Wearable and Stretchable SEBS/CB Polymer Conductive Strand as a Piezoresistive Strain Sensor
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RP/CPS/2022/007).
The Ministry of Education, Youth and Sports of the Czech Republic
IGA/CPS/2020/008
Internal grant agency of Tomas Bata University
PubMed
37050233
PubMed Central
PMC10096618
DOI
10.3390/polym15071618
PII: polym15071618
Knihovny.cz E-zdroje
- Klíčová slova
- SEBS/CB composite strand, highly stretchable, novel preparation technique, piezoresistive sensor, respiration activity, strain posture detection, wearable electronics,
- Publikační typ
- časopisecké články MeSH
A wearable and stretchable strain sensor with a gauge factor above 23 was prepared using a simple and effective technique. Conducting nanocomposite strands were prepared from styrene-b-(ethylene-co-butylene)-b-styrene triblock copolymer (SEBS) and carbon black (CB) through a solvent-processing method that uses a syringe pump. This novel nanocomposite preparation technique is a straightforward and cost-effective process and is reported in the literature for the first time. The work included two stages: the flexible nanocomposite preparation stage and the piezoresistive sensor stage. Depending on its molecular structure, the thermoelastic polymer SEBS is highly resilient to stress and strain. The main aim of this work is to fabricate a highly flexible and piezoresistive nanocomposite fibre/strand. Among the prepared composites, a composite corresponding to a composition just above the percolation threshold was selected to prepare the strain sensor, which exhibited good flexibility and conductivity and a large piezoresistive effect that was linearly dependent on the applied strain. The prepared nanocomposite sensor was stitched onto a sports T-shirt. Commercially available knee and elbow sleeves were also purchased, and the nanocomposite SEBS/CB strands were sewn separately on the two sleeves. The results showed a high sensitivity of the sensing element in the case of breathing activity (normal breathing, a 35% change, and deep breathing at 135%, respectively). In the case of knee and elbow movements, simultaneous measurements were performed and found that the sensor was able to detect movement cycles during walking.
Zobrazit více v PubMed
Nguyen T., Dinh T., Phan H.P., Pham T.A., Dau V.T., Nguyen N.T., Dao D.V. Advances in ultrasensitive piezoresistive sensors: From conventional to flexible and stretchable applications. Mater. Horiz. 2021;8:2123–2150. doi: 10.1039/D1MH00538C. PubMed DOI
Fiorillo A.S., Critello C.D., Pullano A.S. Theory, technology and applications of piezoresistive sensors: A review. Sens. Actuators A Phys. 2018;281:156–175. doi: 10.1016/j.sna.2018.07.006. DOI
Fraden J. Handbook of Modern Sensors: Physics, Designs, and Applications. 5th ed. Springer; Berlin/Heidelberg, Germany: 2016. DOI
Liu X., Miao J., Fan Q., Zhang W., Zuo X., Tian M., Zhu S., Zhang X., Qu L. Recent Progress on Smart Fiber and Textile Based Wearable Strain Sensors: Materials, Fabrications and Applications. Adv. Fiber Mater. 2022;4:361–389. doi: 10.1007/s42765-021-00126-3. DOI
Leal-Junior A., Avellar L., Frizera A., Marques C. Smart textiles for multimodal wearable sensing using highly stretchable multiplexed optical fiber system. Sci. Rep. 2020;10:13867. doi: 10.1038/s41598-020-70880-8. PubMed DOI PMC
Lin S., Hu S., Song W., Gu M., Liu J., Song J., Liu Z., Li Z., Huang K., Wu Y., et al. An ultralight, flexible, and biocompatible all-fiber motion sensor for artificial intelligence wearable electronics. Npj Flex. Electron. 2022;6:27. doi: 10.1038/s41528-022-00158-8. DOI
Zeng W., Shu L., Li Q., Chen S., Wang F., Tao X.M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014;26:5310–5336. doi: 10.1002/adma.201400633. PubMed DOI
Jin H., Abu-Raya Y.S., Haick H. Advanced Materials for Health Monitoring with Skin-Based Wearable Devices. Adv. Healthc. Mater. 2017;6:1700024. doi: 10.1002/adhm.201700024. PubMed DOI
Gao L., Zhu C., Li L., Zhang C., Liu J., Yu H.D., Huang W. All Paper-Based Flexible and Wearable Piezoresistive Pressure Sensor. ACS Appl. Mater. Interfaces. 2019;11:25034–25042. doi: 10.1021/acsami.9b07465. PubMed DOI
Zheng Q., Lee J., Shen X., Chen X., Kim J.-K. Graphene-based wearable piezoresistive physical sensors. Mater. Today. 2020;36:158–179. doi: 10.1016/j.mattod.2019.12.004. DOI
Dios J.R., Gonzalo B., Tubio C.R., Cardoso J., Gonçalves S., Miranda D., Correia V., Viana J.C., Costa P., Lanceros-Méndez S. Functional Piezoresistive Polymer-Composites Based on Polycarbonate and Polylactic Acid for Deformation Sensing Applications. Macromol. Mater. Eng. 2020;305:2000379. doi: 10.1002/mame.202000379. DOI
Nath K., Khanal S., Krause B., Lach R. Electrically conductive and piezoresistive polymer nanocomposites using multiwalled carbon nanotubes in a flexible copolyester: Spectroscopic, morphological, mechanical and electrical properties. Nano-Struct. Nano-Objects. 2022;29:100806. doi: 10.1016/j.nanoso.2021.100806. DOI
Shen Z., Feng J. Mass-produced SEBS/graphite nanoplatelet composites with a segregated structure for highly stretchable and recyclable strain sensors. J. Mater. Chem. C. 2019;7:9423–9429. doi: 10.1039/C9TC02321F. DOI
Cetin M.S., Karahan Toprakci H.A. Flexible electronics from hybrid nanocomposites and their application as piezoresistive strain sensors. Compos. Part B Eng. 2021;224:109199. doi: 10.1016/j.compositesb.2021.109199. DOI
Costa P., Oliveira J., Horta-Romarís L., Abad M.J., Moreira J.A., Zapiráin I., Aguado M., Galván S., Lanceros-Mendez S. Piezoresistive polymer blends for electromechanical sensor applications. Compos. Sci. Technol. 2018;168:353–362. doi: 10.1016/j.compscitech.2018.10.022. DOI
Padovano E., Bonelli M.E., Veca A., De Meo E., Badini C. Effect of long-term mechanical cycling and laser surface treatment on piezoresistive properties of SEBS-CNTs composites. React. Funct. Polym. 2020;152:104601. doi: 10.1016/j.reactfunctpolym.2020.104601. DOI
Ma L., Lei X., Li S., Guo S., Yuan J., Li X., Cheng G.J., Liu F. A 3D flexible piezoresistive sensor based on surface-filled graphene nanosheets conductive layer. Sens. Actuators A Phys. 2021;332:113144. doi: 10.1016/j.sna.2021.113144. DOI
Njuguna M.K., Yan C., Hu N., Bell J.M., Yarlagadda P.K.D.V. Sandwiched carbon nanotube film as strain sensor. Compos. Part B Eng. 2012;43:2711–2717. doi: 10.1016/j.compositesb.2012.04.022. DOI
Akhtar I., Chang S.H. Radial alignment of carbon nanotubes for directional sensing application. Compos. Part B Eng. 2021;222:109038. doi: 10.1016/j.compositesb.2021.109038. DOI
Akhtar I., Chang S.H. Highly aligned carbon nanotubes and their sensor applications. Nanoscale. 2020;12:21447–21458. doi: 10.1039/D0NR05951J. PubMed DOI
Zeng J., Ma W., Wang Q., Yu S., Innocent M.T., Xiang H., Zhu M. Strong, high stretchable and ultrasensitive SEBS/CNTs hybrid fiber for high-performance strain sensor. Compos. Commun. 2021;25:100735. doi: 10.1016/j.coco.2021.100735. DOI
Sam-daliri O., Faller L., Farahani M., Roshanghias A. MWCNT–Epoxy Nanocomposite Sensors for Structural Health Monitoring. Electronics. 2018;7:143. doi: 10.3390/electronics7080143. DOI
Enrique-Jimenez P., Quiles-Díaz S., Salavagione H.J., Wesner D., Schönherr H., González-Casablanca J., García-Quismondo R., Martínez G., Gómez-Fatou M., Ania F., et al. Control of the structure and properties of SEBS nanocomposites via chemical modification of graphene with polymer brushes. Eur. Polym. J. 2017;97:1–13. doi: 10.1016/j.eurpolymj.2017.09.047. DOI
Costa P., Gonçalves S., Mora H., Carabineiro S.A.C., Viana J.C., Lanceros-Mendez S. Highly Sensitive Piezoresistive Graphene-Based Stretchable Composites for Sensing Applications. ACS Appl. Mater. Interfaces. 2019;11:46286–46295. doi: 10.1021/acsami.9b19294. PubMed DOI
Pan S., Pei Z., Jing Z., Song J., Zhang W., Zhang Q., Sang S. A highly stretchable strain sensor based on CNT/graphene/fullerene-SEBS. RSC Adv. 2020;10:11225–11232. doi: 10.1039/D0RA00327A. PubMed DOI PMC
Ghabezi P., Farahani M. In: Effects of Nanoparticles on Nanocomposites Mode I and II Fracture: A Critical Review. Mittal K.L., editor. Volume 4. Scrivener Publishing LLC; Beverly, MA, USA: 2018. pp. 391–411. DOI
Hofmann D., Thomann R., Mülhaupt R. Thermoplastic SEBS Elastomer Nanocomposites Reinforced with Functionalized Graphene Dispersions. Macromol. Mater. Eng. 2018;303:1700324. doi: 10.1002/mame.201700324. DOI
Turgut A., Tuhin M.O., Toprakci O., Pasquinelli M.A., Spontak R.J., Toprakci H.A.K. Thermoplastic Elastomer Systems Containing Carbon Nanofibers as Soft Piezoresistive Sensors. ACS Omega. 2018;3:12648–12657. doi: 10.1021/acsomega.8b01740. PubMed DOI PMC
Moreno I.A.E., Diaz A.D., Duarte M.E.M., Gómez R.I. Strain effect on the electrical conductivity of CB/SEBS and GP/SEBS composites. Macromol. Symp. 2009;283–284:361–368. doi: 10.1002/masy.200950943. DOI
Yang X., Sun L., Zhang C., Huang B., Chu Y., Zhan B. Modulating the sensing behaviors of poly(styrene-ethylene-butylene-styrene)/carbon nanotubes with low-dimensional fillers for large deformation sensors. Compos. Part B Eng. 2019;160:605–614. doi: 10.1016/j.compositesb.2018.12.119. DOI
Kuester S., Merlini C., Barra G.M.O., Ferreira J.C., Lucas A., De Souza A.C., Soares B.G. Processing and characterization of conductive composites based on poly(styrene-b-ethylene-ran-butylene-b-styrene) (SEBS) and carbon additives: A comparative study of expanded graphite and carbon black. Compos. Part B Eng. 2016;84:236–247. doi: 10.1016/j.compositesb.2015.09.001. DOI
Commission EU Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU) Off. J. Eur. Communities Legis. 2011;275:38.
Jeong Y., Park J., Lee J., Kim K., Park I. Ultrathin, Biocompatible, and Flexible Pressure Sensor with a Wide Pressure Range and Its Biomedical Application. ACS Sens. 2020;5:481–489. doi: 10.1021/acssensors.9b02260. PubMed DOI
Aziz S., Chang S.H. Smart-fabric sensor composed of single-walled carbon nanotubes containing binary polymer composites for health monitoring. Compos. Sci. Technol. 2018;163:1–9. doi: 10.1016/j.compscitech.2018.05.012. DOI
Yang T., Deng W., Chu X., Wang X., Hu Y., Fan X., Song J., Gao Y., Zhang B., Tian G., et al. Hierarchically Microstructure-Bioinspired Flexible Piezoresistive Bioelectronics. ACS Nano. 2021;15:11555–11563. doi: 10.1021/acsnano.1c01606. PubMed DOI
Salavagione H.J., Shuttleworth P.S., Fernández-Blázquez J.P., Ellis G.J., Gómez-Fatou M.A. Scalable graphene-based nanocomposite coatings for flexible and washable conductive textiles. Carbon. 2020;167:495–503. doi: 10.1016/j.carbon.2020.05.108. DOI
Chen T., Wu G., Panahi-Sarmad M., Wu Y., Xu R., Cao S., Xiao X. A novel flexible piezoresistive sensor using superelastic fabric coated with highly durable SEBS/TPU/CB/CNF nanocomposite for detection of human motions. Compos. Sci. Technol. 2022;227:109563. doi: 10.1016/j.compscitech.2022.109563. DOI
Qin Z., Chen X., Lv Y., Zhao B., Fang X., Pan K. Wearable and high-performance piezoresistive sensor based on nanofiber/sodium algianate synergistically enhanced MXene composite aerogel. Chem. Eng. J. 2023;451:138586. doi: 10.1016/j.cej.2022.138586. DOI
Olivieri F., Rollo G., De Falco F., Avolio R., Bonadies I., Castaldo R., Cocca M., Errico M.E., Lavorgna M., Gentile G. Reduced graphene oxide/polyurethane coatings for wash-durable wearable piezoresistive sensors. Cellulose. 2023;30:2667–2686. doi: 10.1007/s10570-023-05042-w. DOI
Parger M., Tang C., Xu Y., Twigg C.D., Tao L., Li Y., Wang R., Steinberger M. UNOC: Understanding Occlusion for Embodied Presence in Virtual Reality. IEEE Trans. Vis. Comput. Graph. 2021;2626:4240–4251. doi: 10.1109/TVCG.2021.3085407. PubMed DOI
Jiang F., Yang X., Feng L. Real-time full-body motion reconstruction and recognition for off-the-shelf VR devices; Proceedings of the VRCAI 2016 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry; Zhuhai, China. 3–4 December 2016; pp. 309–318. DOI
Caserman P., Garcia-Agundez A., Gobel S. A Survey of Full-Body Motion Reconstruction in Immersive Virtual Reality Applications. IEEE Trans. Vis. Comput. Graph. 2020;26:3089–3108. doi: 10.1109/TVCG.2019.2912607. PubMed DOI
Matheve T., Brumagne S., Demoulin C., Timmermans A. Sensor-based postural feedback is more effective than conventional feedback to improve lumbopelvic movement control in patients with chronic low back pain: A randomised controlled trial. J. Neuroeng. Rehabil. 2018;15:85. doi: 10.1186/s12984-018-0423-6. PubMed DOI PMC
Nicolò A., Massaroni C., Passfield L. Respiratory frequency during exercise: The neglected physiological measure. Front. Physiol. 2017;8:922. doi: 10.3389/fphys.2017.00922. PubMed DOI PMC
Klüppel M. The Role of Disorder in Filler Reinforcement of Elastomers on Various Length Scales. Adv. Polym. Sci. 2003;164:1–86. doi: 10.1007/b11054. DOI
Beckwith T.G., Buck N.L., Marangoni R.D. Mechanical Measurements. Addison-Wesley Pub. Co.; Reading, MA, USA: 1982.
Pallas-Areny R., Webster J.G. Sensors and Signal Conditioning. John Wiley & Sons; New York, NY, USA: 2012.