singlet fission compound 1, 3-diphenylisobenzofuran. J. Phys. Chem. C 2014, 118, 12121–12132. 10.1021/jp502122d. DOI

Gradinaru C. C.; Kennis J. T.; Papagiannakis E.; Van Stokkum I. H.; Cogdell R. J.; Fleming G. R.; Niederman R. A.; Van Grondelle R. An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 2364–2369. 10.1073/pnas.051501298. PubMed DOI PMC

Manawadu D.; Valentine D. J.; Marcus M.; Barford W. Singlet triplet-pair production and possible singlet-fission in carotenoids. J. Phys. Chem. Lett. 2022, 13, 1344–1349. 10.1021/acs.jpclett.1c03812. PubMed DOI PMC

Musser A. J.; Maiuri M.; Brida D.; Cerullo G.; Friend R. H.; Clark J. The nature of singlet exciton fission in carotenoid aggregates. J. Am. Chem. Soc. 2015, 137, 5130–5139. 10.1021/jacs.5b01130. PubMed DOI PMC

Beljonne D.; Cornil J.; Friend R.; Janssen R.; Brédas J.-L. Influence of chain length and derivatization on the lowest singlet and triplet states and intersystem crossing in oligothiophenes. J. Am. Chem. Soc. 1996, 118, 6453–6461. 10.1021/ja9531135. DOI

Busby E.; Xia J.; Low J. Z.; Wu Q.; Hoy J.; Campos L. M.; Sfeir M. Y. Fast singlet exciton decay in push-pull molecules containing oxidized thiophenes. J. Phys. Chem. B 2015, 119, 7644–7650. 10.1021/jp511704r. PubMed DOI

Dean J. C.; Zhang R.; Hallani R. K.; Pensack R. D.; Sanders S. N.; Oblinsky D. G.; Parkin S. R.; Campos L. M.; Anthony J. E.; Scholes G. D. Photophysical characterization and time-resolved spectroscopy of a anthradithiophene dimer: exploring the role of conformation in singlet fission. Phys. Chem. Chem. Phys. 2017, 19, 23162–23175. 10.1039/C7CP03774K. PubMed DOI

Zhao T.; Kloc C.; Ni W.; Sun L.; Gurzadyan G. G. Revealing ultrafast relaxation dynamics in six-thiophene thin film and single crystal. J. Photochem. Photobiol. A: Chem. 2021, 404, 112920.10.1016/j.jphotochem.2020.112920. DOI

Sharifzadeh S.; Darancet P.; Kronik L.; Neaton J. B. Low-energy charge-transfer excitons in organic solids from first-principles: The case of pentacene. J. Phys. Chem. Lett. 2013, 4, 2197–2201. 10.1021/jz401069f. DOI

Beljonne D.; Yamagata H.; Brédas J.-L.; Spano F.; Olivier Y. Charge-transfer excitations steer the Davydov splitting and mediate singlet exciton fission in pentacene. Phys. Rev. Lett. 2013, 110, 226402.10.1103/PhysRevLett.110.226402. PubMed DOI

Wang X.; Liu X.; Tom R.; Cook C.; Schatschneider B.; Marom N. Phenylated acene derivatives as candidates for intermolecular singlet fission. J. Phys. Chem. C 2019, 123, 5890–5899. 10.1021/acs.jpcc.8b12549. DOI

Wang X.; Liu X.; Cook C.; Schatschneider B.; Marom N. On the possibility of singlet fission in crystalline quaterrylene. J. Chem. Phys. 2018, 148, 184101.10.1063/1.5027553. PubMed DOI

Monahan N.; Zhu X.-Y. Charge transfer–mediated singlet fission. Annu. Rev. Phys. Chem. 2015, 66, 601–618. 10.1146/annurev-physchem-040214-121235. PubMed DOI

Rao A.; Friend R. H. Harnessing singlet exciton fission to break the Shockley–Queisser limit. Nat. Rev. Mater. 2017, 2, 17063.10.1038/natrevmats.2017.63. DOI

Lu H.; Chen X.; Anthony J. E.; Johnson J. C.; Beard M. C. Sensitizing singlet fission with perovskite nanocrystals. J. Am. Chem. Soc. 2019, 141, 4919–4927. 10.1021/jacs.8b13562. PubMed DOI

Budden P. J.; Weiss L. R.; Müller M.; Panjwani N. A.; Dowland S.; Allardice J. R.; Ganschow M.; Freudenberg J.; Behrends J.; Bunz U. H.; et al. Singlet exciton fission in a modified acene with improved stability and high photoluminescence yield. Nat. Commun. 2021, 12, 1527.10.1038/s41467-021-21719-x. PubMed DOI PMC

Liu X.; Tom R.; Gao S.; Marom N. Assessing zethrene derivatives as singlet fission candidates based on multiple descriptors. J. Phys. Chem. C 2020, 124, 26134–26143. 10.1021/acs.jpcc.0c08160. DOI

Liu X.; Tom R.; Wang X.; Cook C.; Schatschneider B.; Marom N. Pyrene-stabilized acenes as intermolecular singlet fission candidates: importance of exciton wave-function convergence. J. Phys.: Condens. Matter 2020, 32, 184001.10.1088/1361-648X/ab699e. PubMed DOI

Wang X.; Garcia T.; Monaco S.; Schatschneider B.; Marom N. Effect of crystal packing on the excitonic properties of rubrene polymorphs. CrystEngComm 2016, 18, 7353–7362. 10.1039/C6CE00873A. DOI

Liu X.; Wang X.; Gao S.; Chang V.; Tom R.; Yu M.; Ghiringhelli L. M.; Marom N. Finding predictive models for singlet fission by machine learning. npj Comput. Mater. 2022, 8, 70.10.1038/s41524-022-00758-y. DOI

Minami T.; Nakano M. Diradical character view of singlet fission. J. Phys. Chem. Lett. 2012, 3, 145–150. 10.1021/jz2015346. PubMed DOI

Padula D.; Omar Ö. H.; Nematiaram T.; Troisi A. Singlet fission molecules among known compounds: finding a few needles in a haystack. Energy Environ. Sci. 2019, 12, 2412–2416. 10.1039/C9EE01508F. DOI

Nogueira B. A.; Castiglioni C.; Fausto R. Color polymorphism in organic crystals. Commun. Chem. 2020, 3, 34.10.1038/s42004-020-0279-0. PubMed DOI PMC

Moliterni A.; Altamura D.; Lassandro R.; Olieric V.; Ferri G.; Cardarelli F.; Camposeo A.; Pisignano D.; Anthony J. E.; Giannini C. Synthesis, crystal structure, polymorphism and microscopic luminescence properties of anthracene derivative compounds. Acta. Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2020, 76, 427–435. 10.1107/S2052520620004424. PubMed DOI

Bhattacharyya K.; Datta A. Polymorphism controlled singlet fission in tips-anthracene: role of stacking orientation. J. Phys. Chem. C 2017, 121, 1412–1420. 10.1021/acs.jpcc.6b10075. DOI

Mayonado G.; Vogt K. T.; Van Schenck J. D.; Zhu L.; Fregoso G.; Anthony J.; Ostroverkhova O.; Graham M. W. High-symmetry anthradithiophene molecular packing motifs promote thermally activated singlet fission. J. Phys. Chem. C 2022, 126, 4433–4445. 10.1021/acs.jpcc.1c10977. DOI

Buchanan E. A.; Michl J. Optimal arrangements of 1, 3-diphenylisobenzofuran molecule pairs for fast singlet fission. Photochem. Photobiol. Sci. 2019, 18, 2112–2124. 10.1039/c9pp00283a. PubMed DOI

Piland G. B.; Bardeen C. J. How morphology affects singlet fission in crystalline tetracene. J. Phys. Chem. Lett. 2015, 6, 1841–1846. 10.1021/acs.jpclett.5b00569. PubMed DOI

Buchanan E. A.; Kaleta J.; Wen J.; Lapidus S. H.; Císařová I.; Havlas Z.; Johnson J. C.; Michl J. Molecular packing and singlet fission: the parent and three fluorinated 1, 3-diphenylisobenzofurans. J. Phys. Chem. Lett. 2019, 10, 1947–1953. 10.1021/acs.jpclett.8b03875. PubMed DOI

Sondermann U.; Kutoglu A.; Bassler H. X-ray diffraction study of the phase transition in crystalline tetracene. J. Phys. Chem. 1985, 89, 1735–1741. 10.1021/j100255a039. DOI

Venuti E.; Della Valle R. G.; Farina L.; Brillante A.; Masino M.; Girlando A. Phonons and structures of tetracene polymorphs at low temperature and high pressure. Phys. Rev. B 2004, 70, 104106.10.1103/PhysRevB.70.104106. DOI

Della Valle R. G.; Venuti E.; Brillante A.; Girlando A. Inherent structures of crystalline tetracene. J. Phys. Chem. A 2006, 110, 10858–10862. 10.1021/jp0611020. PubMed DOI

Groff R.; Avakian P.; Merrifield R. Coexistence of exciton fission and fusion in tetracene crystals. Phys. Rev. B 1970, 1, 815.10.1103/PhysRevB.1.815. DOI

Groom C. R.; Bruno I. J.; Lightfoot M. P.; Ward S. C. The Cambridge structural database. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 2016, 72, 171–179. 10.1107/S2052520616003954. PubMed DOI PMC

Campbell R.; Robertson J. M.; Trotter J. The crystal structure of hexacene, and a revision of the crystallographic data for tetracene. Acta crystallogr. 1962, 15, 289–290. 10.1107/S0365110X62000699. DOI

Rang Z.; Haraldsson A.; Kim D. M.; Ruden P. P.; Nathan M. I.; Chesterfield R. J.; Frisbie C. D. Hydrostatic-pressure dependence of the photoconductivity of single-crystal pentacene and tetracene. Appl. Phys. Lett. 2001, 79, 2731–2733. 10.1063/1.1410878. DOI

Vaubel G.; Baessler H. Temperature dependence of width and position of the lowest singlet-singlet transition in crystalline tetracene. Mol. Cryst. Liq. Cryst. 1970, 12, 39–45. 10.1080/15421407008082758. DOI

Holmes D.; Kumaraswamy S.; Matzger A. J.; Vollhardt K. P. C. On the nature of nonplanarity in the [N] Phenylenes. Chem. - Eur. J. 1999, 5, 3399–3412. 10.1002/(SICI)1521-3765(19991105)5:11<3399::AID-CHEM3399>3.0.CO;2-V. DOI

Pithan L.; Nabok D.; Cocchi C.; Beyer P.; Duva G.; Simbrunner J.; Rawle J.; Nicklin C.; Schäfer P.; Draxl C.; et al. Molecular structure of the substrate-induced thin-film phase of tetracene. J. Chem. Phys. 2018, 149, 144701.10.1063/1.5043379. PubMed DOI

Nahm R.; Engstrom J. Who’s on first? Tracking in real time the growth of multiple crystalline phases of an organic semiconductor: tetracene on SiO2. J. Chem. Phys. 2017, 146, 052815.10.1063/1.4971288. PubMed DOI

Arias D. H.; Ryerson J. L.; Cook J. D.; Damrauer N. H.; Johnson J. C. Polymorphism influences singlet fission rates in tetracene thin films. Chem. Sci. 2016, 7, 1185–1191. 10.1039/C5SC03535J. PubMed DOI PMC

Daiber B.; Maiti S.; Ferro S. M.; Bodin J.; Van Den Boom A. F.; Luxembourg S. L.; Kinge S.; Pujari S. P.; Zuilhof H.; Siebbeles L. D.; Ehrler B. Change in Tetracene Polymorphism Facilitates Triplet Transfer in Singlet Fission-Sensitized Silicon Solar Cells. J. Phys. Chem. Lett. 2020, 11, 8703–8709. 10.1021/acs.jpclett.0c02163. PubMed DOI PMC

Macrae C. F.; Edgington P. R.; McCabe P.; Pidcock E.; Shields G. P.; Taylor R.; Towler M.; van de Streek J. Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453–457. 10.1107/S002188980600731X. DOI

Havlas Z.; Michl J. Guidance for Mutual Disposition of Chromophores for Singlet Fission. Isr. J. Chem. 2016, 56, 96–106. 10.1002/ijch.201500054. DOI

Zaykov A.; Felkel P.; Buchanan E. A.; Jovanovic M.; Havenith R. W.; Kathir R. K.; Broer R.; Havlas Z.; Michl J. Singlet Fission Rate: Optimized Packing of a Molecular Pair. Ethylene as a Model. J. Am. Chem. Soc. 2019, 141, 17729–17743. 10.1021/jacs.9b08173. PubMed DOI

Buchanan E. A.; Havlas Z.; Michl J. Optimal arrangements of tetracene molecule pairs for fast singlet fission. Bull. Chem. Soc. Jpn. 2019, 92, 1960–1971. 10.1246/bcsj.20190229. PubMed DOI

Ryerson J. L.; Zaykov A.; Aguilar Suarez L. E.; Havenith R. W.; Stepp B. R.; Dron P. I.; Kaleta J.; Akdag A.; Teat S. J.; Magnera T. F.; et al. Structure and photophysics of indigoids for singlet fission: Cibalackrot. J. Chem. Phys. 2019, 151, 184903.10.1063/1.5121863. PubMed DOI

Rais D.; et al. Singlet Fission in Thin Solid Films of Bis(thienyl)diketopyrrolopyrroles. ChemPlusChem. 2020, 85, 2689–2703. 10.1002/cplu.202000623. PubMed DOI

Cruz-Cabeza A. J.; Reutzel-Edens S. M.; Bernstein J. Facts and fictions about polymorphism. Chem. Soc. Rev. 2015, 44, 8619–8635. 10.1039/C5CS00227C. PubMed DOI

Thakur T. S.; Dubey R.; Desiraju G. R. Crystal structure and prediction. Annu. Rev. Phys. Chem. 2015, 66, 21–42. 10.1146/annurev-physchem-040214-121452. PubMed DOI

Woodley S. M.; Catlow R. Crystal structure prediction from first principles. Nat. Mater. 2008, 7, 937–946. 10.1038/nmat2321. PubMed DOI

Bowskill D. H.; Sugden I. J.; Konstantinopoulos S.; Adjiman C. S.; Pantelides C. C. Crystal Structure Prediction Methods for Organic Molecules: State of the Art. Annu. Rev. Chem. Biomol. Eng. 2021, 12, 593–623. 10.1146/annurev-chembioeng-060718-030256. PubMed DOI

Price S. L.; Brandenburg J. G.. Non-Covalent Interactions in Quantum Chemistry and Physics; Elsevier, 2017; pp 333–363.

Bardwell D. A.; Adjiman C. S.; Arnautova Y. A.; Bartashevich E.; Boerrigter S. X.; Braun D. E.; Cruz-Cabeza A. J.; Day G. M.; Della Valle R. G.; Desiraju G. R.; et al. Towards crystal structure prediction of complex organic compounds–a report on the fifth blind test. Acta. Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2011, 67, 535–551. 10.1107/S0108768111042868. PubMed DOI PMC

Reilly A. M.; Cooper R. I.; Adjiman C. S.; Bhattacharya S.; Boese A. D.; Brandenburg J. G.; Bygrave P. J.; Bylsma R.; Campbell J. E.; Car R.; et al. Report on the sixth blind test of organic crystal structure prediction methods. Acta. Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 439–459. 10.1107/S2052520616007447. PubMed DOI PMC

Li X.; Curtis F. S.; Rose T.; Schober C.; Vazquez-Mayagoitia A.; Reuter K.; Oberhofer H.; Marom N. Genarris: Random generation of molecular crystal structures and fast screening with a Harris approximation. J. Chem. Phys. 2018, 148, 241701.10.1063/1.5014038. PubMed DOI

Tom R.; Rose T.; Bier I.; O’Brien H.; Vázquez-Mayagoitia Á.; Marom N. Genarris 2.0: A random structure generator for molecular crystals. Comput. Phys. Commun. 2020, 250, 107170.10.1016/j.cpc.2020.107170. DOI

Pickard C. J.; Needs R. Ab initio random structure searching. J. Phys.: Condens. Matter 2011, 23, 053201.10.1088/0953-8984/23/5/053201. PubMed DOI

Case D. H.; Campbell J. E.; Bygrave P. J.; Day G. M. Convergence properties of crystal structure prediction by quasi-random sampling. J. Chem. Theory Comput. 2016, 12, 910–924. 10.1021/acs.jctc.5b01112. PubMed DOI PMC

Price S. L. Predicting crystal structures of organic compounds. Chem. Soc. Rev. 2014, 43, 2098–2111. 10.1039/C3CS60279F. PubMed DOI

Oganov A. R.; Pickard C. J.; Zhu Q.; Needs R. J. Structure prediction drives materials discovery. Nat. Rev. Mater. 2019, 4, 331–348. 10.1038/s41578-019-0101-8. DOI

Moellmann J.; Grimme S. DFT-D3 study of some molecular crystals. J. Phys. Chem. C 2014, 118, 7615–7621. 10.1021/jp501237c. DOI

Reilly A. M.; Tkatchenko A. Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals. J. Chem. Phys. 2013, 139, 024705.10.1063/1.4812819. PubMed DOI

O’Connor D.; Bier I.; Hsieh Y.-T.; Marom N. Performance of Dispersion-Inclusive Density Functional Theory Methods for Energetic Materials. J. Chem. Theory Comput. 2022, 18, 4456–4471. 10.1021/acs.jctc.2c00350. PubMed DOI

Price S. L.; Braun D. E.; Reutzel-Edens S. M. Can computed crystal energy landscapes help understand pharmaceutical solids?. Chem. Commun. 2016, 52, 7065–7077. 10.1039/C6CC00721J. PubMed DOI PMC

Shtukenberg A. G.; Zhu Q.; Carter D. J.; Vogt L.; Hoja J.; Schneider E.; Song H.; Pokroy B.; Polishchuk I.; Tkatchenko A.; et al. Powder diffraction and crystal structure prediction identify four new coumarin polymorphs. Chem. Sci. 2017, 8, 4926–4940. 10.1039/C7SC00168A. PubMed DOI PMC

Zunger A. Inverse design in search of materials with target functionalities. Nat. Rev. Chem. 2018, 2, 0121.10.1038/s41570-018-0121. DOI

Franceschetti A.; Zunger A. The inverse band-structure problem of finding an atomic configuration with given electronic properties. Nature 1999, 402, 60–63. 10.1038/46995. DOI

Hiener D.; Hutchison G. Pareto Optimization of Oligomer Polarizability and Dipole Moment using a Genetic Algorithm. J. Phys. Chem. A 2022, 126, 2750–2760. 10.1021/acs.jpca.2c01266. PubMed DOI

d’Avezac M.; Luo J.-W.; Chanier T.; Zunger A. Genetic-algorithm discovery of a direct-gap and optically allowed superstructure from indirect-gap Si and Ge semiconductors. Phys. Rev. Lett. 2012, 108, 027401.10.1103/PhysRevLett.108.027401. PubMed DOI

Bhattacharya S.; Sonin B. H.; Jumonville C. J.; Ghiringhelli L. M.; Marom N. Computational design of nanoclusters by property-based genetic algorithms: tuning the electronic properties of (TiO2)n clusters. Phys. Rev. B 2015, 91, 241115.10.1103/PhysRevB.91.241115. DOI

Cheng C. Y.; Campbell J. E.; Day G. M. Evolutionary chemical space exploration for functional materials: computational organic semiconductor discovery. Chem. Sci. 2020, 11, 4922–4933. 10.1039/D0SC00554A. PubMed DOI PMC

Pfund L. Y.; Matzger A. J. Towards exhaustive and automated high-throughput screening for crystalline polymorphs. ACS Comb. Sci. 2014, 16, 309–313. 10.1021/co500043q. PubMed DOI PMC

Gu C.-H.; Young Jr V.; Grant D. J. Polymorph screening: Influence of solvents on the rate of solvent-mediated polymorphic transformation. J. Pharm. Sci. 2001, 90, 1878–1890. 10.1002/jps.1137. PubMed DOI

Lee E. H. A practical guide to pharmaceutical polymorph screening & selection. Asian J. Pharm. Sci. 2014, 9, 163–175. 10.1016/j.ajps.2014.05.002. DOI

Neumann M.; Van De Streek J.; Fabbiani F.; Hidber P.; Grassmann O. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening. Nat. Commun. 2015, 6, 7793.10.1038/ncomms8793. PubMed DOI PMC

Weissbuch I.; Lahav M.; Leiserowitz L. Toward stereochemical control, monitoring, and understanding of crystal nucleation. Cryst. Growth Des. 2003, 3, 125–150. 10.1021/cg0200560. DOI

Torbeev V. Y.; Shavit E.; Weissbuch I.; Leiserowitz L.; Lahav M. Control of crystal polymorphism by tuning the structure of auxiliary molecules as nucleation inhibitors. The β-polymorph of glycine grown in aqueous solutions. Cryst. Growth Des. 2005, 5, 2190–2196. 10.1021/cg050200s. DOI

Ma W.; Reinspach J.; Zhou Y.; Diao Y.; McAfee T.; Mannsfeld S. C.; Bao Z.; Ade H. Tuning local molecular orientation-composition correlations in binary organic thin films by solution shearing. Adv. Funct. Mater. 2015, 25, 3131–3137. 10.1002/adfm.201500468. DOI

Riera-Galindo S.; Tamayo A.; Mas-Torrent M. Role of polymorphism and thin-film morphology in organic semiconductors processed by solution shearing. ACS omega 2018, 3, 2329–2339. 10.1021/acsomega.8b00043. PubMed DOI PMC

Kim K.; Santos E. J.; Lee T. H.; Nishi Y.; Bao Z. Epitaxially grown strained pentacene thin film on graphene membrane. Small 2015, 11, 2037–2043. 10.1002/smll.201403006. PubMed DOI

Jiang Q.; Hu C.; Ward M. D. Stereochemical control of polymorph transitions in nanoscale reactors. J. Am. Chem. Soc. 2013, 135, 2144–2147. 10.1021/ja312511v. PubMed DOI

Jiang Q.; Ward M. D. Crystallization under nanoscale confinement. Chem. Soc. Rev. 2014, 43, 2066–2079. 10.1039/C3CS60234F. PubMed DOI

Diao Y.; Lenn K. M.; Lee W.-Y.; Blood-Forsythe M. A.; Xu J.; Mao Y.; Kim Y.; Reinspach J. A.; Park S.; Aspuru-Guzik A.; et al. Understanding polymorphism in organic semiconductor thin films through nanoconfinement. J. Am. Chem. Soc. 2014, 136, 17046–17057. 10.1021/ja507179d. PubMed DOI

Zhang Y.; Chen A.; Kim M.-W.; Alaei A.; Lee S. S. Nanoconfining solution-processed organic semiconductors for emerging optoelectronics. Chem. Soc. Rev. 2021, 50, 9375–9390. 10.1039/D1CS00430A. PubMed DOI

Curtis F.; Li X.; Rose T.; Vázquez-Mayagoitia Á.; Bhattacharya S.; Ghiringhelli L. M.; Marom N. GAtor: A first-principles genetic algorithm for molecular crystal structure prediction. J. Chem. Theory Comput. 2018, 14, 2246–2264. 10.1021/acs.jctc.7b01152. PubMed DOI

Curtis F.; Rose T.; Marom N. Evolutionary niching in the GAtor genetic algorithm for molecular crystal structure prediction. Faraday Discuss. 2018, 211, 61–77. 10.1039/C8FD00067K. PubMed DOI

Bier I.; O’Connor D.; Hsieh Y.-T.; Wen W.; Hiszpanski A. M.; Han T. Y.-J.; Marom N. Crystal structure prediction of energetic materials and a twisted arene with Genarris and GAtor. CrystEngComm 2021, 23, 6023–6038. 10.1039/D1CE00745A. DOI

Bier I.; Marom N. Machine learned model for solid form volume estimation based on packing-accessible surface and molecular topological fragments. J. Phys. Chem. A 2020, 124, 10330–10345. 10.1021/acs.jpca.0c06791. PubMed DOI

Behler J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 2011, 134, 074106.10.1063/1.3553717. PubMed DOI

Frey B. J.; Dueck D. Clustering by passing messages between data points. Science 2007, 315, 972–976. 10.1126/science.1136800. PubMed DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.10.1103/PhysRevLett.77.3865. PubMed DOI

Tkatchenko A.; Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005.10.1103/PhysRevLett.102.073005. PubMed DOI

Tkatchenko A.; DiStasio Jr R. A.; Car R.; Scheffler M. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 2012, 108, 236402.10.1103/PhysRevLett.108.236402. PubMed DOI

Ambrosetti A.; Reilly A.; DiStasio R.; Tkatchenko A. Long-range correlation energy calculated from coupled atomic response functions. J. Chem. Phys. 2014, 140, 18A508.10.1063/1.4865104. PubMed DOI

Adamo C.; Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. 10.1063/1.478522. DOI

Reilly A.; Tkatchenko A. Seamless and Accurate Modeling of Organic Molecular Materials. J. Phys. Chem. Lett. 2013, 4, 1028–1033. 10.1021/jz400226x. PubMed DOI

Hoja J.; Tkatchenko A. First-principles stability ranking of molecular crystal polymorphs with the DFT+MBD approach. Faraday Discuss. 2018, 211, 253–274. 10.1039/C8FD00066B. PubMed DOI

Marom N.; DiStasio R.; Atalla V.; Levchenko S.; Reilly A.; Chelikowsky J.; Leiserowitz L.; Tkatchenko A. Many-Body Dispersion Interactions in Molecular Crystal Polymorphism. Angew. Chem., Int. Ed. 2013, 52, 6629–6632. 10.1002/anie.201301938. PubMed DOI

Nyman J.; Day G. M. Static and lattice vibrational energy differences between polymorphs. CrystEngComm 2015, 17, 5154–5165. 10.1039/C5CE00045A. DOI

Hedin L. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 1965, 139, A796.10.1103/PhysRev.139.A796. DOI

Marom N. Accurate description of the electronic structure of organic semiconductors by GW methods. J. Phys.: Condens. Matter 2017, 29, 103003.10.1088/1361-648X/29/10/103003. PubMed DOI

Sharifzadeh S. Many-body perturbation theory for understanding optical excitations in organic molecules and solids. J. Phys.: Condens. Matter 2018, 30, 153002.10.1088/1361-648X/aab0d1. PubMed DOI

Golze D.; Dvorak M.; Rinke P. The GW Compendium: A Practical Guide to Theoretical Photoemission Spectroscopy. Front. Chem. 2019, 7, 377.10.3389/fchem.2019.00377. PubMed DOI PMC

Rohlfing M.; Louie S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 2000, 62, 4927.10.1103/PhysRevB.62.4927. DOI

Blase X.; Duchemin I.; Jacquemin D. The Bethe-Salpeter equation in chemistry: Relations with TD-DFT, applications and challenges. Chem. Soc. Rev. 2018, 47, 1022–1043. 10.1039/C7CS00049A. PubMed DOI

Ong S. P.; Richards W. D.; Jain A.; Hautier G.; Kocher M.; Cholia S.; Gunter D.; Chevrier V. L.; Persson K. A.; Ceder G. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 2013, 68, 314–319. 10.1016/j.commatsci.2012.10.028. DOI

Frisch M. J.; et al.Gaussian ’16, rev. C.01; Gaussian, Inc.: Wallingford, CT, 2016.

Blum V.; Gehrke R.; Hanke F.; Havu P.; Havu V.; Ren X.; Reuter K.; Scheffler M. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 2009, 180, 2175–2196. 10.1016/j.cpc.2009.06.022. DOI

Deslippe J.; Samsonidze G.; Strubbe D. A.; Jain M.; Cohen M. L.; Louie S. G. BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 2012, 183, 1269–1289. 10.1016/j.cpc.2011.12.006. DOI

Giannozzi P.; Baroni S.; Bonini N.; Calandra M.; Car R.; Cavazzoni C.; Ceresoli D.; Chiarotti G. L.; Cococcioni M.; Dabo I.; et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.10.1088/0953-8984/21/39/395502. PubMed DOI

Troullier N.; Martins J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993.10.1103/PhysRevB.43.1993. PubMed DOI

Alagna N.; Han J.; Wollscheid N.; Perez Lustres J. L.; Herz J.; Hahn S.; Koser S.; Paulus F.; Bunz U. H.; Dreuw A.; et al. Tailoring ultrafast singlet fission by the chemical modification of phenazinothiadiazoles. J. Am. Chem. Soc. 2019, 141, 8834–8845. 10.1021/jacs.9b01079. PubMed DOI

Van Schenck J.; Mayonado G.; Anthony J.; Graham M.; Ostroverkhova O. Molecular packing-dependent exciton dynamics in functionalized anthradithiophene derivatives: From solutions to crystals. J. Chem. Phys. 2020, 153, 164715.10.1063/5.0026072. PubMed DOI

Pensack R. D.; Purdum G. E.; Mazza S. M.; Grieco C.; Asbury J. B.; Anthony J. E.; Loo Y.-L.; Scholes G. D. Excited-State Dynamics of 5, 14-vs 6, 13-Bis (trialkylsilylethynyl)-Substituted Pentacenes: Implications for Singlet Fission. J. Phys. Chem. C 2022, 126, 9784–9793. 10.1021/acs.jpcc.2c00897. PubMed DOI PMC

Burdett J. J.; Müller A. M.; Gosztola D.; Bardeen C. J. Excited state dynamics in solid and monomeric tetracene: The roles of superradiance and exciton fission. J. Chem. Phys. 2010, 133, 144506.10.1063/1.3495764. PubMed DOI

Burdett J. J.; Bardeen C. J. The Dynamics of Singlet Fission in Crystalline Tetracene and Covalent Analogs. Acc. Chem. Res. 2013, 46, 1312–1320. 10.1021/ar300191w. PubMed DOI

Kim V. O.; et al. Singlet exciton fission via an intermolecular charge transfer state in coevaporated pentacene-perfluoropentacene thin films. J. Chem. Phys. 2019, 151, 164706.10.1063/1.5130400. PubMed DOI

Miyata K.; Conrad-Burton F. S.; Geyer F. L.; Zhu X. Y. Triplet Pair States in Singlet Fission. Chem. Rev. 2019, 119, 4261–4292. 10.1021/acs.chemrev.8b00572. PubMed DOI

Margulies E. A.; et al. Direct observation of a charge-transfer state preceding high-yield singlet fission in terrylenediimide thin films. J. Am. Chem. Soc. 2017, 139, 663–671. 10.1021/jacs.6b07721. PubMed DOI

Chan W. L.; et al. The quantum coherent mechanism for singlet fission: Experiment and theory. Acc. Chem. Res. 2013, 46, 1321–1329. 10.1021/ar300286s. PubMed DOI

Sharifzadeh S.; et al. Relating the Physical Structure and Optoelectronic Function of Crystalline TIPS-Pentacene. Adv. Funct. Mater. 2015, 25, 2038–2046. 10.1002/adfm.201403005. DOI

Hart S. M.; Silva W. R.; Frontiera R. R. Femtosecond stimulated Raman evidence for charge-Transfer character in pentacene singlet fission. Chem. Sci. 2018, 9, 1242–1250. 10.1039/C7SC03496B. PubMed DOI PMC

Tseng R. J.; Chan R.; Tung V. C.; Yang Y. Anisotropy in Organic Single-Crystal Photovoltaic Characteristics. Adv. Mater. 2008, 20, 435–438. 10.1002/adma.200701374. DOI

Moon H.; Zeis R.; Borkent E.-J.; Besnard C.; Lovinger A. J.; Siegrist T.; Kloc C.; Bao Z. Synthesis, crystal structure, and transistor performance of tetracene derivatives. J. Am. Chem. Soc. 2004, 126, 15322–15323. 10.1021/ja045208p. PubMed DOI

Price S. L. Why don’t we find more polymorphs?. Acta Crystallographica Section B 2013, 69, 313–328. 10.1107/S2052519213018861. PubMed DOI

Rogal J.; Schneider E.; Tuckerman M. E. Neural-Network-Based Path Collective Variables for Enhanced Sampling of Phase Transformations. Phys. Rev. Lett. 2019, 123, 245701.10.1103/PhysRevLett.123.245701. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...