Studying molecular interactions via capillary electrophoresis and microscale thermophoresis: A review
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
37043774
DOI
10.1002/elps.202200275
Knihovny.cz E-zdroje
- Klíčová slova
- affinity capillary electrophoresis, biomolecules, microscale thermophoresis, pharmaceuticals, protein binding,
- MeSH
- elektroforéza kapilární * metody MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The process of choosing the most proper technique for studying the molecular interactions is based on critical factors such as instrumentation complexity, automation, experimental procedures, analysis time, consumables, and cost-value. This review has tracked the use of affinity capillary electrophoresis (ACE) and microscale thermophoresis (MST) techniques in the evaluation of molecular binding among different molecules during the 5 years 2016-2021. ACE has proved to be an attractive technique for biomolecular characterization with high resolution efficiency where small variations in several controlling factors can much improve such efficiency compared to other analytical techniques. Meanwhile, MST has proved its higher sensitivity for smaller amounts of complex non-purified biosamples without affecting its robustness while providing high through output. However, the main motivation to review both techniques in the proposed review was their capability to carry out all experiments without the need for immobilizing one interacting partner, besides a great flexibility in the use of buffering systems. The proposed review demonstrates the importance of both techniques in different areas of life sciences. Moreover, the recent advances in exploiting ACE and MST in other research interests have been discussed.
College of Pharmacy King Khalid University Abha Saudi Arabia
Department of Biochemistry Masaryk University Brno Czech Republic
Institute of Medicinal and Pharmaceutical Chemistry TU Braunschweig Braunschweig Germany
Natural and Medical Sciences Research Center University of Nizwa Nizwa Sultanate of Oman
Zobrazit více v PubMed
Nusrat S, Khan RH. Exploration of ligand-induced protein conformational alteration, aggregate formation, and its inhibition: a biophysical insight. Prep Biochem Biotechnol. 2018;48:43-56.
Moustaqil M, Gambin Y, Sierecki E. Biophysical techniques for target validation and drug discovery in transcription-targeted therapy. Int J Mol Sci. 2020;21:2301.
Yang Y, Yin Y, Li X, Wang S, Dong Y. Development of a chimeric aptamer and an AuNPs aptasensor for highly sensitive and specific identification of Aflatoxin B1. Sens Actuators B. 2020;319:128250.
Archer CR, Enslow BT, Taylor AB, De la Rosa V, Bhattacharya A, Shapiro MS. A mutually induced conformational fit underlies Ca2+-directed interactions between calmodulin and the proximal C terminus of KCNQ4 K+ channels. J Biol Chem. 2019;294:6094-112.
Syntia F, Nehmé R, Claude B, Morin P. Human neutrophil elastase inhibition studied by capillary electrophoresis with laser induced fluorescence detection and microscale thermophoresis. J Chromatogr A. 2016;1431:215-23.
Miao S, Ge Y, Yi Z, Feng Q. Screening of aptamer for breast cancer biomarker calreticulin and its application to detection of serum and recognition of breast cancer cell. Chin J Anal Chem. 2020;48:642-9.
Asmari M, Waqas M, Ibrahim AE, Halim SA, Khan A, Al-Harrasi A, et al. Microscale thermophoresis and molecular modelling to explore the chelating drug transportation in the milk to infant. Molecules. 2022;27:4604.
El-Hela AA, Bakr MSA, Hegazy MM, Dahab MA, Elmaaty AA, Ibrahim AE, et al. Phytochemical characterization of Pterocephalus frutescens with in-silico evaluation as chemotherapeutic medicine and oral pharmacokinetics prediction study. Sci Pharm. 2023;91:7.
Ries J, Schwille P. Fluorescence correlation spectroscopy. Bioessays. 2012;34:361-8.
Preeyanka N, Sarkar M. Probing how various metal ions interact with the surface of QDs: implication of the interaction event on the photophysics of QDs. Langmuir. 2021;37:6995-7007.
Kaur A, Kaur P, Ahuja S. Förster resonance energy transfer (FRET) and applications thereof. Anal Methods. 2020;12:5532-50.
Eyers CE, Vonderach M, Ferries S, Jeacock K, Eyers PA. Understanding protein-drug interactions using ion mobility-mass spectrometry. Curr Opin Chem Biol. 2018;42:167-76.
Beć KB, Grabska J, Huck CW. Biomolecular and bioanalytical applications of infrared spectroscopy - a review. Anal Chim Acta. 2020;1133:150-77.
Fu H, Qian C, Tong W, Li H, Chen DDY. Mass spectrometry and affinity capillary electrophoresis for characterization of host-guest interactions. J Chromatogr A. 2019;1589:182-90.
Ermakova EA, Danilova AG, Khairutdinov BI. Interaction of ceftriaxone and rutin with human serum albumin. WaterLOGSY-NMR and molecular docking study. J Mol Struct. 2020;1203:127444.
Dahiya V, Anand BG, Kar K, Pal S. In vitro interaction of organophosphate metabolites with bovine serum albumin: a comparative 1H NMR, fluorescence and molecular docking analysis. Pestic Biochem Physiol. 2020;163:39-50.
Souto DE, Volpe J, Gonçalves CC, Ramos CH, Kubota LT. A brief review on the strategy of developing SPR-based biosensors for application to the diagnosis of neglected tropical diseases. Talanta. 2019;205:120122.
Grela P, Li X-P, Horbowicz P, Dźwierzyńska M, Tchórzewski M, Tumer NE. Human ribosomal P1-P2 heterodimer represents an optimal docking site for ricin A chain with a prominent role for P1 C-terminus. Sci Rep. 2017;7:5608.
Michel MA, Swatek KN, Hospenthal MK, Komander D. Ubiquitin linkage-specific affimers reveal insights into K6-linked ubiquitin signaling. Mol Cell. 2017;68:233-46.e5.
Ehrmann S, Chu C-W, Kumari S, Silberreis K, Böttcher C, Dernedde J, et al. A toolbox approach for multivalent presentation of ligand-receptor recognition on a supramolecular scaffold. J Mater Chem B. 2018;6:4216-22.
Rajarathnam K, Rösgen J. Isothermal titration calorimetry of membrane proteins-progress and challenges. Biochim Biophys Acta (BBA) Biomembr. 2014;1838:69-77.
Wawra S, Fesel P, Widmer H, Neumann U, Lahrmann U, Becker S, et al. FGB1 and WSC3 are in planta-induced β-glucan-binding fungal lectins with different functions. New Phytol. 2019;222:1493-506.
Nelson C, Mrozowich T, Gemmill DL, Park SM, Patel TR. Human DDX3X unwinds Japanese encephalitis and Zika viral 5′ terminal regions. Int J Mol Sci. 2021;22:413.
Kraft L, Serpell LC, Atack JR. A biophysical approach to the identification of novel ApoE chemical probes. Biomolecules. 2019;9:48.
Herkt M, Batkai S, Thum T. Studying interactions between 2’-O-Me-modified inhibitors and microRNAs utilizing microscale thermophoresis. Mol Ther Nucleic Acids. 2019;18:259-68.
Deeb SE, Al-Harrasi A, Khan A, Al-Broumi M, Al-Thani G, Alomairi M, et al. Microscale thermophoresis as a powerful growing analytical technique for the investigation of biomolecular interaction and the determination of binding parameters. Methods Appl Fluoresc. 2022;10:042001.
Li Z, Hage DS. Analysis of stereoselective drug interactions with serum proteins by high-performance affinity chromatography: a historical perspective. J Pharm Biomed Anal. 2017;144:12-24.
Seyfinejad B, Ozkan SA, Jouyban A. Recent advances in the determination of unbound concentration and plasma protein binding of drugs: analytical methods. Talanta. 2021;225:122052.
Sumova P, Sima M, Kalouskova B, Polanska N, Vanek O, Oliveira F, et al. Amine-binding properties of salivary yellow-related proteins in phlebotomine sand flies. Insect Biochem Mol Biol. 2019;115:103245.
Sázelová P, Koval D, Severa L, Teplý F, Vigh G, Kašička V. Determination of binding constants of multiple charged cyclodextrin complexes by ACE using uncorrected and ionic strength corrected actual mobilities of the species involved. Electrophoresis. 2020;41:523-35.
Olabi M, Stein M, Wätzig H. Affinity capillary electrophoresis for studying interactions in life sciences. Methods. 2018;146:76-92.
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie. 2020;170:173-202.
Zheng X, Li Z, Beeram S, Podariu M, Matsuda R, Pfaunmiller EL, et al. Analysis of biomolecular interactions using affinity microcolumns: a review. J Chromatogr B. 2014;968:49-63.
Zheng X, Bi C, Li Z, Podariu M, Hage DS. Analytical methods for kinetic studies of biological interactions: a review. J Pharm Biomed Anal. 2015;113:163-80.
Nowak PM, Woźniakiewicz M. On-line coupling between capillary electrophoresis and microscale thermophoresis (CE-MST); the proof-of-concept. Analyst. 2018;143:4854-9.
Neaga I, Bodoki E, Hambye S, Blankert B, Oprean R. Study of nucleic acid-ligand interactions by capillary electrophoretic techniques: a review. Talanta. 2016;148:247-56.
Guo X, Chen GH. Capillary electrophoresis-based methodology for screening of oligonucleotide aptamers. Biomed Chromatogr. 2021;35:e5109.
Wang Y, Adeoye DI, Ogunkunle EO, Wei I-A, Filla RT, Roper MG. Affinity capillary electrophoresis: a critical review of the literature from 2018 to 2020. Anal Chem. 2020;93:295-310.
Zhang C, Woolfork AG, Suh K, Ovbude S, Bi C, Elzoeiry M, et al. Clinical and pharmaceutical applications of affinity ligands in capillary electrophoresis: a review. J Pharm Biomed Anal. 2020;177:112882.
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2017-mid 2019). Electrophoresis. 2020;41:10-35.
Yu F, Zhao Q, Zhang D, Yuan Z, Wang H. Affinity interactions by capillary electrophoresis: binding, separation, and detection. Anal Chem. 2018;91:372-87.
Dubský P, Dvořák M, Ansorge M. Affinity capillary electrophoresis: the theory of electromigration. Anal Bioanal Chem. 2016;408:8623-41.
Sladkov V. Affinity capillary electrophoresis in studying the complex formation equilibria of radionuclides in aqueous solutions. Electrophoresis. 2016;37:2558-66.
Galievsky VA, Stasheuski AS, Krylov SN. Capillary electrophoresis for quantitative studies of biomolecular interactions. Anal Chem. 2015;87:157-71.
Sursyakova VV, Levdansky VA, Rubaylo AI. Electrophoretic mobility of ester betulin derivatives and their complexation with γ-cyclodextrin studied by capillary electrophoresis in aqueous solutions at different pH values. Electrophoresis. 2022;43:535-42.
Ratih R, Wätzig H, Azminah A, Asmari M, Peters B, El Deeb S. Immobilization of chondroitin sulfate a onto monolithic epoxy silica column as a new chiral stationary phase for high-performance liquid chromatographic enantioseparation. Pharmaceuticals. 2021;14:98.
Nevídalová H, Michalcová L, Glatz Z. In-depth insight into the methods of plasma protein-drug interaction studies: comparison of capillary electrophoresis-frontal analysis, isothermal titration calorimetry, circular dichroism and equilibrium dialysis. Electrophoresis. 2018;39:581-9.
Mlčochová H, Michalcová L, Glatz Z. Extending the application potential of capillary electrophoresis/frontal analysis for drug-plasma protein studies by combining it with mass spectrometry detection. Electrophoresis. 2022;43:955-63.
Wang S, Yang Y, Yang Y, Li H, Chen DDY. Quantitative characterization of human oncogene promoter G-quadruplex DNA-ligand interactions using a combination of mass spectrometry and capillary electrophoresis. Electrophoresis. 2021;42:1450-60.
Ansorge M, Dubský P, Ušelová K. Into the theory of the partial-filling affinity capillary electrophoresis and the determination of apparent stability constants of analyte-ligand complexes. Electrophoresis. 2018;39:742-51.
Davoine C, Pardo A, Pochet L, Fillet M. Fragment hit discovery and binding site characterization by indirect affinity capillary electrophoresis: application to factor XIIa. Anal Chem. 2021;93:14802-9.
Zhang Y, Sha Y, Qian K, Chen X, Chen Q. Comparison of three methods for analyzing loureirin B and human serum albumin interaction using capillary electrophoresis. Electrophoresis. 2017;38:1038-43.
Ramírez-García G, d'Orlyé F, Gutiérrez-Granados S, Martínez-Alfaro M, Mignet N, Richard C, et al. Electrokinetic Hummel-Dreyer characterization of nanoparticle-plasma protein corona: the non-specific interactions between PEG-modified persistent luminescence nanoparticles and albumin. Colloids Surf B. 2017;159:437-44.
García GR, d'Orlyé F, Richard C, Mignet N, Varenne A. Electrokinetic elucidation of the interactions between persistent luminescent nanoprobes and the binary apolipoprotein-E/albumin protein system. Analyst. 2021;146:5245-54.
Guo M, Lv D, Shao C, Kuang Y, Sun Z. Analysis of the interaction mechanisms of polysaccharide homologs binding with serum albumin using capillary electrophoresis. J Chem Soc Pak. 2019;41:640-9.
Sun Y, Fang N, Chen DDY. Behavior of interacting species in vacancy affinity capillary electrophoresis described by mass balance equation. Electrophoresis. 2008;29:3333-41.
Michalcová L, Glatz Z. Study on the interactions of sulfonylurea antidiabetic drugs with normal and glycated human serum albumin by capillary electrophoresis-frontal analysis. J Sep Sci. 2016;39:3631-7.
Malburet C, Leclercq L, Cotte J-F, Thiebaud J, Cottet H. Study of interactions between antigens and polymeric adjuvants in vaccines by frontal analysis continuous capillary electrophoresis. Biomacromolecules. 2020;21:3364-73.
Lounis FM, Chamieh J, Leclercq L, Gonzalez P, Cottet H. The effect of molar mass and charge density on the formation of complexes between oppositely charged polyelectrolytes. Polymers. 2017;9:50.
Lounis FM, Chamieh J, Leclercq L, Gonzalez P, Cottet H. Modelling and predicting the interactions between oppositely and variously charged polyelectrolytes by frontal analysis continuous capillary electrophoresis. Soft Matter. 2016;12:9728-37.
Ric A, Ecochard V, Iacovoni JS, Boutonnet A, Ginot F, Ong-Meang V, et al. G-quadruplex aptamer selection using capillary electrophoresis-LED-induced fluorescence and Illumina sequencing. Anal Bioanal Chem. 2018;410:1991-2000.
Suzuki N, Kinoshita M, Miyabe K. Kinetic study of chiral intermolecular interactions by moment analysis based on affinity capillary electrophoresis. Anal Chem. 2018;90:11048-53.
Le AT, Krylova SM, Krylov SN. Ideal-filter capillary electrophoresis: a highly efficient partitioning method for selection of protein binders from oligonucleotide libraries. Electrophoresis. 2019;40:2553-64.
Ouimet CM, Shao H, Rauch JN, Dawod M, Nordhues B, Dickey CA, et al. Protein cross-linking capillary electrophoresis for protein-protein interaction analysis. Anal Chem. 2016;88:8272-8.
Ouimet CM, Dawod M, Grinias J, Assimon VA, Lodge J, Mapp AK, et al. Protein cross-linking capillary electrophoresis at increased throughput for a range of protein-protein interactions. Analyst. 2018;143:1805-12.
Sun M, Fang S, Wang X, Yang G, Li L, Ghulam M, et al. Investigation of the interaction between calreticulin and immunoglobulin G by capillary electrophoresis and computer modeling. Talanta. 2019;195:587-92.
Taylor DM, Seidel A, Planas-Bohne F, Schuppler U, Neu-Mlüler M, Wirth RE. Biochemical studies of the interactions of plutonium, neptunium and protactinium with blood and liver cell proteins. Inorg Chim Acta. 1987;140:361-3.
Vuignier K, Schappler J, Veuthey J-L, Carrupt P-A, Martel S. Drug-protein binding: a critical review of analytical tools. Anal Bioanal Chem. 2010;398:53-66.
Štěpánová S, Kašička V. Capillary electrophoretic methods applied to the investigation of peptide complexes. J Sep Sci. 2015;38:2708-21.
El Deeb S, Ibrahim AE, Al-Harrasi A, Wolber G, Gust R. Validated capillary zone electrophoresis method for impurity profiling and determination of NiII(3-OMe-Salophene). Separations. 2022;9:25.
Wahl J, Furuishi T, Yonemochi E, Meinel L, Holzgrabe U. Characterization of complexes between phenethylamine enantiomers and β-cyclodextrin derivatives by capillary electrophoresis-determination of binding constants and complex mobilities. Electrophoresis. 2017;38:1188-200.
Štěpánová S, Procházková E, Čechová L, Žurek J, Janeba Z, Dračínský M, et al. Separation of rotamers of 5-nitrosopyrimidines and estimation of binding constants of their complexes with β-cyclodextrin by capillary electrophoresis. J Chromatogr A. 2018;1570:164-71.
Kritskiy I, Kumeev R, Volkova T, Shipilov D, Kutyasheva N, Grachev M, et al. Selective binding of methotrexate to monomeric, dimeric and polymeric cyclodextrins. New J Chem. 2018;42:14559-67.
Krait S, Salgado A, Chankvetadze B, Gago F, Scriba GK. Investigation of the complexation between cyclodextrins and medetomidine enantiomers by capillary electrophoresis, NMR spectroscopy and molecular modeling. J Chromatogr A. 2018;1567:198-210.
Szabó Z-I, Deme R, Mucsi Z, Rusu A, Mare AD, Fiser B, et al. Equilibrium, structural and antibacterial characterization of moxifloxacin-β-cyclodextrin complex. J Mol Struct. 2018;1166:228-36.
Guo J, Wang J, Lin H, Feng Y, Shen H, Huang R, et al. Combination of capillary electrophoresis and molecular modeling to study the enantiomer affinity pattern between β-blockers and anionic cyclodextrin derivatives in a methanolic and water background electrolyte. J Sep Sci. 2019;42:1077-87.
Lancioni C, Keunchkarian S, Castells CB, Gagliardi LG. Determination of thermodynamic binding constants by affinity capillary electrophoresis. Talanta. 2019;192:448-54.
Bertaut E, Goossens J-F, Landy D, Danel C. Binding constants determination of cyclodextrin inclusion complexes by affinity capillary electrophoresis. How to overcome the limitations induced by the UV-detector? J Chromatogr A. 2020;1623:461209.
Sursyakova VV, Levdansky VA, Rubaylo AI. Determining binding constants for 1:1 and 1:2 inclusion complexes of ester betulin derivatives with (2-hydroxypropyl)-β-cyclodextrin by affinity capillary electrophoresis. Electrophoresis. 2021;42:700-7.
Barakat F, Gaudin K, Vialet B, Bathany K, Benizri S, Barthélémy P, et al. Analysis of lipid-oligonucleotide conjugates by cyclodextrin-modified capillary zone electrophoresis. Talanta. 2020;219:121204.
Mofaddel N, Fourmentin S, Guillen F, Landy D, Gouhier G. Ionic liquids and cyclodextrin inclusion complexes: limitation of the affinity capillary electrophoresis technique. Anal Bioanal Chem. 2016;408:8211-20.
Sursyakova VV, Levdansky VA, Rubaylo AI. Determination of binding constants for strong complexation by affinity capillary electrophoresis: the example of complexes of ester betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin. Anal Bioanal Chem. 2020;412:5615-25.
Sursyakova VV, Levdansky VA, Rubaylo AI. Strong complexation of water-soluble betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin studied by affinity capillary electrophoresis. Electrophoresis. 2020;41:112-5.
Li L, Zhang Y, Li X, Shen S, Huang H, Bai Y, et al. Study on the interaction of uranyl with sulfated beta-cyclodextrin by affinity capillary electrophoresis and molecular dynamics simulation. Electrophoresis. 2016;37:2567-73.
Aksamija A, Polidori A, Plasson R, Dangles O, Tomao V. The inclusion complex of rosmarinic acid into beta-cyclodextrin: a thermodynamic and structural analysis by NMR and capillary electrophoresis. Food Chem. 2016;208:258-63.
Danel C, Melnyk P, Azaroual N, Larchanché P-E, Goossens J-F, Vaccher C. Evaluation of three neutral capillary coatings for the determination of analyte-cyclodextrin binding constants by affinity capillary electrophoresis. Application to N,N-disubstituted piperazine derivatives. J Chromatogr A. 2016;1455:163-71.
Tóth G, Jánoska Á, Szabó Z-I, Völgyi G, Orgován G, Szente L, et al. Physicochemical characterisation and cyclodextrin complexation of erlotinib. Supramol Chem. 2016;28:656-64.
Řezanka P, Řezanková K, Sedláčková H, Mašek J, Rokosová L, Bláhová M, et al. Influence of substituent position and cavity size of the regioisomers of monocarboxymethyl-α-, β-, and γ-cyclodextrins on the apparent stability constants of their complexes with both enantiomers of Tröger's base. J Sep Sci. 2016;39:980-5.
Šolínová V, Mikysková H, Kaiser MM, Janeba Z, Holý A, Kašička V. Estimation of apparent binding constant of complexes of selected acyclic nucleoside phosphonates with β-cyclodextrin by affinity capillary electrophoresis. Electrophoresis. 2016;37:239-47.
Sohajda T, Fábián Á, Malanga M, Benkovics G, Fülesdi B, Tassonyi E, et al. Design and evaluation of artificial receptors for the reversal of neuromuscular block. Int J Pharm. 2017;531:512-20.
Sladkov V, He M, Jewula P, Penouilh M-J, Brandès S, Stern C, et al. A solution-and gas-phase study of uranyl hydroxamato complexes. J Radioanal Nucl Chem. 2018;318:259-66.
Sornosa-Ten A, Jewula P, Fodor T, Brandès S, Sladkov V, Rousselin Y, et al. Effects of preorganization in the chelation of UO 2 2+ by hydroxamate ligands: cyclic PIPO− vs. linear NMA−. New J Chem. 2018;42:7765-79.
Sladkov V, Bessonov A, Roques J, Charushnikova I, Fedosseev A. Complexation of An (VI) with succinic acid in aqueous acid solutions: uranyl vs. plutonyl. New J Chem. 2018;42:7780-8.
Konášová R, Dytrtová JJ, Kašička V. Study of solvent effects on the stability constant and ionic mobility of the dibenzo-18-crown-6 complex with potassium ion by affinity capillary electrophoresis. J Sep Sci. 2016;39:4429-38.
Nachbar M, El Deeb S, Mozafari M, Alhazmi HA, Preu L, Redweik S, et al. Ca2+-complex stability of GAPAGPLIVPY peptide in gas and aqueous phase, investigated by affinity capillary electrophoresis and molecular dynamics simulations and compared to mass spectrometric results. Electrophoresis. 2016;37:744-51.
Alhazm HA, Al-Bratty M. Binding behavior of few lanthanides and heavy metal ions with proteins by fast and reliable affinity capillary electrophoresis method. Oriental J Chem. 2017;33:2858.
Nachbar M, Mozafari M, Krull F, Maul K-J, Preu L, Hara M, et al. Metal ion-dehydrin interactions investigated by affinity capillary electrophoresis and computer models. J Plant Physiol. 2017;216:219-28.
Pangavhane S, Böhm S, Makrlík E, Ruzza P, Kašička V. Affinity capillary electrophoresis and density functional theory study of noncovalent interactions of cyclic peptide [Gly6]-antamanide with small cations. Electrophoresis. 2017;38:2025-33.
Alhazmi H, Al Bratty M, Javed S, Lalitha K. Investigation of transferrin interaction with medicinally important noble metal ions using affinity capillary electrophoresis. Pharmazie. 2017;72:243-8.
Nachbar M, Maul J, Stein M, Wätzig H. Analysis of AtHIRD11 intrinsic disorder and binding towards metal ions by capillary gel electrophoresis and affinity capillary electrophoresis. J Vis Exp. 2018;2018:e57749.
Konášová R, Koval D, Dytrtová JJ, Kašička V. Comparison of two low flow interfaces for measurement of mobilities and stability constants by affinity capillary electrophoresis-mass spectrometry. J Chromatogr A. 2018;1568:197-204.
Alhazmi H. Measurement of interaction behavior of six biologically important noble metal ions with the iron (III) binding protein, apo-transferrin, using mobility-shift affinity electrophoresis. Pharmazie. 2018;73:143-9.
Alhazmi HA, Javed SA, Ahsan W, Rehman Z, Al Bratty M, El Deeb S, et al. Investigation of binding behavior of important metal ions to thioredoxin reductase using mobility-shift affinity capillary electrophoresis: a preliminary insight into the development of new metal-based anticancer drugs. Microchem J. 2019;145:259-65.
Pangavhane S, Makrlík E, Ruzza P, Kašička V. Affinity capillary electrophoresis employed for determination of stability constants of antamanide complexes with univalent and divalent cations in methanol. Electrophoresis. 2019;40:2321-8.
Gómez-Castro CZ, Rodriguez JA, Cruz-Borbolla J, Quintanar-Guzman A, Sanchez-Ortega I, Santos EM. A theoretical and experimental approach to evaluate zein-calcium interaction in nixtamalization process. Food Chem. 2019;297:124995.
Sladkov V, Roques J, Meyer M. Assignment of complex species by affinity capillary electrophoresis: the case of Th (IV)-desferrioxamine B. Electrophoresis. 2020;41:1870-7.
Hutanu A, Hauser PC, Moritz B, Kiessig S, Noël A, Stracke JO, et al. Methionine oxidation of proteins analyzed by affinity capillary electrophoresis in presence of silver (I) and gold (III) ions. Electrophoresis. 2021;42:1209-16.
Al Bratty M, Alhazmi HA, Javed SA, Rehman ZU, Najmi A, El-Sharkawy KA. Rapid screening and estimation of binding constants for interactions of Fe3+ with two metalloproteins, apotransferrin and transferrin, using affinity mode of capillary electrophoresis. J Spectrosc. 2021;2021:1-10.
Mozafari M, Balasupramaniam S, Preu L, El Deeb S, Reiter CG, Wätzig H. Using affinity capillary electrophoresis and computational models for binding studies of heparinoids with p-selectin and other proteins. Electrophoresis. 2017;38:1560-71.
Xu Y, Hong T, Chen X, Ji Y. Affinity capillary electrophoresis and fluorescence spectroscopy for studying enantioselective interactions between omeprazole enantiomer and human serum albumin. Electrophoresis. 2017;38:1366-73.
Zinellu A, Sotgia S, Scanu B, Arru D, Cossu A, Posadino AM, et al. N-and S-homocysteinylation reduce the binding of human serum albumin to catechins. Eur J Nutr. 2017;56:785-91.
Ouadah N, Moire C, Brothier F, Kuntz J-F, Maly M, Dubsky P, et al. Mobility shift affinity capillary electrophoresis at high ligand concentrations: application to aluminum chlorohydrate-protein interactions. ACS Omega. 2018;3:17547-54.
Davis TA, Patberg SM, Sargent LM, Stefaniak AB, Holland LA. Capillary electrophoresis analysis of affinity to assess carboxylation of multi-walled carbon nanotubes. Anal Chim Acta. 2018;1027:149-57.
Aizpurua-Olaizola O, Sastre Torano J, Pukin A, Fu O, Boons GJ, de Jong GJ, et al. Affinity capillary electrophoresis for the assessment of binding affinity of carbohydrate-based cholera toxin inhibitors. Electrophoresis. 2018;39:344-7.
Davis TA, Holland LA. Peptide probe for multiwalled carbon nanotubes: electrophoretic assessment of the binding interface and evaluation of surface functionalization. ACS Appl Mater Interfaces. 2018;10:11311-8.
Li Q-Q, Yang Y-X, Qv J-W, Hu G, Hu Y-J, Xia Z-N, et al. Investigation of interactions between thrombin and ten phenolic compounds by affinity capillary electrophoresis and molecular docking. J Anal Methods Chem. 2018;2018:4707609.
Neaga IO, Hambye S, Bodoki E, Palmieri C, Ansseau E, Belayew A, et al. Affinity capillary electrophoresis for identification of active drug candidates in myotonic dystrophy type 1. Anal Bioanal Chem. 2018;410:4495-507.
Mozafari M, El Deeb S, Krull F, Wildgruber R, Weber G, Reiter CG, et al. Interaction of albumins and heparinoids investigated by affinity capillary electrophoresis and free flow electrophoresis. Electrophoresis. 2018;39:569-80.
Baroni A, Neaga I, Delbosc N, Wells M, Verdy L, Ansseau E, et al. Bioactive aliphatic polycarbonates carrying guanidinium functions: an innovative approach for myotonic dystrophy type 1 therapy. ACS Omega. 2019;4:18126-35.
Sutton A, Arrua R, Thickett S, Lombi E, Hilder E. Understanding the interaction of gold and silver nanoparticles with natural organic matter using affinity capillary electrophoresis. Environ Sci Nano. 2019;6:1351-62.
Ratih R, Wätzig H, Stein M, El Deeb S. Investigation of the enantioselective interaction between selected drug enantiomers and human serum albumin by mobility shift-affinity capillary electrophoresis. J Sep Sci. 2020;43:3960-8.
Sun S, Yuan Z, Lu Y. Characterization of interaction between buddleoside and bovine serum albumin. Quim Nova. 2020;43:851-5.
Sun S, Yuan Z, Lu Y. Characterization of the interaction between ligustroflavone and bovine serum albumin. J Opt Technol. 2020;87:349-54.
Zaree P, Sastre Torano J, de Haan CA, Scheltema RA, Barendregt A, Thijssen V, et al. The assessment of Pseudomonas aeruginosa lectin LecA binding characteristics of divalent galactosides using multiple techniques. Glycobiology. 2021;31:1490-9.
Gstöttner C, Hook M, Christopeit T, Knaupp A, Schlothauer T, Reusch D, et al. Affinity capillary electrophoresis-mass spectrometry as a tool to unravel proteoform-specific antibody-receptor interactions. Anal Chem. 2021;93:15133-41.
Zhang B, Li YX, Gao HN, Bian J, Bao JJ. Rapid determination of protein binding constant by a pressure-mediated affinity capillary electrophoresis method. Electrophoresis. 2011;32:3589-96.
Macková H, Oukacine F, Plichta Z, Hrubý M, Kučka J, Taverna M, et al. Poly (glycidyl methacrylate)/silver nanocomposite microspheres as a radioiodine scavenger: electrophoretic characterisation of carboxyl-and amine-modified particles. J Colloid Interface Sci. 2014;421:146-53.
Baron D, Rozsypal J, Michel A, Secret E, Siaugue J-M, Pluháček T, et al. Study of interactions between carboxylated core shell magnetic nanoparticles and polymyxin B by capillary electrophoresis with inductively coupled plasma mass spectrometry. J Chromatogr A. 2020;1609:460433.
Suzuki N, Miyabe K. Evaluation of migration time and variance for accurate kinetic studies based on affinity capillary electrophoresis. Anal Chem. 2017;89:10487-95.
Miyabe K, Suzuki N, Shimazaki Y. Determination of association and dissociation rate constants in an inclusion complex system between thymol and sulfated-β-cyclodextrin by moment analysis-affinity capillary electrophoresis. Bull Chem Soc Jpn. 2016;89:1219-24.
Abd El-Hady D, Albishri HM. Temperature controlled ionic liquid aqueous two phase system combined with affinity capillary electrophoresis for rapid and precise pharmaceutical-protein binding measurements. Methods. 2018;146:120-5.
Alshitari W. Investigating the binding measurements of human α-acid glycoprotein with chlorambucil and dacarbazine in the presence of imidazolium based-ionic liquid by affinity capillary electrophoresis. Arab J Chem. 2020;13:7445-52.
Brown A, Desharnais R, Roy BC, Malik S, Gomez FA. Optimization of conditions for flow-through partial-filling affinity capillary electrophoresis to estimate binding constants of ligands to receptors. Anal Chim Acta. 2005;540:403-10.
Villareal V, Kaddis J, Azad M, Zurita C, Silva I, Hernandez L, et al. Partial-filling affinity capillary electrophoresis. Anal Bioanal Chem. 2003;376:822-31.
Amini A, Paulsen-Sörman U, Westerlund D. Principle and applications of the partial filling technique in capillary electrophoresis. Chromatographia. 1999;50:497-506.
Multia E, Sirén H, Andersson K, Samuelsson J, Forssén P, Fornstedt T, et al. Thermodynamic and kinetic approaches for evaluation of monoclonal antibody-lipoprotein interactions. Anal Biochem. 2017;518:25-34.
Farcaş E, Bouckaert C, Servais A-C, Hanson J, Pochet L, Fillet M. Partial filling affinity capillary electrophoresis as a useful tool for fragment-based drug discovery: a proof of concept on thrombin. Anal Chim Acta. 2017;984:211-22.
Xiao-Qian W, Ghulam M, Chao Z, Feng Q. Online capillary electrophoresis reaction for interaction study of amino acid modified peptide nucleic acid and proteins. Chin J Anal Chem. 2018;46:1895-903.
Farcaş E, Hanson J, Pochet L, Fillet M. Capillary electrophoretic mobility shift displacement assay for the assessment of weak drug-protein interactions. Anal Chim Acta. 2018;1034:214-22.
Šolínová V, Žáková L, Jiráček J, Kašička V. Pressure assisted partial filling affinity capillary electrophoresis employed for determination of binding constants of human insulin hexamer complexes with serotonin, dopamine, arginine, and phenol. Anal Chim Acta. 2019;1052:170-8.
Hutanu A, Kiessig S, Bathke A, Ketterer R, Riner S, Olaf Stracke J, et al. Application of affinity capillary electrophoresis for charge heterogeneity profiling of biopharmaceuticals. Electrophoresis. 2019;40:3014-22.
Růžička M, Koval D, Vávra J, Reyes-Gutiérrez PE, Teplý F, Kašička V. Interactions of helquats with chiral acidic aromatic analytes investigated by partial-filling affinity capillary electrophoresis. J Chromatogr A. 2016;1467:417-26.
Bruno C, Cavalluzzi MM, Rusciano MR, Lovece A, Carrieri A, Pracella R, et al. The chemosensitizing agent lubeluzole binds calmodulin and inhibits Ca2+/calmodulin-dependent kinase II. Eur J Med Chem. 2016;116:36-45.
Busch M, Carels L, Boelens H, Kraak J, Poppe H. Comparison of five methods for the study of drug-protein binding in affinity capillary electrophoresis. J Chromatogr A. 1997;777:311-28.
Du H, Zhang C, Mao K, Wang Y. A star-shaped poly (2-methyl-2-oxazoline)-based antifouling coating: application in investigation of the interaction between acetaminophen and bovine serum albumin by frontal analysis capillary electrophoresis. Talanta. 2017;170:275-85.
Ràfols C, Amézqueta S, Fuguet E, Bosch E. Molecular interactions between warfarin and human (HSA) or bovine (BSA) serum albumin evaluated by isothermal titration calorimetry (ITC), fluorescence spectrometry (FS) and frontal analysis capillary electrophoresis (FA/CE). J Pharm Biomed Anal. 2018;150:452-9.
Nevídalová H, Michalcová L, Glatz Z. Applicability of capillary electrophoresis-frontal analysis for displacement studies: effect of several drugs on l-tryptophan and lidocaine binding to human serum albumin. J Sep Sci. 2020;43:4225-33.
Michalcová L, Nevídalová H, Glatz Z. Toward an automated workflow for the study of plasma protein-drug interactions based on capillary electrophoresis-frontal analysis combined with in-capillary mixing of interacting partners. J Chromatogr A. 2021;1635:461734.
Ye F, Baldursdottir S, Hvidt S, Jensen H, Larsen SW, Yaghmur A, et al. Role of electrostatic interactions on the transport of druglike molecules in hydrogel-based articular cartilage mimics: implications for drug delivery. Mol Pharm. 2016;13:819-28.
Wang FQ, Li QQ, Zhang Q, Wang YZ, Hu YJ, Li P, et al. Evaluation of interactions between RAW264. 7 macrophages and small molecules by capillary electrophoresis. Electrophoresis. 2017;38:938-41.
Huang Y, Yang Z, Xu H, Zhang P, Gao Z, Li H. Insulin enhances the peroxidase activity of heme by forming heme-insulin complex: relevance to type 2 diabetes mellitus. Int J Biol Macromol. 2017;102:1009-15.
Li Q-Q, Li S-Y, Wang F-Q, Chen H, Hu YJ, Xia Z-N, et al. Evaluation of the interactions between platelets and alkaloids by frontal analysis capillary electrophoresis using polyvinyl alcohol-coated capillary. Chromatographia. 2018;81:509-16.
Qian C, Wang S, Fu H, Turner RF, Li H, Chen DDY. Pressure-assisted capillary electrophoresis frontal analysis for faster binding constant determination. Electrophoresis. 2018;39:1786-93.
Lounis FM, Chamieh J, Leclercq L, Gonzalez P, Rossi J-C, Cottet H. Effect of dendrigraft generation on the interaction between anionic polyelectrolytes and dendrigraft poly (L-lysine). Polymers. 2018;10:45.
Yang Y, Fu H, Qian C, Li H, Chen DDY. Characterization of interaction between Bcl-2 oncogene promoter I-Motif DNA and flavonoids using electrospray ionization mass spectrometry and pressure-assisted capillary electrophoresis frontal analysis. Talanta. 2020;215:120885.
Xu M, Liu C, Zhou M, Li Q, Wang R, Kang J. Screening of small-molecule inhibitors of protein-protein interaction with capillary electrophoresis frontal analysis. Anal Chem. 2016;88:8050-7.
Qian C, Fu H, Kovalchik KA, Li H, Chen DDY. Specific binding constant and stoichiometry determination in free solution by mass spectrometry and capillary electrophoresis frontal analysis. Anal Chem. 2017;89:9483-90.
Qian C, Kovalchik KA, MacLennan MS, Huang X, Chen DDY. Mobility-based correction for accurate determination of binding constants by capillary electrophoresis-frontal analysis. Electrophoresis. 2017;38:1572-81.
Romano Jr EF, Quirino JP, Holdsworth JL, So RC, Holdsworth CI. Assessment of the binding performance of histamine-imprinted microspheres by frontal analysis capillary electrophoresis. Electrophoresis. 2017;38:1251-9.
Romano Jr EF, Holdsworth CI, Quirino JP, So RC. Room temperature synthesis and binding studies of solution-processable histamine-imprinted microspheres. J Mol Recogn. 2018;31:e2659.
Asmari M, Abdel-Megied AM, Michalcová L, Glatz Z, El Deeb S. Analytical approaches for the determination of deferiprone and its iron (III) complex: investigation of binding affinity based on liquid chromatography-mass spectrometry (LC-ESI/MS) and capillary electrophoresis-frontal analysis (CE/FA). Microchem J. 2020;154:104556.
Platten JK. The Soret effect: a review of recent experimental results. J Appl Mech. 2006;73:5-15.
Rahman M, Saghir M. Thermodiffusion or Soret effect: historical review. Int J Heat Mass Transfer. 2014;73:693-705.
Gupta AJ, Duhr S, Baaske P. Microscale thermophoresis (MST). In: Roberts G, Watts A, editors. Encyclopedia of biophysics. Berlin: Springer; 2018. p. 1-5.
Baaske P, Wienken CJ, Reineck P, Duhr S, Braun D. Optical thermophoresis for quantifying the buffer dependence of aptamer binding. Angew Chem Int Ed. 2010;49:2238-41.
Braun D, Libchaber A. Trapping of DNA by thermophoretic depletion and convection. Phys Rev Lett. 2002;89:188103.
Reineck P, Wienken CJ, Braun D. Thermophoresis of single stranded DNA. Electrophoresis. 2010;31:279-86.
Iacopini S, Piazza R. Thermophoresis in protein solutions. Europhys Lett. 2003;63:247.
Piazza R, Iacopini S, Triulzi B. Thermophoresis as a probe of particle-solvent interactions: the case of protein solutions. Phys Chem Chem Phys. 2004;6:1616-22.
Duhr S, Braun D. Optothermal molecule trapping by opposing fluid flow with thermophoretic drift. Phys Rev Lett. 2006;97:038103.
Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun. 2010;1:100.
Duhr S, Braun D. Why molecules move along a temperature gradient. Proc Natl Acad Sci USA. 2006;103:19678-82.
Jerabek-Willemsen M, Wienken CJ, Braun D, Baaske P, Duhr S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol. 2011;9:342-53.
Jerabek-Willemsen M, André T, Wanner R, Roth HM, Duhr S, Baaske P, et al. MicroScale thermophoresis: interaction analysis and beyond. J Mol Struct. 2014;1077:101-13.
Stein JA, Ianeselli A, Braun D. Kinetic microscale thermophoresis for simultaneous measurement of binding affinity and kinetics. Angew Chem. 2021;133:14107-14.
Rainard JM, Pandarakalam GC, McElroy SP. Using microscale thermophoresis to characterize hits from high-throughput screening: a European lead factory perspective. SLAS Discov. 2018;23:225-41.
Winiewska M, Bugajska E, Poznański J. ITC-derived binding affinity may be biased due to titrant (nano)-aggregation. Binding of halogenated benzotriazoles to the catalytic domain of human protein kinase CK2. PLoS One. 2017;12:e0173260.
Seidel SA, Dijkman PM, Lea WA, van den Bogaart G, Jerabek-Willemsen M, Lazic A, et al. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods. 2013;59:301-15.
Löf A, Müller JP, Benoit M, Brehm MA. Biophysical approaches promote advances in the understanding of von Willebrand factor processing and function. Adv Biol Regul. 2017;63:81-91.
Wätzig H, Oltmann-Norden I, Steinicke F, Alhazmi HA, Nachbar M, El-Hady DA, et al. Data quality in drug discovery: the role of analytical performance in ligand binding assays. J Comput Aided Mol Des. 2015;29:847-65.
Gaffarogullari EC, Krause A, Balbo J, Herten D-P, Jäschke A. Microscale thermophoresis provides insights into mechanism and thermodynamics of ribozyme catalysis. RNA Biol. 2013;10:1815-21.
Asmari M, Ratih R, Alhazmi HA, El Deeb S. Thermophoresis for characterizing biomolecular interaction. Methods. 2018;146:107-19.
Linke P, Amaning K, Maschberger M, Vallee F, Steier V, Baaske P, et al. An automated microscale thermophoresis screening approach for fragment-based lead discovery. J Biomol Screening. 2016;21:414-21.
Davis MI, Pragani R, Fox JT, Shen M, Parmar K, Gaudiano EF, et al. Small molecule inhibition of the ubiquitin-specific protease USP2 accelerates cyclin D1 degradation and leads to cell cycle arrest in colorectal cancer and mantle cell lymphoma models. J Biol Chem. 2016;291:24628-40.
Bao F, Yang K, Wu C, Gao S, Wang P, Chen L, et al. New natural inhibitors of hexokinase 2 (HK2): steroids from Ganoderma sinense. Fitoterapia. 2018;125:123-9.
Wu S-T, Liu B, Ai Z-Z, Hong Z-C, You P-T, Wu H-Z, et al. Esculetin inhibits cancer cell glycolysis by binding tumor PGK2, GPD2, and GPI. Front Pharmacol. 2020;11:379.
Fischer N, Seo E-J, Abdelfatah S, Fleischer E, Klinger A, Efferth T. A novel ligand of the translationally controlled tumor protein (TCTP) identified by virtual drug screening for cancer differentiation therapy. Invest New Drugs. 2021;39:914-27.
McPherson KS, Zaino AM, Dash RC, Rizzo AA, Li Y, Hao B, et al. Structure-based drug design of phenazopyridine derivatives as inhibitors of Rev1 interactions in translesion synthesis. ChemMedChem. 2021;16:1126-32.
Puhl AC, Fritch EJ, Lane TR, Tse LV, Yount BL, Sacramento CQ, et al. Repurposing the ebola and marburg virus inhibitors tilorone, quinacrine, and pyronaridine: in vitro activity against SARS-CoV-2 and potential mechanisms. ACS Omega. 2021;6:7454-68.
Sadremomtaz A, Al-Dahmani ZM, Ruiz-Moreno AJ, Monti A, Wang C, Azad T, et al. Synthetic peptides that antagonize the angiotensin-converting enzyme-2 (ACE-2) interaction with SARS-CoV-2 receptor binding spike protein. J Med Chem. 2021;65:2836-47.
Odolczyk N, Marzec E, Winiewska-Szajewska M, Poznański J, Zielenkiewicz P. Native structure-based peptides as potential protein-protein interaction inhibitors of SARS-CoV-2 spike protein and human ACE2 receptor. Molecules. 2021;26:2157.
Gao B, Zhu S. A fungal defensin targets the SARS-CoV-2 spike receptor-binding domain. J Fungi. 2021;7:553.
Wang X, Wu X, Zhang A, Wang S, Hu C, Chen W, et al. Targeting the PDGF-B/PDGFR-β interface with destruxin A5 to selectively block PDGF-BB/PDGFR-ββ signaling and attenuate liver fibrosis. EBioMedicine. 2016;7:146-56.
Zhong W, Sun B, Gao W, Qin Y, Zhang H, Huai L, et al. Salvianolic acid A targeting the transgelin-actin complex to enhance vasoconstriction. EBioMedicine. 2018;37:246-58.
Franz P, Gassl V, Topf A, Eckelmann L, Iorga B, Tsiavaliaris G. A thermophoresis-based biosensor for real-time detection of inorganic phosphate during enzymatic reactions. Biosens Bioelectron. 2020;169:112616.
Reich P, Stoltenburg R, Strehlitz B, Frense D, Beckmann D. Development of an impedimetric aptasensor for the detection of Staphylococcus aureus. Int J Mol Sci. 2017;18:2484.
Yang Y, Yin Y, Wang S, Dong Y. Simultaneous determination of zearalenone and ochratoxin A based on microscale thermophoresis assay with a bifunctional aptamer. Anal Chim Acta. 2021;1155:338345.
Mukherjee M, Sistla S, Veerabhadraiah SR, Bettadaiah B, Thakur M, Bhatt P. DNA aptamer selection and detection of marine biotoxin 20 Methyl Spirolide G. Food Chem. 2021;363:130332.
Lippok S, Kolšek K, Löf A, Eggert D, Vanderlinden W, Müller JP, et al. von Willebrand factor is dimerized by protein disulfide isomerase. Blood. 2016;127:1183-91.
Heintz U, Schlichting I. Blue light-induced LOV domain dimerization enhances the affinity of Aureochrome 1a for its target DNA sequence. Elife. 2016;5:e11860.
Heybrock S, Kanerva K, Meng Y, Ing C, Liang A, Xiong Z-J, et al. Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) is involved in lysosomal cholesterol export. Nat Commun. 2019;10:3521.
Deng L, Spencer BL, Holmes JA, Mu R, Rego S, Weston TA, et al. The Group B streptococcal surface antigen I/II protein, BspC, interacts with host vimentin to promote adherence to brain endothelium and inflammation during the pathogenesis of meningitis. PLoS Pathog. 2019;15:e1007848.
Alba GA, Samokhin AO, Wang R-S, Zhang Y-Y, Wertheim BM, Arons E, et al. NEDD9 is a novel and modifiable mediator of platelet-endothelial adhesion in the pulmonary circulation. Am J Respir Crit Care Med. 2021;203:1533-45.
Zinzula L, Basquin J, Bohn S, Beck F, Klumpe S, Pfeifer G, et al. High-resolution structure and biophysical characterization of the nucleocapsid phosphoprotein dimerization domain from the Covid-19 severe acute respiratory syndrome coronavirus 2. Biochem Biophys Res Commun. 2021;538:54-62.
Huang W, Liu Y, Wang J, Yuan X, Jin H-W, Zhang L-R, et al. Small-molecule compounds targeting the STAT3 DNA-binding domain suppress survival of cisplatin-resistant human ovarian cancer cells by inducing apoptosis. Eur J Med Chem. 2018;157:887-97.
Singh K, Gallazzi F, Hill KJ, Burke DH, Lange MJ, Quinn TP, et al. GS-CA compounds: first-in-class HIV-1 capsid inhibitors covering multiple grounds. Front Microbiol. 2019;10:1227.
Chen Y, Wang S, Yang S, Li R, Yang Y, Chen Y, et al. Inhibitory role of ginsenoside Rb2 in endothelial senescence and inflammation mediated by microRNA-216a. Mol Med Rep. 2021;23:1-11.
Ghosh D, Bansode S, Joshi R, Kolte B, Gacche R. Molecular elucidation of pancreatic elastase inhibition by baicalein. J Biomol Struct Dyn. 2022;40:5759-68.
Welsch ME, Kaplan A, Chambers JM, Stokes ME, Bos PH, Zask A, et al. Multivalent small-molecule pan-RAS inhibitors. Cell. 2017;168:878-89.e29.
Wu Y, Si Y, Xiang Y, Zhou T, Liu X, Wu M, et al. Polyphyllin I activates AMPK to suppress the growth of non-small-cell lung cancer via induction of autophagy. Arch Biochem Biophys. 2020;687:108285.
Wang Y-Y, Xu F-Z, Zhu Y-Y, Song B, Luo D, Yu G, et al. Pyrazolo [3, 4-d] pyrimidine derivatives containing a Schiff base moiety as potential antiviral agents. Bioorg Med Chem Lett. 2018;28:2979-84.
Tang X, Zhang C, Chen M, Xue Y, Liu T, Xue W. Synthesis and antiviral activity of novel myricetin derivatives containing ferulic acid amide scaffolds. New J Chem. 2020;44:2374-9.
Entzian C, Schubert T. Studying small molecule-aptamer interactions using MicroScale Thermophoresis (MST). Methods. 2016;97:27-34.
Contreras MA, Macaya L, Manrique V, Camacho F, González A, Montesinos R, et al. A trivalent TNF-R2 as a new tumor necrosis factor alpha-blocking molecule. Proteins. 2021;89:1557-64.
Biniuri Y, Shpilt Z, Albada B, Vázquez-González M, Wolff M, Hazan C, et al. A Bis-Zn2+-pyridyl-salen-type complex conjugated to the ATP aptamer: an ATPase-mimicking nucleoapzyme. ChemBioChem. 2020;21:53-8.
Fukuzawa A, Koch D, Grover S, Rees M, Gautel M. When is an obscurin variant pathogenic? The impact of Arg4344Gln and Arg4444Trp variants on protein-protein interactions and protein stability. Hum Mol Genet. 2021;30:1131-41.
Ji D, Juhas M, Tsang CM, Kwok CK, Li Y, Zhang Y. Discovery of G-quadruplex-forming sequences in SARS-CoV-2. Brief Bioinformatics. 2021;22:1150-60.
Wolff M, Mittag JJ, Herling TW, Genst ED, Dobson CM, Knowles TP, et al. Quantitative thermophoretic study of disease-related protein aggregates. Sci Rep. 2016;6:22829.
Juarez JFB, Muñoz-García JC, Dos Reis RI, Henry A, McMillan D, Kriek M, et al. Detergent-free extraction of a functional low-expressing GPCR from a human cell line. Biochim Biophys Acta (BBA) Biomembr. 2020;1862:183152.
Wasko J, Wolszczak M, Kaminski ZJ, Steblecka M, Kolesinska B. Human serum albumin binds native insulin and aggregable insulin fragments and inhibits their aggregation. Biomolecules. 2020;10:1366.
Al Hamoui Dit Banni G, Nasreddine R, Fayad S, Colas C, Marchal A, Nehmé R. Investigation of lipase-ligand interactions in porcine pancreatic extracts by microscale thermophoresis. Anal Bioanal Chem. 2021;413:3667-81.
Vaneková Z, Hubčík L, Toca-Herrera JL, Furtműller PG, Mučaji P, Nagy M. Analysis of binding interactions of ramipril and quercetin on human serum albumin: a novel method in affinity evaluation. Molecules. 2020;25:547.
Bartoschik T, Galinec S, Kleusch C, Walkiewicz K, Breitsprecher D, Weigert S, et al. Near-native, site-specific and purification-free protein labeling for quantitative protein interaction analysis by MicroScale Thermophoresis. Sci Rep. 2018;8:1-10.
Petruk G, Puthia M, Petrlova J, Samsudin F, Strömdahl A-C, Cerps S, et al. SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity. J Mol Cell Biol. 2020;12:916-32.
Dwidar M, Seike Y, Kobori S, Whitaker C, Matsuura T, Yokobayashi Y. Programmable artificial cells using histamine-responsive synthetic riboswitch. J Am Chem Soc. 2019;141:11103-14.
Sundell GN, Arnold R, Ali M, Naksukpaiboon P, Orts J, Güntert P, et al. Proteome-wide analysis of phospho-regulated PDZ domain interactions. Mol Syst Biol. 2018;14:e8129.
Zhai Z, Keereetaweep J, Liu H, Feil R, Lunn JE, Shanklin J. Trehalose 6-phosphate positively regulates fatty acid synthesis by stabilizing WRINKLED1. Plant Cell. 2018;30:2616-27.
Bellia F, Lanza V, García-Viñuales S, Ahmed I, Pietropaolo A, Iacobucci C, et al. Ubiquitin binds the amyloid β peptide and interferes with its clearance pathways. Chem Sci. 2019;10:2732-42.
Valenzano S, De Girolamo A, DeRosa MC, McKeague M, Schena R, Catucci L, et al. Screening and identification of DNA aptamers to tyramine using in vitro selection and high-throughput sequencing. ACS Comb Sci. 2016;18:302-13.
Prante M, Schüling T, Roth B, Bremer K, Walter J. Characterization of an aptamer directed against 25-hydroxyvitamin D for the development of a competitive aptamer-based assay. Biosensors. 2019;9:134.
Radhakrishnan K, Halasz A, Vlachos D, Edwards JS. Quantitative understanding of cell signaling: the importance of membrane organization. Curr Opin Biotechnol. 2010;21:677-82.
Uzarska MA, Nasta V, Weiler BD, Spantgar F, Ciofi-Baffoni S, Saviello MR, et al. Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron-sulfur proteins. Elife. 2016;5:e16673.
Nowak PM, Klag M, Kózka G, Gołąb M, Woźniakiewicz M. The first online capillary electrophoresis-microscale thermophoresis (CE-MST) method for the analysis of dynamic equilibria: the determination of the acidity constant of fluorescein isothiocyanate. Molecules. 2022;27:5010.