Offspring thermal demands and parental brooding efficiency differ for precocial birds living in contrasting climates
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
36/2021
University Grant Competition (UGC) [36/2021, Application of HMM and HSMM for the analysis of the animal behavioral data financed from the OP RDE project Improvement in Quality of the Internal Grand Scheme at CZU, reg. No. CZ.02.2.69/0.0/0.0/19_073/0016944
PubMed
37032338
PubMed Central
PMC10084700
DOI
10.1186/s12983-023-00492-1
PII: 10.1186/s12983-023-00492-1
Knihovny.cz E-resources
- Keywords
- Accelerometer, Brooding, Hidden Markov models, Multisensory datalogger, Shorebirds,
- Publication type
- Journal Article MeSH
BACKGROUND: Chicks of precocial birds hatch well-developed and can search actively for food but their homeothermy develops gradually during growth. This makes them dependent on heat provided by parents ("brooding"), which is then traded off against other activities, mainly foraging. Although brooding has been documented in many precocial birds, little is known about the differences in the amount and efficiency of brooding care, brooding diel rhythmicity, and impact on the chick's growth, particularly between species living in different climatic conditions. RESULTS: We used multisensory dataloggers to evaluate brooding patterns in two congeneric species inhabiting contrasting climate zones: temperate Northern lapwing (Vanellus vanellus) and desert Red-wattled lapwing (Vanellus indicus). In accordance with our expectation, the adult desert lapwings brooded the chicks slightly less compared to the adult temperate lapwings. However, the desert lapwings brooded their chicks in higher ambient temperatures and less efficiently (i.e. they could not reach the same brooding temperature as the temperate lapwings), which are new and hitherto unknown brooding patterns in precocial birds. In both species, night brooding prevailed even during warm nights, suggesting a general brooding rule among birds. Although the high rates of brooding can reduce the time spent by foraging, we found no negative effect of the high brooding rate on the growth rate in either species. CONCLUSIONS: Our data suggest that the chicks of species breeding in colder climates may reduce their thermal demands, while their parents may increase the efficiency of parental brooding care. More research is however needed to confirm this as a rule across species.
See more in PubMed
Ivanov KP. The development of the concepts of homeothermy and thermoregulation. J Therm Biol. 2006;31(1–2):24–9. doi: 10.1016/j.jtherbio.2005.12.005. DOI
Terrien J, Perret M, Aujard F. Behavioral thermoregulation in mammals: a review. Front Biosci. 2011;16:1428–44. doi: 10.2741/3797. PubMed DOI
Clarke A, Pörtner HO. Temperature, metabolic power and the evolution of endothermy. Biol Rev. 2010;85:703–27. PubMed
Beintema A, Visser GH. Growth parameters in chicks of Charadriiform birds. Ardea. 1989;77(2):169–80.
Hackländer K, Arnold W, Ruf T. Postnatal development and thermoregulation in the precocial European hare (Lepus europaeus) J Comp Physiol B Biochem Syst Environ Physiol. 2002;172:183–90. doi: 10.1007/s00360-001-0243-y. PubMed DOI
Lenington S. Bi-parental care in Killdeer: an adaptive hypothesis. Wilson Bull. 1980;92(1):8–20.
Farmer CG. Parental care: the key to understanding endothermy and other convergent features in birds and mammals. Am Nat. 2000;155(3):326–34. doi: 10.1086/303323. PubMed DOI
Brown M, Downs CT. Development of homeothermy in hatchling crowned plovers Vanellus coronatus. J Therm Biol. 2002;27:95–101. doi: 10.1016/S0306-4565(01)00019-5. DOI
Krijgsveld KL, Reneerkens JWH, McNett GD, Ricklefs RE. Time budgets and body temperatures of American Golden-Plover chicks in relation to ambient temperature. Condor. 2003;105:268–78. doi: 10.1093/condor/105.2.268. DOI
Colwell MA, Hurley SJ, Hall JN, Dinsmore SJ. Age-related survival and behavior of snowy plover chicks. Condor. 2007;109(3):638–47. doi: 10.1093/condor/109.3.638. DOI
Beintema AJ, Visser GH. The effect of weather on time budgets and development of chicks of meadow birds. Ardea. 1989;77(2):181–92.
Visser GH, Ricklefs RE. Relationship between body composition and homeothermy in neonates of prococial and semiprecocial birds. Auk. 1995;112(1):192–200. doi: 10.2307/4088778. DOI
Hess EH, Petrovich SB, Goodwin EB. Induction of parental behavior in japanese quail (Coturnix coturnix japonica) J Comp Physiol Psychol. 1976;90(3):244–51. doi: 10.1037/h0088008. PubMed DOI
Visser GH, Ricklefs RE. Development of temperature regulation in shorebirds. Physiol Zool. 1993;66(5):771–92. doi: 10.1086/physzool.66.5.30163823. DOI
Krijgsveld KL, Visser GH, Daan S. Foraging behavior and physiological changes in precocial quail chicks in response to low temperatures. Physiol Behav. 2003;79:311–9. doi: 10.1016/S0031-9384(03)00117-3. PubMed DOI
Schekkerman H, Tulp I, Piersma T, Visser HG. Mechanism promoting higher growth rate in artic than in temperate shorebirds. Oecologia. 2003;134:332–42. doi: 10.1007/s00442-002-1124-0. PubMed DOI
Visser GH, Ricklefs RE. Temperature regulation in neonates of shorebirds. Auk. 1993;110(3):445–57. doi: 10.2307/4088409. DOI
Tjørve KMC, Underhill LG, Visser HG. Energetics of growth in semi-precocial shorebird chicks in a warm environment: the african black oystercatcher, Haemantopus moquini. Zoology. 2007;110:176–88. doi: 10.1016/j.zool.2007.01.002. PubMed DOI
Tjørve KMC, Underhill LG, Visser GH. The energetic implications of precocial development for three shorebird species breeding in a warm environment. Ibis. 2008;150:125–138. doi: 10.1111/j.1474-919X.2007.00752.x. DOI
Hart LA, Downs CT, Brown M. Keeping it regular: development of thermoregulation in four tropical seabird species. J Therm Biol. 2017;64:19–25. doi: 10.1016/j.jtherbio.2016.12.003. PubMed DOI
Orange JP, Davis CA, Elmore RD, Fuhlendorf SD. Temporary communal brooding in northern bobwhite and scaled quail broods. West North Am Nat. 2016;76(1):122–7. doi: 10.3398/064.076.0113. DOI
Heldbjerg H, Fox AD, Balsby TJS, Thellesen PV. Night-brooding behaviour in provisioning cavity-nesting birds is a trade-off between adult predation risk and nestling thermoregulation needs. Ornis Fenn. 2022;99:26–36.
Balen A. A comparative sudy of the breeding ecology of the great Tit Parus major in different habitats. Ardea. 1973;55:1–93.
Turpie JK, Hockey PAR. Adaptive variation in the foraging behaviour of Grey Plover Pluvialis squatarola and Whimbrel Numenius phaeopus. Ibis. 1997;139:289–298. doi: 10.1111/j.1474-919X.1997.tb04627.x. DOI
Fasola M, Canova L. Diel activity of resident and immigrant waterbirds at Lake Turkana, Kenya. Ibis. 1993;135:442–450. doi: 10.1111/j.1474-919X.1993.tb02117.x. DOI
Boros E, Andrikovics S, Kiss B, Forró L. Feeding ecology of migrating waders (Charadrii) at sodic-alkaline pans in the Carpathian Basin. Bird Study. 2006;53:86–91. doi: 10.1080/00063650609461420. DOI
Whittingham MJ, Percival SM, Brown AF. Notes on night-time activity of golden plover (Pluvialis apricaria) chicks in north pennines. Wader Study Gr Bull. 1999;90(1):56–8.
Wikelski M, Spinney L, Schelsky W, Scheuerlein A, Gwinner E. Slow pace of life in tropical sedentary birds: a common-garden experiment on four stonechat populations from different latitudes. Proc R Soc B Biol Sci. 2003;270:2383–8. doi: 10.1098/rspb.2003.2500. PubMed DOI PMC
Wiersma P, Muñoz-Garcia A, Walker A, Williams JB. Tropical birds have a slow pace of life. Proc Natl Acad Sci. 2007;104(22):9340–5. doi: 10.1073/pnas.0702212104. PubMed DOI PMC
Wiersma P, Nowak B, Williams JB. Small organ size contributes to the slow pace of life in tropical birds. J Exp Biol. 2012;215(10):1662–9. doi: 10.1242/jeb.065144. PubMed DOI
Elhassan EEM, Sládeček M, Badaam S, Brynychová K, Chajma P, Firlová V, et al. An artificial lakes system intended for human recreation supports a vital breeding population of Red-wattled Lapwing in the Arabian Desert. Avian Conserv Ecol. 2021;16(2):1–19.
Khaliq I, Hof C, Prinzinger R, Böhning-Gaese K, Pfenninger M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc R Soc B Biol Sci. 2014;281:1–8. PubMed PMC
Kubelka V, Sládeček M, Šálek M. Great variability in nest lining size: support for thermoregulation but not for anti-predatory adaptation hypothesis. J Ornithol. 2019;160(4):993–1002. doi: 10.1007/s10336-019-01670-x. DOI
Sládeček M, Vozabulová E, Šálek ME, Bulla M. Diversity of incubation rhythms in a facultatively uniparental shorebird—the Northern Lapwing. Sci Rep. 2019;9:1–11. doi: 10.1038/s41598-019-41223-z. PubMed DOI PMC
Sládeček M, Brynychová K, Elhassan E, Šálek ME, Janatová V, Vozabulová E, et al. Diel timing of nest predation changes across breeding season in a subtropical shorebird. Ecol Evol. 2021;11(19):13101–17. doi: 10.1002/ece3.8025. PubMed DOI PMC
Eck S, Fiebig J, Fiedler W, Heynen I, Nicolai B, Töpfer T, et al. Measuring Birds/Vögel Vermessen. Minden: Deutche Ornithologen-Gesellschaft; 2011.
Kenward RE. A manual for wildlife radio tagging. London: Academic Press; 2001.
R-Core-Team . A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2019.
van Hees VT, Fang Z, Langford J, Assah F, Mohammad A, da Silva ICM, et al. Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents. J Appl Physiol. 2014;117:738–744. doi: 10.1152/japplphysiol.00421.2014. PubMed DOI PMC
Chen K-H, Chen P-C, Liu K-C, Chan C-T. Wearable sensor-based rehabilitation exercise assessment for knee osteoarthritis. Sensors. 2015;15:4193–211. doi: 10.3390/s150204193. PubMed DOI PMC
Wilson RP, White CR, Quintana F, Halsey LG, Liebsch N, Martin GR, et al. Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. J Anim Ecol. 2006;75(5):1081–90. doi: 10.1111/j.1365-2656.2006.01127.x. PubMed DOI
Prinzinger R, Preßmar A, Schleucher E. Body temperature in birds. Comp Biochem Physiol Part A Physiol. 1991;99(4):499–506. doi: 10.1016/0300-9629(91)90122-S. DOI
Baum LE, Petrie T, Soules G, Weiss N. A maximization technique occurring in the statistical analysis of probabilistic function of Markov chains. Ann Math Stat. 1970;41(1):164–71. doi: 10.1214/aoms/1177697196. DOI
Leos-Barajas V, Photopoulou T, Langrock R, Patterson TA, Watanabe YY, Murgatroyd M, et al. Analysis of animal accelerometer data using hidden Markov models. Methods Ecol Evol. 2017;8:161–73. doi: 10.1111/2041-210X.12657. DOI
Sládeček M, Kolešková V. Supporting information for: ‘Offspring thermal demands and parental brooding efficiency differ for precocial birds living in contrasting climates’. osf.io/xjc49. 2022. PubMed PMC
Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–51. doi: 10.18637/jss.v067.i01. DOI
Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol. 2010;1:103–13. doi: 10.1111/j.2041-210X.2010.00012.x. DOI
Bulla M, Valcu M, Dokter AM, Dondua AG, Kosztolányi A, Rutten AL, et al. Unexpected diversity in socially synchronized rhythms of shorebirds. Nature. 2016;540:109–113. doi: 10.1038/nature20563. PubMed DOI
Gelman A, Su YS, Yajima M, Hill J, Pittau MG, Kerman J et al. Data Analysis Using Regression and Multilevel/Hierarchical Models [Internet]. CRAN Repository. 2016. http://www.jstatsoft.org/http://www.stat.columbia.edu/~gelman/arm/.
Schielzeth H, Forstmeier W. Conclusions beyond support: overconfident estimates in mixed models. Behav Ecol. 2009;20:416–20. doi: 10.1093/beheco/arn145. PubMed DOI PMC
Harrison XA. A comparison of observation-level random e ff ect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology & evolution.PeerJ. 2015 PubMed PMC
Schekkerman H, Boele A. Foraging in precocial chicks of the black-tailed godwit Limosa limosa: vulnerability to weather and prey size. J Avian Biol. 2009;40:369–79. doi: 10.1111/j.1600-048X.2008.04330.x. DOI
Quintana F, Uhart MM, Gallo L, Mattera MB, Rimondi A, Gómez-Laich A. Heat-related massive chick mortality in an Imperial Cormorant Leucocarbo atriceps colony from Patagonia, Argentina. Polar Biol. 2022;45(2):275–284. doi: 10.1007/s00300-021-02982-6. DOI
Powell AN. The effects of early experience on the development, behavior, and survival of shorebirds. University of Minnesota; 1992.
Blanken MS, Nol E. Factors affecting parental behavior in Semipalmated Plovers. Auk. 1998;115(1):166–74. doi: 10.2307/4089121. DOI
del Hoyo J, Elliott A, Sargatal J. Handbook of the birds of the World, vol.3: Hoatzn to Auks. Barcelona: Lynx Edicions; 1996.
Brynychová K, Šálek ME, Vozabulová E, Sládeček M. Daily rhythms of female self-maintenance correlate with Predation Risk and male nest attendance in a biparental Wader. J Biol Rhythms. 2020;35(5):489–500. doi: 10.1177/0748730420940465. PubMed DOI
Cervencl A, Esser W, Maier M, Oberdiek N, Thyen S, Wellbrock A, et al. Can differences in incubation patterns of common Redshanks Tringa totanus be explained by variations in predation risk? J Ornithol. 2011;152(4):1033–43. doi: 10.1007/s10336-011-0696-z. DOI
Rickenbach O, Grüebler MU, Schaub M, Koller A, Naef-Daenzer B, Schifferli L. Exclusion of ground predators improves Northern Lapwing Vanellus vanellus chick survival. Ibis. 2011;153:531–542. doi: 10.1111/j.1474-919X.2011.01136.x. DOI
Yorzinski JL, Platt ML. The difference between night and day: antipredator behavior in birds. J Ethol. 2012;30:211–8. doi: 10.1007/s10164-011-0318-5. DOI
Sofaer HR, Nagle L, Sillett TS, Jongmin Y, Ghalambor CK. The importance of nighttime length to latitudinal variation in avian incubation attentiveness. J Avian Biol. 2020;2020(7):1–7.
Wiebe KL, Bortolotti GR. Brood patches of American Kestrels: an ecological and evolutionary perspective. Ornis Scand. 1993;24(3):197–204. doi: 10.2307/3676735. DOI
Downs CT, Ward D. Does shading behavior of incubating shorebirds in hot environments cool the eggs or the adults. Auk. 1997;114(4):717–24. doi: 10.2307/4089291. DOI