Optimising urinary catecholamine metabolite diagnostics for neuroblastoma

. 2023 Jun ; 70 (6) : e30289. [epub] 20230403

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37010353

INTRODUCTION: The analysis of urinary catecholamine metabolites is a cornerstone of neuroblastoma diagnostics. Currently, there is no consensus regarding the sampling method, and variable combinations of catecholamine metabolites are being used. We investigated if spot urine samples can be reliably used for analysis of a panel of catecholamine metabolites for the diagnosis of neuroblastoma. METHODS: Twenty-four-hour urine or spot urine samples were collected from patients with and without neuroblastoma at diagnosis. Homovanillic acid (HVA), vanillylmandelic acid (VMA), dopamine, 3-methoxytyramine, norepinephrine, normetanephrine, epinephrine and metanephrine were measured by high-performance liquid chromatography coupled with fluorescence detection (HPLC-FD) and/or ultra-performance liquid chromatography coupled with electrospray tandem mass spectrometry (UPLC-MS/MS). RESULTS: Catecholamine metabolite levels were measured in urine samples of 400 neuroblastoma patients (24-hour urine, n = 234; spot urine, n = 166) and 571 controls (all spot urine). Excretion levels of catecholamine metabolites and the diagnostic sensitivity for each metabolite were similar in 24-hour urine and spot urine samples (p > .08 and >.27 for all metabolites). The area under the receiver-operating-characteristic curve (AUC) of the panel containing all eight catecholamine metabolites was significantly higher compared to that of only HVA and VMA (AUC = 0.952 vs. 0.920, p = .02). No differences were observed in metabolite levels between the two analysis methods. CONCLUSION: Catecholamine metabolites in spot urine and 24-hour urine resulted in similar diagnostic sensitivities. The Catecholamine Working Group recommends the implementation of spot urine as standard of care. The panel of eight catecholamine metabolites has superior diagnostic accuracy over VMA and HVA.

Zobrazit více v PubMed

London WB, Castleberry RP, Matthay KK, et al. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children's Oncology Group. J Clin Oncol. 2005;23(27):6459-6465.

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7-33.

Verly IR, van Kuilenburg AB, Abeling NG, et al. Catecholamines profiles at diagnosis: Increased diagnostic sensitivity and correlation with biological and clinical features in neuroblastoma patients. Eur J Cancer. 2017;72:235-243.

Brodeur GM, Pritchard J, Berthold F, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11(8):1466-1477.

Fibiger W, Singer G, Miller AJ, Armstrong S, Datar M. Cortisol and catecholamines changes as functions of time-of-day and self-reported mood. Neurosci Biobehav Rev. 1984;8(4):523-530.

Faucheux B, Kuchel O, Cuche JL, et al. Circadian variations of the urinary excretion of catecholamines and electrolytes. Endocr Res Commun. 1976;3(5):257-272.

Rinke ML, Oyeku SO, Heo M, et al. Pediatric ambulatory catheter-associated urinary tract infections (CAUTIs): incidence, risk factors, and patient outcomes. Infect Control Hosp Epidemiol. 2020;41(8):891-899.

Gregianin LJ, McGill AC, Pinheiro CM, Brunetto AL. Vanilmandelic acid and homovanillic acid levels in patients with neural crest tumor: 24-hour urine collection versus random sample. Pediatr Hematol Oncol. 1997;14(3):259-265.

Cangemi G, Barco S, Reggiardo G, et al. Interchangeability between 24-hour collection and single spot urines for vanillylmandelic and homovanillic acid levels in the diagnosis of neuroblastoma. Pediatr Blood Cancer. 2013;60(12):E170-E172.

Monsaingeon M, Perel Y, Simonnet G, Corcuff JB. Comparative values of catecholamines and metabolites for the diagnosis of neuroblastoma. Eur J Pediatr. 2003;162(6):397-402.

Barco S, Gennai I, Reggiardo G, et al. Urinary homovanillic and vanillylmandelic acid in the diagnosis of neuroblastoma: report from the Italian Cooperative Group for Neuroblastoma. Clin Biochem. 2014;47(9):848-852.

Tuchman M, Ramnaraine ML, Woods WG, Krivit W. Three years of experience with random urinary homovanillic and vanillylmandelic acid levels in the diagnosis of neuroblastoma. Pediatrics. 1987;79(2):203-205.

Sbardella E, Maunsell Z, May CJH, et al. Random ‘spot’ urinary metanephrines compared with 24-h-urinary and plasma results in phaeochromocytomas and paragangliomas. Eur J Endocrinol. 2020;183(2):129-139.

Strenger V, Kerbl R, Dornbusch HJ, et al. Diagnostic and prognostic impact of urinary catecholamines in neuroblastoma patients. Pediatr Blood Cancer. 2007;48(5):504-509.

Verly IRN, Leen R, Meinsma JR, et al. Catecholamine excretion profiles identify clinical subgroups of neuroblastoma patients. Eur J Cancer. 2019;111:21-29.

Verly IRN, Matser YAH, Leen R, et al. Urinary 3-methoxytyramine is a biomarker for MYC activity in patients with neuroblastoma. JCO Precis Oncol. 2022;6:e2000447.

Verly IRN, van Kuilenburg ABP, Abeling N, et al. 3-Methoxytyramine: an independent prognostic biomarker that associates with high-risk disease and poor clinical outcome in neuroblastoma patients. Eur J Cancer. 2018;90:102-110.

Kushnir MM, Urry FM, Frank EL, Roberts WL, Shushan B. Analysis of catecholamines in urine by positive-ion electrospray tandem mass spectrometry. Clin Chem. 2002;48(2):323-331.

Miano L, Kolloch R, De Quattro V. Increased catecholamine excretion after labetalol therapy: a spurious effect of drug metabolites. Clin Chim Acta. 1979;95(2):211-217.

Hwang N, Chong E, Oh H, et al. Application of an LC-MS/MS method for the simultaneous quantification of homovanillic acid and vanillylmandelic acid for the diagnosis and follow-up of neuroblastoma in 357 patients. Molecules. 2021;26(11):3470.

Plenis A, Oledzka I, Kowalski P, Miekus N, Baczek T. Recent trends in the quantification of biogenic amines in biofluids as biomarkers of various disorders: a review. J Clin Med. 2019;8(5):640.

Barco S, Verly I, Corrias MV, et al. Plasma free metanephrines for diagnosis of neuroblastoma patients. Clin Biochem. 2019;66:57-62.

DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837-845.

McGuire BB, Bhanji Y, Sharma V, et al. Predicting patients with inadequate 24- or 48-hour urine collections at time of metabolic stone evaluation. J Endourol. 2015;29(6):730-735.

Itoh T, Omori K. Biosynthesis and storage of catecholamines in pheochromocytoma and neuroblastoma cells. J Lab Clin Med. 1973;81(6):889-896.

Peitzsch M, Kaden D, Pamporaki C, et al. Overnight/first-morning urine free metanephrines and methoxytyramine for diagnosis of pheochromocytoma and paraganglioma: is this an option? Eur J Endocrinol. 2020;182(5):499-509.

Tuchman M, Robison LL, Maynard RC, Ramnaraine ML, Krivit W. Assessment of the diurnal variations in urinary homovanillic and vanillylmandelic acid excretion for the diagnosis and follow-up of patients with neuroblastoma. Clin Biochem. 1985;18(3):176-179.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...