Ethanol and NaCl-Induced Gold Nanoparticle Aggregation Toxicity toward DNA Investigated with a DNA/GCE Biosensor
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IMTS: 313011V344
Operation program co-financed by the European Regional Development Fund.
1/0489/16
VEGA Slovakia
PubMed
37050486
PubMed Central
PMC10098750
DOI
10.3390/s23073425
PII: s23073425
Knihovny.cz E-zdroje
- Klíčová slova
- DNA/GCE biosensor, NaCl, aggregation, ethanol, gold nanoparticles, toxicity,
- MeSH
- biosenzitivní techniky * metody MeSH
- chlorid sodný toxicita MeSH
- DNA chemie MeSH
- elektrochemické techniky metody MeSH
- elektrody MeSH
- ethanol toxicita MeSH
- kovové nanočástice * toxicita chemie MeSH
- lidé MeSH
- sperma MeSH
- zlato toxicita chemie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorid sodný MeSH
- DNA MeSH
- ethanol MeSH
- zlato MeSH
Engineered nanomaterials are becoming increasingly common in commercial and consumer products and pose a serious toxicological threat. Exposure of human organisms to nanomaterials can occur by inhalation, oral intake, or dermal transport. Together with the consumption of alcohol in the physiological environment of the body containing NaCl, this has raised concerns about the potentially harmful effects of ingested nanomaterials on human health. Although gold nanoparticles (AuNPs) exhibit great potential for various biomedical applications, there is some inconsistency in the case of the unambiguous genotoxicity of AuNPs due to differences in their shape, size, solubility, and exposure time. A DNA/GCE (DNA/glassy carbon electrode) biosensor was used to study ethanol (EtOH) and NaCl-induced gold nanoparticle aggregation genotoxicity under UV light in this study. The genotoxic effect of dispersed and aggregated negatively charged gold nanoparticles AuNP1 (8 nm) and AuNP2 (30 nm) toward salmon sperm double-stranded dsDNA was monitored by cyclic and square-wave voltammetry (CV, SWV). Electrochemical impedance spectroscopy (EIS) was used for a surface study of the biosensor. The aggregation of AuNPs was monitored by UV-vis spectroscopy. AuNP1 aggregates formed by 30% v/v EtOH and 0.15 mol·L-1 NaCl caused the greatest damage to the biosensor DNA layer.
Zobrazit více v PubMed
Talarska P., Boruczkowski M., Zurawski J. Current Knowledge of Silver and Gold Nanoparticles in Laboratory Research-Application, Toxicity, Cellular Uptake. Nanomaterials. 2021;11:2454. doi: 10.3390/nano11092454. PubMed DOI PMC
Sangwan S., Seth R. Synthesis, Characterization and Stability of Gold Nanoparticles (AuNPs) in Different Buffer Systems. J. Clust. Sci. 2022;33:749–764. doi: 10.1007/s10876-020-01956-8. DOI
Lee J.W., Choi S.R., Heo J.H. Simultaneous Stabilization and Functionalization of Gold Nanoparticles via Biomolecule Conjugation: Progress and Perspectives. ACS Appl. Mater. Interfaces. 2021;13:42311–42328. doi: 10.1021/acsami.1c10436. PubMed DOI
Ielo I., Rando G., Giacobello F., Sfameni S., Castellano A., Galletta M., Drommi D., Rosace G., Plutino M.R. Synthesis, Chemical-Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules. 2021;26:5823. doi: 10.3390/molecules26195823. PubMed DOI PMC
Zhang X., Servos M.R., Liu J. Surface Science of DNA Adsorption onto Citrate-Capped Gold Nanoparticles. Langmuir. 2012;28:3896–3902. doi: 10.1021/la205036p. PubMed DOI
Ahari H., Fakhrabadipour M., Paidari S., Goksen G., Xu B. Role of AuNPs in Active Food Packaging Improvement: A Review. Molecules. 2022;27:8027. doi: 10.3390/molecules27228027. PubMed DOI PMC
Mehmood S., Janjua N.K., Tabassum S., Faizi S., Fenniri H. Cost Effective Synthesis Approach for Green Food Packaging Coating by Gallic Acid Conjugated Gold Nanoparticles from Caesalpinia pulcherrima Extract. Results Chem. 2022;4:100437. doi: 10.1016/j.rechem.2022.100437. DOI
Kadam U.S., Cho Y., Park T.Y., Hong J.C. Aptamer-Based CRISPR-Cas Powered Diagnostics of Diverse Biomarkers and Small Molecule Targets. App. Biol. Chem. 2023;66:13. doi: 10.1186/s13765-023-00771-9. PubMed DOI PMC
Cherng J.-H., Lin C.-A.J., Liu C.-C., Yeh J.-Z., Fan G.-Y., Tsai H.-D., Chung C.-F., Hsu S.-D. Hemostasis and Anti-Inflammatory Abilities of AuNPs-Coated Chitosan Dressing for Burn Wounds. J. Pers. Med. 2022;12:1089. doi: 10.3390/jpm12071089. PubMed DOI PMC
Zheng L., Gu B., Li S., Luo B., Wen Y., Chen M., Li X., Zha Z., Zhang H.T., Wang X. An Antibacterial Hemostatic AuNPs@corn Stalk/Chitin Composite Sponge with Shape Recovery for Promoting Wound Healing. Carbohydr. Polym. 2022;296:119924. doi: 10.1016/j.carbpol.2022.119924. PubMed DOI
Dheyab M.A., Aziz A.A., Moradi Khaniabadi P., Jameel M.S., Oladzadabbasabadi N., Mohammed S.A., Abdullah R.S., Mehrdel B. Monodisperse Gold Nanoparticles: A Review on Synthesis and Their Application in Modern Medicine. Int. J. Mol. Sci. 2022;23:7400. doi: 10.3390/ijms23137400. PubMed DOI PMC
Kang M.S., Lee S.Y., Kim K.S., Han D.W. State of the Art Biocompatible Gold Nanoparticles for Cancer Theragnosis. Pharmaceutics. 2020;12:701. doi: 10.3390/pharmaceutics12080701. PubMed DOI PMC
Luo D., Wang X.N., Burda C., Basilion J.P. Recent Development of Gold Nanoparticles as Contrast Agents for Cancer Diagnosis. Cancers. 2021;13:1825. doi: 10.3390/cancers13081825. PubMed DOI PMC
Rudolf R., Jelen Ž., Zadravec M., Majerič P., Jović Z., Vuksanović M., Stankovic I., Matija L., Dragičević A., Miso Thompson N., et al. A Gold Nanoparticles and Hydroxylated Fullerene Water Complex as a New Product for Cosmetics. Adv. Prod. Eng. Manag. 2022;17:89–107. doi: 10.14743/apem2022.1.423. DOI
Saputra I.S., Saputro A.H., Apriandanu D.O.B., Permana Y.N., Yulizar Y. Novel Synthesis of Gold Nanoparticles Using Parkia Speciosa Hassk Seed Extract for Enhanced Foam Stability in Hand Soap. Chem. Pap. 2022;76:4733–4742. doi: 10.1007/s11696-022-02197-x. DOI
Zawisza B., Sitko R., Gagor A. Determination of Ultra-Trace Gold in Cosmetics Using Aluminum-Magnesium Layered Double Hydroxide/Graphene Oxide Nanocomposite. Talanta. 2022;245:123460. doi: 10.1016/j.talanta.2022.123460. PubMed DOI
Parker W.A. Alcohol-Containing Pharmaceuticals. Am. J. Drug Alcohol Abuse. 1983;9:195–209. doi: 10.3109/00952998209002622. PubMed DOI
Shah S.A., Khan M.N., Shah S.F., Ghafoor A., Khattak A. Is Peripheral Alcohol Injection of Value in the Treatment of Trigeminal Neuralgia? An Analysis of 100 Cases. Int. J. Oral Maxillofac. Surg. 2011;40:388–392. doi: 10.1016/j.ijom.2010.11.010. PubMed DOI
Gangi A., Kastler B., Klinkert A., Dietermann J.L. Injection of Alcohol into Bone Metastases under CT Guidance. J. Comput. Assist. Tomogr. 1994;18:932–935. doi: 10.1097/00004728-199411000-00016. PubMed DOI
Tumturk A., Kucuk A., Canoz O., Tucer B., Kurtsoy A. Intratumoral Ethyl Alcohol Injection for Devascularization of Hypervascular Intracranial Tumors. Turk. Neurosurg. 2016;26:684–689. doi: 10.5137/1019-5149.JTN.13567-14.2. PubMed DOI
Aljuhani F., Almunami B., Alsamahi R., Malibary N., Algaithy Z. Alcohol Injection for Nonsurgical Management of Tailgut Cyst in a Middle-Aged Woman: A Case Report. Clin. Case Rep. 2019;7:1233–1237. doi: 10.1002/ccr3.2205. PubMed DOI PMC
Incarbone R., Bonavina L., Lattuada E., Peracchia A. Echolaparoscopic-Guided Alcohol Injection of Liver Metastases. Surg. Laparosc. Endosc. 1998;8:390–392. doi: 10.1097/00019509-199810000-00016. PubMed DOI
Lim K.B., Kim Y.S., Kim J.A. Sonographically Guided Alcohol Injection in Painful Stump Neuroma. Ann. Rehabil. Med. 2012;36:404–408. doi: 10.5535/arm.2012.36.3.404. PubMed DOI PMC
Cok O.Y., Eker H.E., Canturk S., Yaycioglu R., Aribogan A., Arslan G. Pain Management in Blind, Painful Eyes: Clinical Experience with Retrobulbar Alcohol Injection in 4 Cases. AGRI-J. Turk. Soc. Algol. 2011;23:43–46. doi: 10.5505/agri.2011.99705. PubMed DOI
Bessonneau V., Thomas O. Assessment of Exposure to Alcohol Vapor from Alcohol-Based Hand Rubs. Int. J. Environ. Res. Public Health. 2012;9:868–879. doi: 10.3390/ijerph9030868. PubMed DOI PMC
Buhas C.L., Buhas B.A., Daina L.G., Hanganu B., Manoilescu I.S., Pusta C.T.J., Hlescu A.A., Mircea C., Somlea M.C., Marian P., et al. Multiple Fatal Intoxications Caused by Improper Consumption of an Alcoholic Para-Pharmaceutical Product. Rev. Chim. 2019;70:2471–2476. doi: 10.37358/RC.19.7.7363. DOI
Farkhari N., Abbasian S., Moshaiia A., Nikkhah M. Mechanism of Adsorption of Single and Double Stranded DNA on Gold and Silver Nanoparticles: Investigating Some Important Parameters in Bio-Sensing Applications. Colloids Surf. B. 2016;148:657–664. doi: 10.1016/j.colsurfb.2016.09.022. PubMed DOI
Li Y., Cummins E. Hazard Characterization of Silver Nanoparticles for Human Exposure Routes. J. Environ. Sci. Health A. 2020;55:704–725. doi: 10.1080/10934529.2020.1735852. PubMed DOI
Grueso E., Perez-Tejeda P., Giráldez-Pérez R.M., Prado-Gotor R., Muriel-Delgado F. Ethanol Effect on Gold Nanoparticle Aggregation State and Its Implication in the Interaction Mechanism with DNA. J. Colloid. Interface Sci. 2018;529:65–76. doi: 10.1016/j.jcis.2018.05.108. PubMed DOI
Garcia B., Leal J.M., Ruiz R., Biver T., Secco F., Venturini M. Change of the Binding Mode of the DNA/Proflavine System Induced by Ethanol. J. Phys. Chem. B. 2010;114:8555–8564. doi: 10.1021/jp102801z. PubMed DOI
Girod J.C., Johnson W.C., Jr., Huntington S.K., Maestre M.F. Conformation of Deoxyribonucleic Acid in Alcohol Solutions. Biochemistry. 1973;12:5092–5096. doi: 10.1021/bi00749a011. PubMed DOI
Tessaro L., Aquino A., Rodrigues P.D., Joshi N., Ferrari R.G., Conte C.A. Nucleic Acid-Based Nanobiosensor (NAB) Used for Salmonella Detection in Foods: A Systematic Review. Nanomaterials. 2022;12:821. doi: 10.3390/nano12050821. PubMed DOI PMC
Ren H.X., Zhong Q.L., Miao Y.B., Wen X.W., Wu G.Y., Wang H.L., Zhang Y. A Label-Free Reusable Aptasensor for Alzheimer’s Disease. Microchim. Acta. 2020;187:515. doi: 10.1007/s00604-020-04518-x. PubMed DOI
Sani N.D.M., Ariffin E.Y., Sheryn W., Shamsuddin M.A., Heng L.Y., Latip J., Hasbullah S.A., Hassan N.I. An Electrochemical DNA Biosensor for Carcinogenicity of Anticancer Compounds Based on Competition between Methylene Blue and Oligonucleotides. Sensors. 2019;19:5111. doi: 10.3390/s19235111. PubMed DOI PMC
Machini W.B.S., Fernandes I.P.G., Oliveira-Brett A.M. Antidiabetic Drug Metformin Oxidation and In Situ Interaction with dsDNA Using a dsDNA-Electrochemical Biosensor. Electroanalysis. 2019;31:1977–1987. doi: 10.1002/elan.201900162. DOI
Karasakal A., Parlar S., Alptuzun V., Cetin A.E., Topkaya S.N. A Novel Molecule: 1-(2,6 Dichlorobenzyl)-4-(2-(2-4-hydroxybenzylidene)hydrazinyl)pyridinium Chloride and Its Interaction with DNA. Electroanalysis. 2021;33:1819–1825. doi: 10.1002/elan.202060597. DOI
Topkaya S.N., Karasakal A., Cetin A.E., Parlar S., Alptuzun V. Electrochemical Characteristics of a Novel Pyridinium Salt as a Candidate Drug Molecule and Its Interaction with DNA. Electroanalysis. 2020;32:1780–1787. doi: 10.1002/elan.202000012. DOI
Topkaya S.N., Cetin A.E. Determination of Electrochemical Interaction between 2-(1H-benzimidazol-2-yl) Phenol and DNA Sequences. Electroanalysis. 2019;31:1571–1578. doi: 10.1002/elan.201900199. DOI
Ye Y.L., Ji J., Sun Z.Y., Shen P.L., Sun X.L. Recent Advances in Electrochemical Biosensors for Antioxidant Analysis in Foodstuff. TrAC-Trends Anal. Chem. 2020;122:115718. doi: 10.1016/j.trac.2019.115718. DOI
Hashkavayi A.B., Hashemnia S., Osfouri S. Investigations of Antioxidant Potential and Protective Effect of Acanthophora Algae on DNA Damage: An Electrochemical Approach. Microchem J. 2020;159:105455. doi: 10.1016/j.microc.2020.105455. DOI
Blaskovicova J., Labuda J. Effect of Triclosan and Silver Nanoparticles on DNA Damage Investigated with DNA-Based Biosensor. Sensors. 2022;22:4332. doi: 10.3390/s22124332. PubMed DOI PMC
Blaskovicova J., Purdesova A. Simultaneous Detection of Purine Metabolites by Membrane Modified Electrochemical Sensors. Acta Chim. Slov. 2022;15:54–60. doi: 10.2478/acs-2022-0007. DOI
Blaskovicova J., Sochr J., Koutsogiannis A., Diamantidou D., Kopel P., Adam V., Labuda J. Detection of ROS Generated by UV-C Irradiation of CdS Quantum Dots and Their Effect on Damage to Chromosomal and Plasmid DNA. Electroanalysis. 2018;30:698–704. doi: 10.1002/elan.201700648. DOI
Hlavata L., Striesova I., Ignat T., Blaskovicova J., Ruttkay-Nedecky B., Kopel P., Adam V., Kizek R., Labuda J. An Electrochemical DNA-Based Biosensor to Study the Effects of CdTe Quantum Dots on UV-Induced Damage of DNA. Microchim. Acta. 2015;182:1715–1722. doi: 10.1007/s00604-015-1502-z. DOI
Svitkova V., Steffelova L., Blaškovičová J., Labuda J. DNA-Based Biosensors with Polyvinyl Alcohol External Membrane as a Tool for the Evaluation of Antioxidant Activity of White Wines. Acta Chim. Slov. 2015;8:197–202. doi: 10.1515/acs-2015-0032. DOI
Yahaha M.L., Zakaria N.D., Noordin R., Razak K.A. Synthesis of Large and Stable Colloidal Gold Nanoparticles (AuNPs) by Seeding-Growth Method. Mater. Today Proc. 2022;66:2943–2947. doi: 10.1016/j.matpr.2022.06.563. DOI
Cirri A., Silakov A., Lear B.J. Ligand Control over the Electronic Properties within Metallic Core of Gold Nanoparticles. Angew. Chem. Int. Ed. 2015;54:11750–11753. doi: 10.1002/anie.201505933. PubMed DOI
Ismail R.K., Al-Haddad R.M., Mubarak T.H. Time Effect on the Red Shift of Surface Plasmonic Resonance Core-Shell SiO2: Gold Nanoparticles (AuNPs) AIP Conf. Proc. 2019;2190:020095. doi: 10.1063/1.5138581. DOI
Tan Z.J., Chen S.J. Nucleic Acid Helix Stability: Effects of Salt Concentration, Cation Valence and Size, and Chain Length. Biophys. J. 2006;90:1175–1190. doi: 10.1529/biophysj.105.070904. PubMed DOI PMC
Carnerero J.M., Jimenez-Ruiz A., Grueso E.M., Prado-Gotor R. Understanding and Improving Aggregated Gold Nanoparticle/dsDNA Interactions by Molecular Spectroscopy and Deconvolution Methods. Phys. Chem. Chem. Phys. 2017;19:16113–16123. doi: 10.1039/C7CP02219K. PubMed DOI
Rodgers M.T., Armentrout P.B. Noncovalent Interactions of Nucleic Acid Bases (Uracil, Thymine, and Adenine) with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies. J. Am. Chem. Soc. 2000;122:8548–8558. doi: 10.1021/ja001638d. DOI
Jam X., Goebl J., Lu Z., Yin Y. Role of Salt in the Spontaneous Assembly of Charged Gold Nanoparticles in Ethanol. Langmuir. 2011;27:5282–5289. doi: 10.1021/la200459t. PubMed DOI
Sirajuddin M., Ali S., Badshan A. Drug–DNA Interactions and Their Study by UV–Visible, Fluorescence Spectroscopies and Cyclic Voltammetry. J. Photochem. Photobiol. B Biol. 2013;124:1–19. doi: 10.1016/j.jphotobiol.2013.03.013. PubMed DOI
Cheng Y., Koroley N., Nordenskiöld L. Similarities and Differences in Interaction of K+ and Na+ with Condensed Ordered DNA. A Molecular Dynamics Computer Simulation Study. Nucleic Acids Res. 2006;34:686–696. doi: 10.1093/nar/gkj434. PubMed DOI PMC