Genetic Parameters for a Weighted Analysis of Survivability in Dairy Cattle
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MZE-RO0718
Ministry of Agriculture
LTAUSA19117
Ministry of Education, Youth and Sports
PubMed
37048444
PubMed Central
PMC10093218
DOI
10.3390/ani13071188
PII: ani13071188
Knihovny.cz E-zdroje
- Klíčová slova
- Holstein cattle, genetic parameters, repeatability model, survivability, weighted analysis,
- Publikační typ
- časopisecké články MeSH
The genetic parameters for the survival of Holstein cows, analysed in nine consecutive time periods during the first three calving intervals, were estimated. The earlier the animals are culled, the more they are informationally underestimated. This undervaluing can be remedied by using a weighted analysis that balances the amount of information. If the method of estimating breeding values changes, the genetic parameters will also change. The Holstein cattle dataset from 2005 to 2017 used in this study included 1,813,636 survival records from 298,290 cows. The pedigree with three generations of ancestors included 660,476 individuals. Linear repeatability models estimated genetic parameters for overall and functional survivability. Due to weights, heritability increased from 0.013 to 0.057. Repeatability with weights was 0.505. The standard deviations of breeding values were 1.75 and 2.18 without weights and 6.04 and 6.20 with weights. Including weights in the calculation increased the additive variance proportion and the breeding values' reliabilities. We conclude that the main contribution of the weighted method we have presented is to compensate for the lack of records in culled individuals with a positive impact on the reliability of the breeding value.
Zobrazit více v PubMed
Punsmann T., Distl O. Length of productive life and longevity in dairy cows: Heritability of traits for longevity and their genetic correlations with milk performance and functional traits. Züchtungskunde. 2017;89:125–139.
Alvåsen K., Dohoo I., Roth A., Emanuelson U. Farm characteristics and management routines related to cow longevity: A survey among Swedish dairy farmers. Acta Vet. Scand. 2018;60:38. doi: 10.1186/s13028-018-0390-8. PubMed DOI PMC
Mirhabibi S., Kashan N., Gharahveysi S. Genetic evaluation of survival traits in the Holstein dairy cows of Iran. Egypt. J. Vet. Sci. 2018;49:71–74. doi: 10.21608/ejvs.2018.3070.1031. DOI
Krupová Z., Wolfová M., Krupa E., Přibyl J., Zavadilová L. Claw health and feed efficiency as new selection criteria in the Czech Holstein cattle. Czech J. Anim. Sci. 2018;63:408–418. doi: 10.17221/44/2018-CJAS. DOI
Hu H., Mu T., Ma Y., Wang X., Ma Y. Analysis of Longevity Traits in Holstein Cattle: A Review. Front. Genet. 2021;12:695543. doi: 10.3389/fgene.2021.695543. PubMed DOI PMC
Bach A. Associations between several aspects of heifer development and dairy cow survivability to second lactation. J. Dairy Sci. 2011;94:1052–1057. doi: 10.3168/jds.2010-3633. PubMed DOI
Schuster J.C., Barkema H.W., De Vries A., Kelton D.F., Orsel K. Invited review: Academic and applied approach to evaluating longevity in dairy cows. J. Dairy Sci. 2021;103:11008–11024. doi: 10.3168/jds.2020-19043. PubMed DOI
Khansefid M., Haile-Mariam M., Pryce J.E. Improving the accuracy of predictions for cow survival by multivariate evaluation model. Anim. Prod. Sci. 2021;61:1828–1836. doi: 10.1071/AN21128. DOI
Beaudeau F., Ducrocq V., Fourichon C., Seegers H. Effect of disease on length of productive life of French Holstein dairy cows assessed by survival analysis. J. Dairy Sci. 1995;78:103–117. doi: 10.3168/jds.S0022-0302(95)76621-8. PubMed DOI
Berry D.P., Harris B.L., Winkelman A.M., Montgomerie W. Phenotypic associations between traits other than production and longevity in New Zealand dairy cattle. J. Dairy Sci. 2005;88:2962–2974. doi: 10.3168/jds.S0022-0302(05)72976-3. PubMed DOI
De Vries A., Marcondes M.I. Overview of factors affecting productive lifespan of dairy cows. Animal. 2020;14:155–164. doi: 10.1017/S1751731119003264. PubMed DOI
Van der Heide E.M., Kamphuis C., Veerkamp R.F., Athanasiadis I.N., Azzopardi G., van Pelt M.L., Ducro B.J. Improving predictive performance on survival in dairy cattle using an ensemble learning approach. Comput. Electron. Agric. 2020;177:105675. doi: 10.1016/j.compag.2020.105675. DOI
Van Pelt M.L., Meuwissen T.H.E., De Jong G., Veerkamp R.F. Genetic analysis of longevity in Dutch dairy cattle using random regression. J. Dairy Sci. 2015;98:4117–4130. doi: 10.3168/jds.2014-9090. PubMed DOI
Steri R., Moioli B., Catillo G., Galli A., Buttazzoni L. Genome-wide association study for longevity in the Holstein cattle population. Animal. 2019;13:1350–1357. doi: 10.1017/S1751731118003191. PubMed DOI
Siatka K., Sawa A., Krężel-Czopek S., Bogucki M. Longevity of Holstein-Friesian cows and some factors affecting their productive life-a review. Anim. Sci. Pap. Rep. 2020;38:107–116.
Adamczyk K., Jagusiak W., Węglarz A. Associations between the breeding values of Holstein Friesian bulls and longevity and culling reasons of their daughters. Animal. 2021;15:5. doi: 10.1016/j.animal.2021.100204. PubMed DOI
Van Eetvelde M., Verdru K., de Jong G., van Pelt M.L., Meesters M., Opsomer G. Researching 100 t cows: An innovative approach to identify intrinsic cows factors associated with a high lifetime milk production. Prev. Vet. Med. 2021;193:105392. doi: 10.1016/j.prevetmed.2021.105392. PubMed DOI
Dallago G.M., Wade K.M., Cue R.I., McClure J.T., Lacroix R., Pellerin D., Vasseur E. Keeping dairy cows for longer: A critical literature review on dairy cow longevity in high milk-producing countries. Animals. 2021;11:808. doi: 10.3390/ani11030808. PubMed DOI PMC
Afiani F.A., Joezy-Shekalgorabi S., Amin-Afshar M., Sadeghi A.A., Jensen J. Additive genetic and permanent environmental correlation between different parts of lactation in moderate and cold regions. Czech J. Anim. Sci. 2021;66:112–121. doi: 10.17221/254/2020-CJAS. DOI
Krejčová H., Přibyl J., Přibylová J., Štípková M., Mielenz N. Genetic evaluation of daily gains of dual-purpose bulls using a random regression model. Czech J. Anim. Sci. 2008;53:227–237. doi: 10.17221/360-CJAS. DOI
Pritchard T., Coffey M., Mrode R., Wall E. Understanding the genetics of survival in dairy cows. J. Dairy Sci. 2013;96:3296–3309. doi: 10.3168/jds.2012-6219. PubMed DOI
Samoré A.B., Rizzi R., Rossoni A., Bagnato A. Genetic parameters for functional longevity, type traits, somatic cell scores, milk flow and production in the Italian Brown Swiss. Ital. J. Anim. Sci. 2010;9:e28. doi: 10.4081/ijas.2010.e28. DOI
Páchová E., Zavadilová L., Sölkner J. Genetic evaluation of the length of productive life in Holstein cattle in the Czech Republic. Czech J. Anim. Sci. 2005;50:493–498. doi: 10.17221/4253-CJAS. DOI
Zavadilová L., Štípková M. Genetic correlations between longevity and conformation traits in the Czech Holstein population. Czech J. Anim. Sci. 2012;57:125–136. doi: 10.17221/5566-CJAS. DOI
Clasen J.B., Norberg E., Madsen P., Pedersen J., Kargo M. Estimation of genetic parameters and heterosis for longevity in crossbred Danish dairy cattle. J. Dairy Sci. 2017;100:6337–6342. doi: 10.3168/jds.2017-12627. PubMed DOI
Ducrocq V., Solkner J. The survival kit (v. 3.0): A Fortran package for the analysis of survival data; Proceedings of the 6th World Congress on Genetics Applied to Livestock Production; Armidale, Australia. 11–16 January 1998; Armidale, Australia: University of New England; 1998.
Holtsmark M., Heringstad B., Ødegård J. Predictive abilities of different statistical models for analysis of survival data in dairy cattle. J. Dairy Sci. 2009;92:5730–5738. doi: 10.3168/jds.2009-2132. PubMed DOI
Jamrozik J., Fatehi J., Schaeffer L.R. Comparison of models for genetic evaluation of survival traits in dairy cattle: A simulation study. J. Anim. Breed. Genet. 2008;125:75–83. doi: 10.1111/j.1439-0388.2007.00712.x. PubMed DOI
Kern E.L., Cobuci J.A., Costa C.N., McManus C.M., Campos G.S., Almeida T.P., Campos R.V. Genetic association between herd survival and linear type traits in Holstein cows under tropical conditions. Ital. J. Anim. Sci. 2014;13:665–672. doi: 10.4081/ijas.2014.3419. DOI
Heise J., Liu Z., Stock K.F., Rensing S., Reinhardt F., Simianer H. The genetic structure of longevity in dairy cows. J. Dairy Sci. 2016;99:1253–1265. doi: 10.3168/jds.2015-10163. PubMed DOI
Zavadilová L., Němcová E., Štípková M. Effect of type traits on functional longevity of Czech Holstein cows estimated from a Cox proportional hazards model. J. Dairy Sci. 2011;94:4090–4099. doi: 10.3168/jds.2010-3684. PubMed DOI
Kyselová J., Tichý L., Jochová K. The role of molecular genetics in animal breeding: A minireview. Czech J. Anim. Sci. 2021;66:107–111. doi: 10.17221/251/2020-CJAS. DOI
Török E., Komlósi I., Béri B., Füller I., Vágó B., Posta J. Principal component analysis of conformation traits in Hungarian Simmental cows. Czech J. Anim. Sci. 2021;66:39–45. doi: 10.17221/155/2020-CJAS. DOI
Plemdat Odhady Plemenné Hodnoty Pro Dlouhověkost. (in Czech) 2020. [(accessed on 29 September 2022)]. Available online: https://www.cmsch.cz/plemdat/dokumentace/
Misztal I., Tsuruta S., Lourenco D., Masuda Y., Aguilar I., Legarra A., Vitezica Z. Manual for BLUPF90 Family Programs. University of Georgia. 2018. [(accessed on 8 December 2022)]. Available online: http://nce.ads.uga.edu/wiki/doku.php?id=documentation.
Sewalem A., Kistemaker G.J., Ducrocq V., Van Doormaal B.J. Genetic analysis of herd life in Canadian dairy cattle on a lactation basis using a Weibull proportional hazards model. J. Dairy Sci. 2005;88:368–375. doi: 10.3168/jds.S0022-0302(05)72696-5. PubMed DOI
Sasaki O., Aihara M., Nishiura A., Takeda H., Satoh M. Genetic Analysis of the Cumulative Pseudo-Survival Rate During Lactation of Holstein Cattle in Japan by Using Random Regression Models. J. Dairy Sci. 2015;98:5781–5795. doi: 10.3168/jds.2014-9152. PubMed DOI