Spatial Overlap and Habitat Selection of Corvid Species in European Cities
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37048448
PubMed Central
PMC10093487
DOI
10.3390/ani13071192
PII: ani13071192
Knihovny.cz E-zdroje
- Klíčová slova
- Corvidae, Europe, coexistence, habitat overlap, niche overlap, sympatry, urbanization,
- Publikační typ
- časopisecké články MeSH
Understanding habitat and spatial overlap in sympatric species of urban areas would aid in predicting species and community modifications in response to global change. Habitat overlap has been widely investigated for specialist species but neglected for generalists living in urban settings. Many corvid species are generalists and are adapted to urban areas. This work aimed to determine the urban habitat requirements and spatial overlap of five corvid species in sixteen European cities during the breeding season. All five studied corvid species had high overlap in their habitat selection while still having particular tendencies. We found three species, the Carrion/Hooded Crow, Rook, and Eurasian Magpie, selected open habitats. The Western Jackdaw avoided areas with bare soil cover, and the Eurasian Jay chose more forested areas. The species with similar habitat selection also had congruent spatial distributions. Our results indicate that although the corvids had some tendencies regarding habitat selection, as generalists, they still tolerated a wide range of urban habitats, which resulted in high overlap in their habitat niches and spatial distributions.
Department of Biogeography and Global Change Museo Nacional de Ciencias Naturales 28006 Madrid Spain
Department of Biology University of Turku 20014 Turku Finland
Department of Zoology Faculty of Sciences University of Granada 18071 Granada Spain
Institute of Zoology Poznań University of Life Sciences Wojska Polskiego 71C 60 625 Poznań Poland
Plegadis Riga Feraiou 6A 45444 Ioannina Greece
Zobrazit více v PubMed
McDonald R.I., Mansur A.V., Ascensão F., Colbert M., Crossman K., Elmqvist T., Gonzalez A., Güneralp B., Haase D., Hamann M., et al. Research Gaps in Knowledge of the Impact of Urban Growth on Biodiversity. Nat. Sustain. 2020;3:16–24. doi: 10.1038/s41893-019-0436-6. DOI
Center for International Earth Science Information Network—CIESIN. Columbia University. International Food Policy Research Institute—IFPRI. The World Bank. Centro Internacional de Agricultura Tropical—CIAT . Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Urban Extents Grid. NASA Socioeconomic Data and Applications Center (SEDAC); New York, NY, USA: 2011. Palisades. DOI
United Nations—Department of Economic and Social Affairs—Population Division . World Urbanization Prospects: The 2018 Revision. United Nations; New York, NY, USA: 2019.
Alberti M., Correa C., Marzluff J.M., Hendry A.P., Palkovacs E.P., Gotanda K.M., Hunt V.M., Apgar T.M., Zhou Y. Global Urban Signatures of Phenotypic Change in Animal and Plant Populations. Proc. Natl. Acad. Sci. USA. 2017;114:8951–8956. doi: 10.1073/pnas.1606034114. PubMed DOI PMC
Grimm N.B., Faeth S.H., Golubiewski N.E., Redman C.L., Wu J., Bai X., Briggs J.M. Global Change and the Ecology of Cities. Science. 2008;319:756–760. doi: 10.1126/science.1150195. PubMed DOI
Prugh L.R., Stoner C.J., Epps C.W., Bean W.T., Ripple W.J., Laliberte A.S., Brashares J.S. The Rise of the Mesopredator. Bioscience. 2009;59:779–791. doi: 10.1525/bio.2009.59.9.9. DOI
McKinney M.L. Urbanization as a Major Cause of Biotic Homogenization. Biol. Conserv. 2006;127:247–260. doi: 10.1016/j.biocon.2005.09.005. DOI
Clergeau P., Croci S., Jokimäki J., Kaisanlahti-Jokimäki M.L., Dinetti M. Avifauna Homogenisation by Urbanisation: Analysis at Different European Latitudes. Biol. Conserv. 2006;127:336–344. doi: 10.1016/j.biocon.2005.06.035. DOI
McKinney M.L., Lockwood J.L. Biotic Homogenization: A Few Winners Replacing Many Losers in the next Mass Extinction. Trends Ecol. Evol. 1999;14:450–453. doi: 10.1016/S0169-5347(99)01679-1. PubMed DOI
Garcia-Porta J., Sol D., Pennell M., Sayol F., Kaliontzopoulou A., Botero C.A. Niche Expansion and Adaptive Divergence in the Global Radiation of Crows and Ravens. Nat. Commun. 2022;13:2086. doi: 10.1038/s41467-022-29707-5. PubMed DOI PMC
Matsyura A.V., Zimaroyeva A.A., Jankowski K. Spatial Patterns of Seasonal Distribution of Corvidae (the Case of Urban Habitats) Biosyst. Divers. 2016;24:459–465. doi: 10.15421/011662. DOI
Preininger D., Schoas B., Kramer D., Boeckle M. Waste Disposal Sites as All-You-Can Eat Buffets for Carrion Crows (Corvus corone) Animals. 2019;9:215. doi: 10.3390/ani9050215. PubMed DOI PMC
Wang Y., Chen S., Jiang P., Ding P. Black-Billed Magpies (Pica pica) Adjust Nest Characteristics to Adapt to Urbanization in Hangzhou, China. Can. J. Zool. 2008;86:676–684. doi: 10.1139/Z08-045. DOI
Benmazouz I., Jokimäki J., Lengyel S., Juhász L., Kaisanlahti-Jokimäki M.-L., Kardos G., Paládi P., Kövér L. Corvids in Urban Environments: A Systematic Global. Animals. 2021;11:3226. doi: 10.3390/ani11113226. PubMed DOI PMC
Seed A., Emery N., Clayton N. Intelligence in Corvids and Apes: A Case of Convergent Evolution? Ethology. 2009;115:401–420. doi: 10.1111/j.1439-0310.2009.01644.x. DOI
Sol D., Duncan R.P., Blackburn T.M., Cassey P., Lefebvre L. Big Brains, Enhanced Cognition, and Response of Birds to Novel Environments. Proc. Natl. Acad. Sci. USA. 2005;102:5460–5465. doi: 10.1073/pnas.0408145102. PubMed DOI PMC
Božič L. Numbers, Distribution and Nest Site Characteristics of Jackdaw Corvus monedula in Slovenia and Its Conservation Status. Acrocephalus. 2016;37:123–150. doi: 10.1515/acro-2016-0007. DOI
Szala K., Dylewski Ł., Tobolka M. Winter Habitat Selection of Corvids in an Urban Ecosystem. Urban Ecosyst. 2020;23:483–493. doi: 10.1007/s11252-020-00942-2. DOI
Jokimäki J., Kaisanlahti-Jokimäki M.L., Suhonen J. Long-Term Winter Population Trends of Corvids in Relation to Urbanization and Climate at Northern Latitudes. Animals. 2022;12:1820. doi: 10.3390/ani12141820. PubMed DOI PMC
Belaire J.A., Westphal L.M., Whelan C.J., Minor E.S. Urban Residents’ Perceptions of Birds in the Neighborhood: Biodiversity, Cultural Ecosystem Services, and Disservices. Condor. 2015;117:192–202. doi: 10.1650/CONDOR-14-128.1. DOI
Julian K.G., Eidson M., Kipp A.M., Weiss E., Petersen L.R., Miller J.R., Hinten S.R., Marfin A.A. Early Season Crow Mortality as a Sentinel for West Nile Virus Disease in Humans, Northeastern United States. Vector Borne Zoonotic Dis. 2002;2:145–155. doi: 10.1089/15303660260613710. PubMed DOI
Pesendorfer M.B., Sillett T.S., Koenig W.D., Morrison S.A. Scatter-Hoarding Corvids as Seed Dispersers for Oaks and Pines: A Review of a Widely Distributed Mutualism and Its Utility to Habitat Restoration. Condor. 2016;118:215–237. doi: 10.1650/CONDOR-15-125.1. DOI
Jiguet F. The Fox and the Crow. A Need to Update Pest Control Strategies. Biol. Conserv. 2020;248:108693. doi: 10.1016/j.biocon.2020.108693. PubMed DOI PMC
Yoda T. Managing Urban Crow Populations in Japan. Hum.-Wildl. Interact. 2019;13:439–446. doi: 10.26077/7p56-2c75. DOI
Evans K.L., Newson S.E., Gaston K.J. Habitat Influences on Urban Avian Assemblages. Ibis. 2009;151:19–39. doi: 10.1111/j.1474-919X.2008.00898.x. DOI
Jokimäki J., Kaisanlahti-Jokimäki M., Sorace A., Fernández-Juricic E., Rodriguez-Prieto I., Jimenez M.D. Evaluation of the “Safe Nesting Zone” Hypothesis across an Urban Gradient: A Multi-scale Study. Ecography. 2005;28:59–70. doi: 10.1111/j.0906-7590.2005.04001.x. DOI
Jokimäki J., Huhta E. Artificial Nest Predation and Abundance of Birds Along an Urban Gradient. Condor. 2000;102:838–847. doi: 10.1093/condor/102.4.838. DOI
Madden C.F., Arroyo B., Amar A. A Review of the Impacts of Corvids on Bird Productivity and Abundance. Ibis. 2015;157:1–16. doi: 10.1111/ibi.12223. DOI
Marzluff J.M., Neatherlin E. Corvid Response to Human Settlements and Campgrounds: Causes, Consequences, and Challenges for Conservation. Biol. Conserv. 2006;130:301–314. doi: 10.1016/j.biocon.2005.12.026. DOI
Baltensperger A.P., Mullet T.C., Schmid M.S., Humphries G.R.W., Kövér L., Huettmann F. Seasonal Observations and Machine-Learning-Based Spatial Model Predictions for the Common Raven (Corvus corax) in the Urban, Sub-Arctic Environment of Fairbanks, Alaska. Polar Biol. 2013;36:1587–1599. doi: 10.1007/s00300-013-1376-7. DOI
Nakahara T., Kuroe M., Hasegawa O., Hayashi Y., Mori S., Eguchi K. Nest Site Characteristics of the Newly Established Eurasian Magpie Pica pica Population in Hokkaido, Japan. Ornithol. Sci. 2015;14:99–109. doi: 10.2326/osj.14.99. DOI
Xu Y., Cao Z., Wang B. Effect of Urbanization Intensity on Nest-Site Selection by Eurasian Magpies (Pica pica) Urban Ecosyst. 2020;23:1099–1105. doi: 10.1007/s11252-020-00996-2. DOI
Ciebiera O., Czechowski P., Morelli F., Piekarski R., Bocheński M., Chachulska-Serweta J., Jerzak L. Selection of Urbanized Areas by Magpie Pica pica in a Medium Size City in Poland. Animals. 2021;11:1738. doi: 10.3390/ani11061738. PubMed DOI PMC
Jokimäki J., Suhonen J., Vuorisalo T., Kövér L., Kaisanlahti-Jokimäki M.L. Urbanization and Nest-Site Selection of the Black-Billed Magpie (Pica pica) Populations in Two Finnish Cities: From a Persecuted Species to an Urban Exploiter. Landsc. Urban Plan. 2017;157:577–585. doi: 10.1016/j.landurbplan.2016.08.001. DOI
Šálek M., Grill S., Riegert J. Nest-Site Selection of an Avian Urban Exploiter, the Eurasian Magpie Pica pica, across the Urban-Rural Gradient. J. Vertebr. Biol. 2020;70:20086.1–20086.11. doi: 10.25225/jvb.20086. DOI
Morrison M.L. The Habitat Sampling and Analysis Paradigm Has Limited Value in Animal Conservation: A Prequel. J. Wildl. Manag. 2012;76:438–450. doi: 10.1002/jwmg.333. DOI
Hutchinson G.E. Concluding Remarks. Cold Spring Harb. Symp. Quant. Biol. 1957;22:145–159. doi: 10.1101/SQB.1957.022.01.039. DOI
Whittaker R.H., Levin S.A., Rootj R.B. Niche, Habitat, and Ecotope. Am. Nat. 1973;107:321–338. doi: 10.1086/282837. DOI
Marko P.B. Encyclopedia of Ecology. Academic Press; Cambridge, MA, USA: 2008. Sympatry; pp. 3450–3458. DOI
Matsubara H. Comparative Study of Territoriality and Habitat Use in Syntopic Jungle Crow (Corvus macrorhynchos) and Carrion Crow (C. corone) Ornithol. Sci. 2003;2:103–111. doi: 10.2326/osj.2.103. DOI
Waite R.K. Sympatric Corvids: Effects of Social Behaviour, Aggression and Avoidance on Feeding. Behav. Ecol. Sociobiol. 1984;15:55–59. doi: 10.1007/BF00310215. DOI
Baglione V., Canestrari D. Kleptoparasitism and Temporal Segregation of Sympatric Corvids Foraging in a Refuse Dump. Auk. 2009;126:566–578. doi: 10.1525/auk.2009.08146. DOI
Gianpasquale C., Alberto M. The Occurrence and Density of Three Sympatric Corvids in a Mediterranean Agroecosystem Explained by Land Use. J. Ornithol. 2019;160:1133–1150. doi: 10.1007/s10336-019-01679-2. DOI
Rolando A., Giachello P. Interspecific Coexistence in Corvids in an Alpine Valley of Northwestern Italy. Bolletino Zool. 1992;59:281–288. doi: 10.1080/11250009209386683. DOI
Bibby C.J., Burgess N.D., Hillis D.M., Hill D.A., Mustoe S. Bird Census Techniques. Elsevier; Amsterdam, The Netherlands: 1992.
Voříšek P., Klvaňová A., Wotton S., Gregory R.D. A Best Practice Guide for Wild Bird Monitoring Schemes. Royal Society for the Protection of Birds; Sandy, UK: 2008.
Liordos V., Jokimäki J., Kaisanlahti-Jokimäki M.L., Valsamidis E., Kontsiotis V.J. Patch, Matrix and Disturbance Variables Negatively Influence Bird Community Structure in Small-Sized Managed Green Spaces Located in Urban Core Areas. Sci. Total Environ. 2021;801:149617. doi: 10.1016/j.scitotenv.2021.149617. PubMed DOI
Suhonen J., Jokimäki J., Kaisanlahti-Jokimäki M.-L., Morelli F., Benedetti Y., Rubio E., Pérez-Contreras T., Sprau P., Tryjanowski P., Møller A.P., et al. Occupancy-Frequency Distribution of Birds in Land-Sharing and-Sparing Urban Landscapes in Europe. Landsc. Urban Plan. 2022;226:104463. doi: 10.1016/j.landurbplan.2022.104463. DOI
Kéry M., Royle J.A., Schmid H. Modeling Avian Abundance from Replicated Counts Using Binomial Mixture Models. Ecol. Appl. 2005;15:1450–1461. doi: 10.1890/04-1120. DOI
Callaghan C.T., Major R.E., Lyons M.B., Martin J.M., Kingsford R.T. The Effects of Local and Landscape Habitat Attributes on Bird Diversity in Urban Greenspaces. Ecosphere. 2018;9:e02347. doi: 10.1002/ecs2.2347. DOI
Chace J.F., Walsh J.J. Urban Effects on Native Avifauna: A Review. Landsc. Urban Plan. 2006;74:46–69. doi: 10.1016/j.landurbplan.2004.08.007. DOI
Liordos V., Jokimäki J., Kaisanlahti-Jokimäki M.-L., Valsamidis E., Kontsiotis V.J. Niche Analysis and Conservation of Bird Species Using Urban Core Areas. Sustainability. 2021;13:6327. doi: 10.3390/su13116327. PubMed DOI
Muñoz-Pedreros A., González-Urrutia M., Encina-Montoya F., Norambuena H.V. Effects of Vegetation Strata and Human Disturbance on Bird Diversity in Green Areas in a City in Southern Chile. Avian Res. 2018;9:38. doi: 10.1186/s40657-018-0130-9. DOI
Peris S., Montelongo T. Birds and Small Urban Parks: A Study in a High Plateau City. Turk. J. Zool. 2014;38:316–325. doi: 10.3906/zoo-1305-20. DOI
Amaya-Espinel J.D., Hostetler M., Henríquez C., Bonacic C. The Influence of Building Density on Neotropical Bird Communities Found in Small Urban Parks. Landsc. Urban Plan. 2019;190:103578. doi: 10.1016/j.landurbplan.2019.05.009. DOI
Miller S.G., Knight R.L., Miller C.K. Wildlife Responses to Pedestrians and Dogs. Wildl. Soc. Bull. 2001;29:124–132.
Adams C.A., Blumenthal A., Fernández-Juricic E., Bayne E., St Clair C.C. Effect of Anthropogenic Light on Bird Movement, Habitat Selection, and Distribution: A Systematic Map Protocol. Environ. Evid. 2019;8:13. doi: 10.1186/s13750-019-0155-5. DOI
Ciach M., Fröhlich A. Habitat Type, Food Resources, Noise and Light Pollution Explain the Species Composition, Abundance and Stability of a Winter Bird Assemblage in an Urban Environment. Urban Ecosyst. 2017;20:547–559. doi: 10.1007/s11252-016-0613-6. DOI
Francis C.D., Ortega C.P., Cruz A. Noise Pollution Changes Avian Communities and Species Interactions. Curr. Biol. 2009;19:1415–1419. doi: 10.1016/j.cub.2009.06.052. PubMed DOI
Morelli F., Benedetti Y., Ibáñez-Álamo J.D., Tryjanowski P., Jokimäki J., Kaisanlahti-Jokimäki M.-L., Suhonen J., Díaz M., Møller A.P., Moravec D., et al. Effects of Urbanization on Taxonomic, Functional and Phylogenetic Avian Diversity in Europe. Sci. Total Environ. 2021;795:148874. doi: 10.1016/j.scitotenv.2021.148874. PubMed DOI
Parkin D.T., Collinson M., Helbig A.J., Knox A.G., Sangster G. The Taxonomic Status of Carrion and Hooded Crows. Br. Birds. 2003;96:274–290.
Vrezec A. Historical Occurrence of the Hooded/Carrion Crow (Corvus cornix/corone) in Urban Areas of Europe with Emphasis on Slovenia. Annales Ser. Hist. Nat. 2010;20:131–140.
Keller V., Herrando S., Voríšek P., Franch M., Kipson M., Milanesi P., Martí D., Anton M., Klvanová A., Kalyakin M.V. European Breeding Bird Atlas 2: Distribution, Abundance and Change. Lynx Edicions; Cerdanyola del Vallès, Spain: 2020.
Pearman P.B., Lavergne S., Roquet C., Wüest R., Zimmermann N.E., Thuiller W. Phylogenetic Patterns of Climatic, Habitat and Trophic Niches in a European Avian Assemblage. Glob. Ecol. Biogeogr. 2014;23:414–424. doi: 10.1111/geb.12127. PubMed DOI PMC
Storchová L., Hořák D. Life-History Characteristics of European Birds. Glob. Ecol. Biogeogr. 2018;27:400–406. doi: 10.1111/geb.12709. DOI
Metzler D., Knief U., Peñalba J.V., Wolf J.B.W. Assortative Mating and Epistatic Mating-Trait Architecture Induce Complex Movement of the Crow Hybrid Zone. Evolution. 2021;75:3154–3174. doi: 10.1111/evo.14386. PubMed DOI
Wolf J.B.W., Bayer T., Haubold B., Schilhabel M., Rosenstiel P., Tautz D. Nucleotide Divergence vs. Gene Expression Differentiation: Comparative Transcriptome Sequencing in Natural Isolates from the Carrion Crow and Its Hybrid Zone with the Hooded Crow. Mol. Ecol. 2010;19:162–175. doi: 10.1111/j.1365-294X.2009.04471.x. PubMed DOI
Knief U., Bossu C.M., Saino N., Hansson B., Poelstra J., Vijay N., Weissensteiner M., Wolf J.B.W. Epistatic Mutations under Divergent Selection Govern Phenotypic Variation in the Crow Hybrid Zone. Nat. Ecol. Evol. 2019;3:570–576. doi: 10.1038/s41559-019-0847-9. PubMed DOI PMC
Mantel N. The Detection of Disease Clustering and a Generalized Regression Approach. Cancer Res. 1967;27:209–220. PubMed
Dray S., Dufour A. The Ade4 Package: Implementing the Duality Diagram for Ecologists. J. Stat. Softw. 2007;22:1–20. doi: 10.18637/jss.v022.i04. DOI
Lysy M., Stasko A.D., Swanson H.K. Package ‘NicheROVER’ Niche Region and Niche Overlap Metrics for Multidimensional Ecological Niches. 2021. [(accessed on 7 June 2021)]. Available online: https://CRAN.R-project.org/package=nicheROVER.
Swanson H.K., Lysy M., Power M., Stasko A.D., Johnson J.D., Reist J. Ecological Niches and Niche Overlap R Eports. Ecology. 2015;96:318–324. doi: 10.1890/14-0235.1. PubMed DOI
Escoriza D., Amat F. Habitat Partitioning and Overlap by Large Lacertid Lizards in Southern Europe. Diversity. 2021;13:155. doi: 10.3390/d13040155. DOI
Bates D., Maechler M., Bolker B., Walker S. Lme4: Linear Mixed-Effects Models Using Eigen and S4—R Package 2014. arXiv. 20141406.5823
Barton K. MuMIn: Multi-Model Inference. R Package Version 1.15.1. 2020. [(accessed on 7 June 2021)]. Available online: http://CRAN.R-project.org/package=MuMIn.
Burnham K.P., Anderson D.R. Model Selection and Multimodel Inference. 2nd ed. Springer; New York, NY, USA: 2002.
R Development Core Team . R: A Language and Environment for Statistical Computing Version 4.0.3. R Foundation for Statistical Computing; Vienna, Austria: 2020.
François C., Alexandre L., Julliard R. Effects of Landscape Urbanization on Magpie Occupancy Dynamics in France. Landsc. Ecol. 2008;23:527–538. doi: 10.1007/s10980-008-9211-1. DOI
Wang Z., Wang Y., Jerzak L., Zhang Z. Nest Site Selection of the Magpie Pica pica Sericea in Beijing of China. Stud. Biol. 2010;4:71–82. doi: 10.30970/sbi.0401.106. DOI
Jokimäki J., Suhonen J. Distribution and Habitat Selection of Wintering Birds in Urban Environments. Landsc. Urban Plan. 1998;39:253–263. doi: 10.1016/S0169-2046(97)00089-3. DOI
Jerzak L. Synurbizacja sroki Pica pica w Eurazji. Uniwersytet Zielonogórski; Zielona Góra, Poland: 2002.
Czechowski P., Bocheński M., Ciebiera O. Decline Of Jackdaws Corvus monedula In The City Of Zielona Góra. Int. Stud. Sparrows. 2013;37:32–36. doi: 10.1515/isspar-2015-0023. DOI
Salvati L. Nest Site and Breeding Habitat Characteristics in Urban Jackdaws Corvus monedula in Rome (Italy) Acta Ornithol. 2002;37:15–19. doi: 10.3161/068.037.0103. DOI
Meyrier E., Jenni L., Bötsch Y., Strebel S., Erne B., Tablado Z. Happy to Breed in the City? Urban Food Resources Limit Reproductive Output in Western Jackdaws. Ecol. Evol. 2017;7:1363–1374. doi: 10.1002/ece3.2733. PubMed DOI PMC
Vuorisalo T., Andersson H., Hugg T., Lahtinen R., Laaksonen H., Lehikoinen E. Urban Development from an Avian Perspective: Causes of Hooded Crow (Corvus corone cornix) Urbanisation in Two Finnish Cities. Landsc. Urban Plan. 2003;62:69–87. doi: 10.1016/S0169-2046(02)00124-X. DOI
The European Red List of Birds Luxembourg: Publications Office of the European Union. Birdlife Int. 2021;28:3–19.
Jadczyk P., Drzeniecka-Osiadacz A. Feeding Strategy of Wintering Rooks Corvus frugilegus L. in Urban Habitats. Pol. J. Ecol. 2013;61:587–596.
Obukhova N.Y. Nesting Dynamics of Corvids (Corvidae) in the City of Moscow and Moscow Oblast. Biol. Bull. 2018;45:1096–1105. doi: 10.1134/S1062359018090133. DOI
Zimaroyeva A.A., Matsyura A.V., Jankowski K. Spatial Patterns of Habitat Distribution of Corvidae (the Case of Urban-Rural Gradient) Biosyst. Divers. 2016;24:451–458. doi: 10.15421/011661. DOI
Díaz M. Food Choice by Seed-Eating Birds in Relation to Seed Chemistry. Comp. Biochem. Physiol. Part A Physiol. 1996;113:239–246. doi: 10.1016/0300-9629(95)02093-4. DOI
Andersson M., Wallander J., Isaksson D. Predator Perches: A Visual Search Perspective. Funct. Ecol. 2009;23:373–379. doi: 10.1111/j.1365-2435.2008.01512.x. DOI
Fernández-Juricic E., Blumstein D.T., Abrica G., Manriquez L., Adams L.B., Adams R., Daneshrad M., Rodriguez-Prieto I. Relationships of Anti-Predator Escape and Post-Escape Responses with Body Mass and Morphology: A Comparative Avian Study. Evol. Ecol. Res. 2006;8:731–752.
Tzortzakaki O., Kati V., Kassara C., Tietze D.T., Giokas S. Seasonal Patterns of Urban Bird Diversity in a Mediterranean Coastal City: The Positive Role of Open Green Spaces. Urban Ecosyst. 2018;21:27–39. doi: 10.1007/s11252-017-0695-9. DOI
Mason C.F., Macdonald S.M. Distribution of Foraging Rooks, Corvus frugilegus, and Rookeries in a Landscape in Eastern England Dominated by Winter Cereals. Folia Zool. 2004;53:179–188.
Waite R.K. Winter Habitat Selection and Foraging Behaviour in Sympatric Corvids. Ornis Scand. 1984;15:55–62. doi: 10.2307/3676003. DOI
Zmihorski M., Halba R., Mazgajski T.D. Long-Term Spatio-Temporal Dynamics of Corvids Wintering in Urban Parks of Warsaw, Poland. Ornis Fenn. 2010;87:61–68.
Pons J., Pausas J.G. Modelling Jay (Garrulus Glandarius) Abundance and Distribution for Oak Regeneration Assessment in Mediterranean Landscapes. For. Ecol. Manag. 2008;256:578–584. doi: 10.1016/j.foreco.2008.05.003. DOI
Mazgajski T.D., Zmihorski M., Halba R., Woźniak A. Long-Term Population Trends of Corvids Wintering in Urban Parks in Central Poland. Pol. J. Ecol. 2008;56:521–526.
Sorace A., Gustin M. Distribution of Generalist and Specialist Predators along Urban Gradients. Landsc. Urban Plan. 2009;90:111–118. doi: 10.1016/j.landurbplan.2008.10.019. DOI
Bossema I. Jays and Oaks: An Eco-Ethological Study of a Symbiosis. Behaviour. 1979;70:1–116. doi: 10.1163/156853979X00016. DOI
Morán-López T., Alonso C.L., Díaz M. Landscape Effects on Jay Foraging Behavior Decrease Acorn Dispersal Services in Dehesas. Acta Oecologica. 2015;69:52–64. doi: 10.1016/j.actao.2015.07.006. DOI
Fischer J.D., Cleeton S.H., Lyons T.P., Miller J.R. Urbanization and the Predation Paradox: The Role of Trophic Dynamics in Structuring Vertebrate Communities. Bioscience. 2012;62:809–818. doi: 10.1525/bio.2012.62.9.6. DOI
Evans K.L., Hatchwell B.J., Parnell M., Gaston K.J. A Conceptual Framework for the Colonisation of Urban Areas: The Blackbird Turdus Merula as a Case Study. Biol. Rev. 2010;85:643–667. doi: 10.1111/j.1469-185X.2010.00121.x. PubMed DOI
Tobias J.A., Ottenburghs J., Pigot A.L. Avian Diversity: Speciation, Macroevolution, and Ecological Function. Annu. Rev. Ecol. Evol. Syst. 2020;51:533–560. doi: 10.1146/annurev-ecolsys-110218-025023. DOI
Moi D.A., García-Ríos R., Hong Z., Daquila B.V., Mormul R.P. Intermediate Disturbance Hypothesis in Ecology: A Literature Review. Ann. Zool. Fenn. 2020;57:67–78. doi: 10.5735/086.057.0108. DOI
Kulemeyer C., Asbahr K., Gunz P., Frahnert S., Bairlein F. Functional Morphology and Integration of Corvid Skulls—A 3D Geometric Morphometric Approach. Front. Zool. 2009;6:2. doi: 10.1186/1742-9994-6-2. PubMed DOI PMC
Rolando A. Data on Eco-Ethology of Coexistence in Corvids in North-Western Italy. Bolletino Zool. 1988;55:315–321. doi: 10.1080/11250008809386629. DOI