Non-specific effects of the CINNAMATE-4-HYDROXYLASE inhibitor piperonylic acid

. 2023 Jul ; 115 (2) : 470-479. [epub] 20230427

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37036146

Grantová podpora
MR/T020652/1 Medical Research Council - United Kingdom

Chemical inhibitors are often implemented for the functional characterization of genes to overcome the limitations associated with genetic approaches. Although it is well established that the specificity of the compound is key to success of a pharmacological approach, off-target effects are often overlooked or simply neglected in a complex biological setting. Here we illustrate the cause and implications of such secondary effects by focusing on piperonylic acid (PA), an inhibitor of CINNAMATE-4-HYDROXYLASE (C4H) that is frequently used to investigate the involvement of lignin during plant growth and development. When supplied to plants, we found that PA is recognized as a substrate by GRETCHEN HAGEN 3.6 (GH3.6), an amido synthetase involved in the formation of the indole-3-acetic acid (IAA) conjugate IAA-Asp. By competing for the same enzyme, PA interferes with IAA conjugation, resulting in an increase in IAA concentrations in the plant. In line with the broad substrate specificity of the GH3 family of enzymes, treatment with PA increased not only IAA levels but also those of other GH3-conjugated phytohormones, namely jasmonic acid and salicylic acid. Finally, we found that interference with the endogenous function of GH3s potentially contributes to phenotypes previously observed upon PA treatment. We conclude that deregulation of phytohormone homeostasis by surrogate occupation of the conjugation machinery in the plant is likely a general phenomenon when using chemical inhibitors. Our results hereby provide a novel and important basis for future reference in studies using chemical inhibitors.

Zobrazit více v PubMed

Aoi, Y., Hira, H., Hayakawa, Y., Liu, H., Fukui, K., Dai, X. et al. (2020) UDP-glucosyltransferase UGT84B1 regulates the levels of indole-3-acetic acid and phenylacetic acid in Arabidopsis. Biochemical and Biophysical Research Communications, 532, 244-250.

Bain, J., Plater, L., Elliott, M., Shpiro, N., Hastie, C.J., Mclauchlan, H. et al. (2007) The selectivity of protein kinase inhibitors: a further update. Biochemical Journal, 408, 297-315.

Bouche, N. & Bouchez, D. (2001) Arabidopsis gene knockout: phenotypes wanted. Current Opinion in Plant Biology, 4, 111-117.

Casanova-Saez, R., Mateo-Bonmati, E. & Ljung, K. (2021) Auxin metabolism in plants. Cold Spring Harbor Perspectives in Biology, 13, a039867.

Casanova-Saez, R. & Voss, U. (2019) Auxin metabolism controls developmental decisions in land plants. Trends in Plant Science, 24, 741-754.

Desmedt, W., Jonckheere, W., Nguyen, V.H., Ameye, M., De Zutter, N., De Kock, K. et al. (2021) The phenylpropanoid pathway inhibitor piperonylic acid induces broad-spectrum pest and disease resistance in plants. Plant, Cell & Environment, 44, 3122-3139.

Dima, O., Morreel, K., Vanholme, B., Kim, H., Ralph, J. & Boerjan, W. (2015) Small glycosylated lignin oligomers are stored in Arabidopsis leaf vacuoles. Plant Cell, 27, 695-710.

Dindas, J., Becker, D., Roelfsema, M.R.G., Scherzer, S., Bennett, M. & Hedrich, R. (2020) Pitfalls in auxin pharmacology. The New Phytologist, 227, 286-292.

Ding, X., Cao, Y., Huang, L., Zhao, J., Xu, C., Li, X. et al. (2008) Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell, 20, 228-240.

Dobrev, P.I. & Kamınek, M. (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. Journal of Chromatography A, 950, 21-29.

El Houari, I., Boerjan, W. & Vanholme, B. (2021) Behind the scenes: the impact of bioactive phenylpropanoids on the growth phenotypes of Arabidopsis lignin mutants. Frontiers in Plant Science, 12, 734070.

El Houari, I., Van Beirs, C., Arents, H.E., Han, H., Chanoca, A., Opdenacker, D. et al. (2021) Seedling developmental defects upon blocking CINNAMATE-4-HYDROXYLASE are caused by perturbations in auxin transport. New Phytologist, 230, 2275-2291.

Fiser, A., Do, R.K. & Sali, A. (2000) Modeling of loops in protein structures. Protein Science, 9, 1753-1773.

Flokova, K., Tarkowska, D., Miersch, O., Strnad, M., Wasternack, C. & Novak, O. (2014) UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry, 105, 147-157.

Geldner, N., Friml, J., Stierhof, Y.-D., Jürgens, G. & Palme, K. (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 413, 425-428.

Hanson, A.D. & Kende, H. (1976) Biosynthesis of wound ethylene in morning-glory flower tissue. Plant Physiology, 57, 538-541.

Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E. & Hutchison, G.R. (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 17.

Karaman, M.W., Herrgard, S., Treiber, D.K., Gallant, P., Atteridge, C.E., Campbell, B.T. et al. (2008) A quantitative analysis of kinase inhibitor selectivity. Nature Biotechnology, 26, 127-132.

Kleinboelting, N., Huep, G., Kloetgen, A., Viehoever, P. & Weisshaar, B. (2012) GABI-Kat SimpleSearch: new features of the Arabidopsis thaliana T-DNA mutant database. Nucleic Acids Research, 40, D1211-D1215.

Le Roy, J., Huss, B., Creach, A., Hawkins, S. & Neutelings, G. (2016) Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Frontiers in Plant Science, 7, 735.

Lee, Y., Rubio, M.C., Alassimone, J. & Geldner, N. (2013) A mechanism for localized lignin deposition in the endodermis. Cell, 153, 402-412.

Lefevere, H., Bauters, L. & Gheysen, G. (2020) Salicylic acid biosynthesis in plants. Frontiers in Plant Science, 11, 338.

Mateo-Bonmatí, E., Casanova-Sáez, R., Šimura, J. & Ljung, K. (2021) Broadening the roles of UDP-glycosyltransferases in auxin homeostasis and plant development. New Phytologist, 232, 642-654.

McCourt, P. & Desveaux, D. (2010) Plant chemical genetics. New Phytologist, 185, 15-26.

Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S. et al. (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785-2791.

Najeeb, U., Atwell, B.J., Bange, M.P. & Tan, D.K.Y. (2015) Aminoethoxyvinylglycine (AVG) ameliorates waterlogging-induced damage in cotton by inhibiting ethylene synthesis and sustaining photosynthetic capacity. Plant Growth Regulation, 76, 83-98.

Naseer, S., Lee, Y., Lapierre, C., Franke, R., Nawrath, C. & Geldner, N. (2012) Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proceedings of the National Academy of Sciences of the United States of America, 109, 10101-10106.

Park, S.Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y. et al. (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 324, 1068-1071.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C. et al. (2004) UCSF Chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605-1612.

Porco, S., Pěnčík, A., Rashed, A., Voß, U., Casanova-Sáez, R., Bishopp, A. et al. (2016) Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 113, 11016-11021.

Reyt, G., Chao, Z., Flis, P., Salas-González, I., Castrillo, G., Chao, D.-Y. et al. (2020) Uclacyanin proteins are required for lignified nanodomain formation within casparian strips. Current Biology, 30(4103-4111), e4106.

Rohde, A., Morreel, K., Ralph, J., Goeminne, G., Hostyn, V., De Rycke, R. et al. (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. The Plant Cell, 16, 2749-2771.

Sali, A. & Blundell, T.L. (1993) Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234, 779-815.

Schalk, M., Cabello-Hurtado, F., Pierrel, M.A., Atanossova, R., Saindrenan, P. & Werck-Reichhart, D. (1998) Piperonylic acid, a selective, mechanism-based inactivator of the trans-cinnamate 4-hydroxylase: a new tool to control the flux of metabolites in the phenylpropanoid pathway. Plant Physiology, 118, 209-218.

Schröder, P. & Collins, C. (2002) Conjugating enzymes involved in xenobiotic metabolism of organic xenobiotics in plants. International Journal of Phytoremediation, 4, 247-265.

Shen, M.Y. & Sali, A. (2006) Statistical potential for assessment and prediction of protein structures. Protein Science, 15, 2507-2524.

Soeno, K., Goda, H., Ishii, T., Ogura, T., Tachikawa, T., Sasaki, E. et al. (2010) Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant & Cell Physiology, 51, 524-536.

Staswick, P.E., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M.T., Maldonado, M.C. et al. (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. The Plant Cell, 17, 616-627.

Steenackers, W., El Houari, I., Baekelandt, A., Witvrouw, K., Dhondt, S., Leroux, O. et al. (2019) cis-Cinnamic acid is a natural plant growth-promoting compound. Journal of Experimental Botany, 70, 6293-6304.

Trott, O. & Olson, A.J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455-461.

Van de Wouwer, D., Vanholme, R., Decou, R., Goeminne, G., Audenaert, D., Nguyen, L. et al. (2016) Chemical genetics uncovers novel inhibitors of lignification, including p-iodobenzoic acid targeting CINNAMATE-4-HYDROXYLASE. Plant Physiology, 172, 198-220.

Vanholme, B., El Houari, I. & Boerjan, W. (2019) Bioactivity: phenylpropanoids' best kept secret. Current Opinion in Biotechnology, 56, 156-162.

Vlaminck, L., De Rouck, B., Desmet, S., Van Gerrewey, T., Goeminne, G., De Smet, L. et al. (2022) Opposing effects of trans- and cis-cinnamic acid during rice coleoptile elongation. Plant Direct, 6, e465.

Westfall, C.S., Sherp, A.M., Zubieta, C., Alvarez, S., Schraft, E., Marcellin, R. et al. (2016) Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 113, 13917-13922.

Zhang, Z., Li, Q., Li, Z., Staswick, P.E., Wang, M., Zhu, Y. et al. (2007) Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiology, 145, 450-464.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace