Ethanol and NaCl-Induced Gold Nanoparticle Aggregation Toxicity toward DNA Investigated with a DNA/GCE Biosensor

. 2023 Mar 24 ; 23 (7) : . [epub] 20230324

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37050486

Grantová podpora
IMTS: 313011V344 Operation program co-financed by the European Regional Development Fund.
1/0489/16 VEGA Slovakia

Engineered nanomaterials are becoming increasingly common in commercial and consumer products and pose a serious toxicological threat. Exposure of human organisms to nanomaterials can occur by inhalation, oral intake, or dermal transport. Together with the consumption of alcohol in the physiological environment of the body containing NaCl, this has raised concerns about the potentially harmful effects of ingested nanomaterials on human health. Although gold nanoparticles (AuNPs) exhibit great potential for various biomedical applications, there is some inconsistency in the case of the unambiguous genotoxicity of AuNPs due to differences in their shape, size, solubility, and exposure time. A DNA/GCE (DNA/glassy carbon electrode) biosensor was used to study ethanol (EtOH) and NaCl-induced gold nanoparticle aggregation genotoxicity under UV light in this study. The genotoxic effect of dispersed and aggregated negatively charged gold nanoparticles AuNP1 (8 nm) and AuNP2 (30 nm) toward salmon sperm double-stranded dsDNA was monitored by cyclic and square-wave voltammetry (CV, SWV). Electrochemical impedance spectroscopy (EIS) was used for a surface study of the biosensor. The aggregation of AuNPs was monitored by UV-vis spectroscopy. AuNP1 aggregates formed by 30% v/v EtOH and 0.15 mol·L-1 NaCl caused the greatest damage to the biosensor DNA layer.

Zobrazit více v PubMed

Talarska P., Boruczkowski M., Zurawski J. Current Knowledge of Silver and Gold Nanoparticles in Laboratory Research-Application, Toxicity, Cellular Uptake. Nanomaterials. 2021;11:2454. doi: 10.3390/nano11092454. PubMed DOI PMC

Sangwan S., Seth R. Synthesis, Characterization and Stability of Gold Nanoparticles (AuNPs) in Different Buffer Systems. J. Clust. Sci. 2022;33:749–764. doi: 10.1007/s10876-020-01956-8. DOI

Lee J.W., Choi S.R., Heo J.H. Simultaneous Stabilization and Functionalization of Gold Nanoparticles via Biomolecule Conjugation: Progress and Perspectives. ACS Appl. Mater. Interfaces. 2021;13:42311–42328. doi: 10.1021/acsami.1c10436. PubMed DOI

Ielo I., Rando G., Giacobello F., Sfameni S., Castellano A., Galletta M., Drommi D., Rosace G., Plutino M.R. Synthesis, Chemical-Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules. 2021;26:5823. doi: 10.3390/molecules26195823. PubMed DOI PMC

Zhang X., Servos M.R., Liu J. Surface Science of DNA Adsorption onto Citrate-Capped Gold Nanoparticles. Langmuir. 2012;28:3896–3902. doi: 10.1021/la205036p. PubMed DOI

Ahari H., Fakhrabadipour M., Paidari S., Goksen G., Xu B. Role of AuNPs in Active Food Packaging Improvement: A Review. Molecules. 2022;27:8027. doi: 10.3390/molecules27228027. PubMed DOI PMC

Mehmood S., Janjua N.K., Tabassum S., Faizi S., Fenniri H. Cost Effective Synthesis Approach for Green Food Packaging Coating by Gallic Acid Conjugated Gold Nanoparticles from Caesalpinia pulcherrima Extract. Results Chem. 2022;4:100437. doi: 10.1016/j.rechem.2022.100437. DOI

Kadam U.S., Cho Y., Park T.Y., Hong J.C. Aptamer-Based CRISPR-Cas Powered Diagnostics of Diverse Biomarkers and Small Molecule Targets. App. Biol. Chem. 2023;66:13. doi: 10.1186/s13765-023-00771-9. PubMed DOI PMC

Cherng J.-H., Lin C.-A.J., Liu C.-C., Yeh J.-Z., Fan G.-Y., Tsai H.-D., Chung C.-F., Hsu S.-D. Hemostasis and Anti-Inflammatory Abilities of AuNPs-Coated Chitosan Dressing for Burn Wounds. J. Pers. Med. 2022;12:1089. doi: 10.3390/jpm12071089. PubMed DOI PMC

Zheng L., Gu B., Li S., Luo B., Wen Y., Chen M., Li X., Zha Z., Zhang H.T., Wang X. An Antibacterial Hemostatic AuNPs@corn Stalk/Chitin Composite Sponge with Shape Recovery for Promoting Wound Healing. Carbohydr. Polym. 2022;296:119924. doi: 10.1016/j.carbpol.2022.119924. PubMed DOI

Dheyab M.A., Aziz A.A., Moradi Khaniabadi P., Jameel M.S., Oladzadabbasabadi N., Mohammed S.A., Abdullah R.S., Mehrdel B. Monodisperse Gold Nanoparticles: A Review on Synthesis and Their Application in Modern Medicine. Int. J. Mol. Sci. 2022;23:7400. doi: 10.3390/ijms23137400. PubMed DOI PMC

Kang M.S., Lee S.Y., Kim K.S., Han D.W. State of the Art Biocompatible Gold Nanoparticles for Cancer Theragnosis. Pharmaceutics. 2020;12:701. doi: 10.3390/pharmaceutics12080701. PubMed DOI PMC

Luo D., Wang X.N., Burda C., Basilion J.P. Recent Development of Gold Nanoparticles as Contrast Agents for Cancer Diagnosis. Cancers. 2021;13:1825. doi: 10.3390/cancers13081825. PubMed DOI PMC

Rudolf R., Jelen Ž., Zadravec M., Majerič P., Jović Z., Vuksanović M., Stankovic I., Matija L., Dragičević A., Miso Thompson N., et al. A Gold Nanoparticles and Hydroxylated Fullerene Water Complex as a New Product for Cosmetics. Adv. Prod. Eng. Manag. 2022;17:89–107. doi: 10.14743/apem2022.1.423. DOI

Saputra I.S., Saputro A.H., Apriandanu D.O.B., Permana Y.N., Yulizar Y. Novel Synthesis of Gold Nanoparticles Using Parkia Speciosa Hassk Seed Extract for Enhanced Foam Stability in Hand Soap. Chem. Pap. 2022;76:4733–4742. doi: 10.1007/s11696-022-02197-x. DOI

Zawisza B., Sitko R., Gagor A. Determination of Ultra-Trace Gold in Cosmetics Using Aluminum-Magnesium Layered Double Hydroxide/Graphene Oxide Nanocomposite. Talanta. 2022;245:123460. doi: 10.1016/j.talanta.2022.123460. PubMed DOI

Parker W.A. Alcohol-Containing Pharmaceuticals. Am. J. Drug Alcohol Abuse. 1983;9:195–209. doi: 10.3109/00952998209002622. PubMed DOI

Shah S.A., Khan M.N., Shah S.F., Ghafoor A., Khattak A. Is Peripheral Alcohol Injection of Value in the Treatment of Trigeminal Neuralgia? An Analysis of 100 Cases. Int. J. Oral Maxillofac. Surg. 2011;40:388–392. doi: 10.1016/j.ijom.2010.11.010. PubMed DOI

Gangi A., Kastler B., Klinkert A., Dietermann J.L. Injection of Alcohol into Bone Metastases under CT Guidance. J. Comput. Assist. Tomogr. 1994;18:932–935. doi: 10.1097/00004728-199411000-00016. PubMed DOI

Tumturk A., Kucuk A., Canoz O., Tucer B., Kurtsoy A. Intratumoral Ethyl Alcohol Injection for Devascularization of Hypervascular Intracranial Tumors. Turk. Neurosurg. 2016;26:684–689. doi: 10.5137/1019-5149.JTN.13567-14.2. PubMed DOI

Aljuhani F., Almunami B., Alsamahi R., Malibary N., Algaithy Z. Alcohol Injection for Nonsurgical Management of Tailgut Cyst in a Middle-Aged Woman: A Case Report. Clin. Case Rep. 2019;7:1233–1237. doi: 10.1002/ccr3.2205. PubMed DOI PMC

Incarbone R., Bonavina L., Lattuada E., Peracchia A. Echolaparoscopic-Guided Alcohol Injection of Liver Metastases. Surg. Laparosc. Endosc. 1998;8:390–392. doi: 10.1097/00019509-199810000-00016. PubMed DOI

Lim K.B., Kim Y.S., Kim J.A. Sonographically Guided Alcohol Injection in Painful Stump Neuroma. Ann. Rehabil. Med. 2012;36:404–408. doi: 10.5535/arm.2012.36.3.404. PubMed DOI PMC

Cok O.Y., Eker H.E., Canturk S., Yaycioglu R., Aribogan A., Arslan G. Pain Management in Blind, Painful Eyes: Clinical Experience with Retrobulbar Alcohol Injection in 4 Cases. AGRI-J. Turk. Soc. Algol. 2011;23:43–46. doi: 10.5505/agri.2011.99705. PubMed DOI

Bessonneau V., Thomas O. Assessment of Exposure to Alcohol Vapor from Alcohol-Based Hand Rubs. Int. J. Environ. Res. Public Health. 2012;9:868–879. doi: 10.3390/ijerph9030868. PubMed DOI PMC

Buhas C.L., Buhas B.A., Daina L.G., Hanganu B., Manoilescu I.S., Pusta C.T.J., Hlescu A.A., Mircea C., Somlea M.C., Marian P., et al. Multiple Fatal Intoxications Caused by Improper Consumption of an Alcoholic Para-Pharmaceutical Product. Rev. Chim. 2019;70:2471–2476. doi: 10.37358/RC.19.7.7363. DOI

Farkhari N., Abbasian S., Moshaiia A., Nikkhah M. Mechanism of Adsorption of Single and Double Stranded DNA on Gold and Silver Nanoparticles: Investigating Some Important Parameters in Bio-Sensing Applications. Colloids Surf. B. 2016;148:657–664. doi: 10.1016/j.colsurfb.2016.09.022. PubMed DOI

Li Y., Cummins E. Hazard Characterization of Silver Nanoparticles for Human Exposure Routes. J. Environ. Sci. Health A. 2020;55:704–725. doi: 10.1080/10934529.2020.1735852. PubMed DOI

Grueso E., Perez-Tejeda P., Giráldez-Pérez R.M., Prado-Gotor R., Muriel-Delgado F. Ethanol Effect on Gold Nanoparticle Aggregation State and Its Implication in the Interaction Mechanism with DNA. J. Colloid. Interface Sci. 2018;529:65–76. doi: 10.1016/j.jcis.2018.05.108. PubMed DOI

Garcia B., Leal J.M., Ruiz R., Biver T., Secco F., Venturini M. Change of the Binding Mode of the DNA/Proflavine System Induced by Ethanol. J. Phys. Chem. B. 2010;114:8555–8564. doi: 10.1021/jp102801z. PubMed DOI

Girod J.C., Johnson W.C., Jr., Huntington S.K., Maestre M.F. Conformation of Deoxyribonucleic Acid in Alcohol Solutions. Biochemistry. 1973;12:5092–5096. doi: 10.1021/bi00749a011. PubMed DOI

Tessaro L., Aquino A., Rodrigues P.D., Joshi N., Ferrari R.G., Conte C.A. Nucleic Acid-Based Nanobiosensor (NAB) Used for Salmonella Detection in Foods: A Systematic Review. Nanomaterials. 2022;12:821. doi: 10.3390/nano12050821. PubMed DOI PMC

Ren H.X., Zhong Q.L., Miao Y.B., Wen X.W., Wu G.Y., Wang H.L., Zhang Y. A Label-Free Reusable Aptasensor for Alzheimer’s Disease. Microchim. Acta. 2020;187:515. doi: 10.1007/s00604-020-04518-x. PubMed DOI

Sani N.D.M., Ariffin E.Y., Sheryn W., Shamsuddin M.A., Heng L.Y., Latip J., Hasbullah S.A., Hassan N.I. An Electrochemical DNA Biosensor for Carcinogenicity of Anticancer Compounds Based on Competition between Methylene Blue and Oligonucleotides. Sensors. 2019;19:5111. doi: 10.3390/s19235111. PubMed DOI PMC

Machini W.B.S., Fernandes I.P.G., Oliveira-Brett A.M. Antidiabetic Drug Metformin Oxidation and In Situ Interaction with dsDNA Using a dsDNA-Electrochemical Biosensor. Electroanalysis. 2019;31:1977–1987. doi: 10.1002/elan.201900162. DOI

Karasakal A., Parlar S., Alptuzun V., Cetin A.E., Topkaya S.N. A Novel Molecule: 1-(2,6 Dichlorobenzyl)-4-(2-(2-4-hydroxybenzylidene)hydrazinyl)pyridinium Chloride and Its Interaction with DNA. Electroanalysis. 2021;33:1819–1825. doi: 10.1002/elan.202060597. DOI

Topkaya S.N., Karasakal A., Cetin A.E., Parlar S., Alptuzun V. Electrochemical Characteristics of a Novel Pyridinium Salt as a Candidate Drug Molecule and Its Interaction with DNA. Electroanalysis. 2020;32:1780–1787. doi: 10.1002/elan.202000012. DOI

Topkaya S.N., Cetin A.E. Determination of Electrochemical Interaction between 2-(1H-benzimidazol-2-yl) Phenol and DNA Sequences. Electroanalysis. 2019;31:1571–1578. doi: 10.1002/elan.201900199. DOI

Ye Y.L., Ji J., Sun Z.Y., Shen P.L., Sun X.L. Recent Advances in Electrochemical Biosensors for Antioxidant Analysis in Foodstuff. TrAC-Trends Anal. Chem. 2020;122:115718. doi: 10.1016/j.trac.2019.115718. DOI

Hashkavayi A.B., Hashemnia S., Osfouri S. Investigations of Antioxidant Potential and Protective Effect of Acanthophora Algae on DNA Damage: An Electrochemical Approach. Microchem J. 2020;159:105455. doi: 10.1016/j.microc.2020.105455. DOI

Blaskovicova J., Labuda J. Effect of Triclosan and Silver Nanoparticles on DNA Damage Investigated with DNA-Based Biosensor. Sensors. 2022;22:4332. doi: 10.3390/s22124332. PubMed DOI PMC

Blaskovicova J., Purdesova A. Simultaneous Detection of Purine Metabolites by Membrane Modified Electrochemical Sensors. Acta Chim. Slov. 2022;15:54–60. doi: 10.2478/acs-2022-0007. DOI

Blaskovicova J., Sochr J., Koutsogiannis A., Diamantidou D., Kopel P., Adam V., Labuda J. Detection of ROS Generated by UV-C Irradiation of CdS Quantum Dots and Their Effect on Damage to Chromosomal and Plasmid DNA. Electroanalysis. 2018;30:698–704. doi: 10.1002/elan.201700648. DOI

Hlavata L., Striesova I., Ignat T., Blaskovicova J., Ruttkay-Nedecky B., Kopel P., Adam V., Kizek R., Labuda J. An Electrochemical DNA-Based Biosensor to Study the Effects of CdTe Quantum Dots on UV-Induced Damage of DNA. Microchim. Acta. 2015;182:1715–1722. doi: 10.1007/s00604-015-1502-z. DOI

Svitkova V., Steffelova L., Blaškovičová J., Labuda J. DNA-Based Biosensors with Polyvinyl Alcohol External Membrane as a Tool for the Evaluation of Antioxidant Activity of White Wines. Acta Chim. Slov. 2015;8:197–202. doi: 10.1515/acs-2015-0032. DOI

Yahaha M.L., Zakaria N.D., Noordin R., Razak K.A. Synthesis of Large and Stable Colloidal Gold Nanoparticles (AuNPs) by Seeding-Growth Method. Mater. Today Proc. 2022;66:2943–2947. doi: 10.1016/j.matpr.2022.06.563. DOI

Cirri A., Silakov A., Lear B.J. Ligand Control over the Electronic Properties within Metallic Core of Gold Nanoparticles. Angew. Chem. Int. Ed. 2015;54:11750–11753. doi: 10.1002/anie.201505933. PubMed DOI

Ismail R.K., Al-Haddad R.M., Mubarak T.H. Time Effect on the Red Shift of Surface Plasmonic Resonance Core-Shell SiO2: Gold Nanoparticles (AuNPs) AIP Conf. Proc. 2019;2190:020095. doi: 10.1063/1.5138581. DOI

Tan Z.J., Chen S.J. Nucleic Acid Helix Stability: Effects of Salt Concentration, Cation Valence and Size, and Chain Length. Biophys. J. 2006;90:1175–1190. doi: 10.1529/biophysj.105.070904. PubMed DOI PMC

Carnerero J.M., Jimenez-Ruiz A., Grueso E.M., Prado-Gotor R. Understanding and Improving Aggregated Gold Nanoparticle/dsDNA Interactions by Molecular Spectroscopy and Deconvolution Methods. Phys. Chem. Chem. Phys. 2017;19:16113–16123. doi: 10.1039/C7CP02219K. PubMed DOI

Rodgers M.T., Armentrout P.B. Noncovalent Interactions of Nucleic Acid Bases (Uracil, Thymine, and Adenine) with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies. J. Am. Chem. Soc. 2000;122:8548–8558. doi: 10.1021/ja001638d. DOI

Jam X., Goebl J., Lu Z., Yin Y. Role of Salt in the Spontaneous Assembly of Charged Gold Nanoparticles in Ethanol. Langmuir. 2011;27:5282–5289. doi: 10.1021/la200459t. PubMed DOI

Sirajuddin M., Ali S., Badshan A. Drug–DNA Interactions and Their Study by UV–Visible, Fluorescence Spectroscopies and Cyclic Voltammetry. J. Photochem. Photobiol. B Biol. 2013;124:1–19. doi: 10.1016/j.jphotobiol.2013.03.013. PubMed DOI

Cheng Y., Koroley N., Nordenskiöld L. Similarities and Differences in Interaction of K+ and Na+ with Condensed Ordered DNA. A Molecular Dynamics Computer Simulation Study. Nucleic Acids Res. 2006;34:686–696. doi: 10.1093/nar/gkj434. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...