• This record comes from PubMed

High-resolution 3D forest structure explains ecomorphological trait variation in assemblages of saproxylic beetles

. 2023 Jan ; 37 (1) : 150-161. [epub] 20221008

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media print-electronic

Document type Journal Article

Grant support
I 4018 Austrian Science Fund FWF - Austria

Climate, topography and the 3D structure of forests are major drivers affecting local species communities. However, little is known about how the specific functional traits of saproxylic (wood-living) beetles, involved in the recycling of wood, might be affected by those environmental characteristics.Here, we combine ecological and morphological traits available for saproxylic beetles and airborne laser scanning (ALS) data in Bayesian trait-based joint species distribution models to study how traits drive the distributions of more than 230 species in temperate forests of Europe.We found that elevation (as a proxy for temperature and precipitation) and the proportion of conifers played important roles in species occurrences while variables related to habitat heterogeneity and forest complexity were less relevant. Furthermore, we showed that local communities were shaped by environmental variation primarily through their ecological traits whereas morphological traits were involved only marginally. As predicted, ecological traits influenced species' responses to forest structure, and to other environmental variation, with canopy niche, wood decay niche and host preference as the most important ecological traits. Conversely, no links between morphological traits and environmental characteristics were observed. Both models, however, revealed strong phylogenetic signal in species' response to environmental characteristics.These findings imply that alterations of climate and tree species composition have the potential to alter saproxylic beetle communities in temperate forests. Additionally, ecological traits help explain species' responses to environmental characteristics and thus should prove useful in predicting their responses to future change. It remains challenging, however, to link simple morphological traits to species' complex ecological niches. Read the free Plain Language Summary for this article on the Journal blog.

Bavarian Forest National Park Grafenau Germany

Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland

Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway

Department of Ecology and Ecosystem management Technische Universität München Freising Weihenstephan Germany

Department of Environmental Systems Science ETH Zurich Institute of Terrestrial Ecosystems Zurich Switzerland

Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway

Field Station Fabrikschleichach Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Rauhenebrach Germany

Forest Entomology Swiss Federal Research Institute WSL Birmensdorf Switzerland

Forest Inventory and Remote Sensing University of Göttingen Göttingen Germany

Institute of Biology and Environmental Science Vegetation Science and Nature Conservation University of Oldenburg Oldenburg Germany

Institute of Entomology Biology Centre of the Czech Academy of Sciences Ceske Budejovice Czech Republic

Organismal and Evolutionary Biology Research Programme University of Helsinki Helsinki Finland

Silviculture and Forest Ecology of the Temperate Zones University of Göttingen Göttingen Germany

SLU Swedish Species Information Centre Swedish University of Agricultural Sciences Uppsala Sweden

U S Geological Survey Upper Midwest Environmental Sciences Center La Crosse Wisconsin USA

See more in PubMed

Bae, S. , Levick, S. , Heidrich, L. , Magdon, P. , Leutner, B. , Wöllauer, S. , Serebryanyk, A. , Nauss, T. , Krzystek, P. , Gossner, M. , Schall, P. , Heibl, C. , Bässler, C. , Doerfler, I. , Schulze, E. , Krah, F. , Culmsee, H. , Jung, K. , Heurich, M. , … Müller, J. (2019). Radar vision in the mapping of forest biodiversity from space. Nature Communications, 10, 4757. PubMed PMC

Barton, P. S. , Gibb, H. , Manning, A. D. , Lindenmayer, D. B. , & Cunningham, S. A. (2011). Morphological traits as predictors of diet and microhabitat use in a diverse beetle assemblage. Biological Journal of the Linnean Society, 102, 301–310.

Bässler, C. , Förster, B. , Moning, C. , & Müller, J. (2009). The BIOKLIM project: Biodiversity research between climate change and wilding in a temperate montane forest—The conceptual framework. Waldökologie Landschaftsforschung und Naturschutz, 7, 21–23.

Birkemoe, T. , Jacobsen, R. M. , Sverdrup‐Thygeson, A. , & Biedermann, P. H. W. (2018). Insect‐fungus interactions in dead Wood Systems. In Ulyshen M. (Ed.), Saproxylic insects. Zoological monographs (Vol. 1). Springer.

Bouget, C. , Larrieu, L. , Nusillard, B. , & Parmain, G. (2013). In search of the best local habitat drivers for saproxylic beetle diversity in temperate deciduous forests. Biodiversity and Conservation, 22, 2111–2130.

Burner, R. C. , Birkemoe, T. , Åström, J. , & Sverdrup‐Thygeson, A. (2021). Flattening the curve: Approaching complete sampling for diverse beetle communities. Insect Conservation and Diversity, 15, 157–167.

Burner, R. C. , Birkemoe, T. , Stephan, J. G. , Drag, L. , Muller, J. , Ovaskainen, O. , Potterf, M. , Skarpaas, O. , Snall, T. , & Sverdrup‐Thygeson, A. (2021). Choosy beetles: How host trees and southern boreal forest naturalness may determine dead wood beetle communities. Forest Ecology and Management, 487, 119023.

Burner, R. C. , Drag, L. , Stephan, J. , Birkemoe, T. , Wetherbee, R. , Muller, J. , Siitonen, J. , Snäll, T. , Skarpaas, O. , Potterf, M. , Doerfler, I. , Gossner, M. , Schall, P. , Weisser, W. , & Sverdrup‐Thygeson, A. (2022). Functional structure of European forest beetle communities is enhanced by rare species. Biological Conservation, 267, 109491.

Burner, R. C. , Stephan, J. G. , Drag, L. , Birkemoe, T. , Muller, J. , Snäll, T. , Ovaskainen, O. , Potterf, M. , Siitonen, J. , Skarpaas, O. , Doerfler, I. , Gossner, M. , Schall, P. , Weisser, W. , & Sverdrup‐Thygeson, A. (2021). Traits mediate niches and co‐occurrences of forest beetles in ways that differ among bioclimatic regions. Journal of Biogeography, 48, 3145–3157.

Byamungu, R. M. , Schleuning, M. , Ferger, S. W. , Helbig‐Bonitz, M. , Hemp, A. , Neu, A. , Vogeler, A. , Böhning‐Gaese, K. , Tschapka, M. , & Albrecht, J. (2021). Abiotic and biotic drivers of functional diversity and functional composition of bird and bat assemblages along a tropical elevation gradient. Diversity and Distributions, 27, 2344–2356.

Cernansky, R. (2017). The biodiversity revolution. Nature, 546, 22–24. PubMed

Chichorro, F. , Juslén, A. , & Cardoso, P. (2019). A review of the relation between species traits and extinction risk. Biological Conservation, 237, 220–229.

Conenna, I. , Santini, L. , Rocha, R. , Monadjem, A. , Cabeza, M. , & Russo, D. (2021). Global patterns of functional trait variation along aridity gradients in bats. Global Ecology and Biogeography, 30, 1014–1029.

Cours, J. , Sire, L. , Ladet, S. , Martin, H. , Parmain, G. , Larrieu, L. , Moliard, C. , Lopez‐Vaamonde, C. , & Bouget, C. (2021). Drought‐induced forest dieback increases taxonomic and functional diversity but not phylogenetic diversity of saproxylic beetles at both local and landscape scales. Landscape Ecology, 37, 2025–2043.

Davies, A. B. , & Asner, G. P. (2014). Advances in animal ecology from 3D‐LiDAR ecosystem mapping. Trends in Ecology & Evolution, 29, 681–691. PubMed

de Bello, F. , Carmona, C. P. , Dias, A. T. , Götzenberger, L. , Moretti, M. , & Berg, M. P. (2021). Handbook of trait‐based ecology. Cambridge University Press.

Doerfler, I. , Gossner, M. M. , Müller, J. , Seibold, S. , & Weisser, W. W. (2018). Deadwood enrichment combining integrative and segregative conservation elements enhances biodiversity of multiple taxa in managed forests. Biological Conservation, 228, 70–78.

Dolek, M. , Freese‐Hager, A. , Bussler, H. , Floren, A. , Liegl, A. , & Schmidl, J. (2009). Ants on oaks: Effects of forest structure on species composition. Journal of Insect Conservation, 13, 367–375.

Drag, L. , Burner, R. C. , Stephan, J. , Birkemoe, T. , Doerfler, I. , Gossner, M. M. , Magdon, P. , Ovaskainen, O. , Potterf, M. , Schall, P. , Snäll, T. , Weisser, W. , Sverdrup‐Thygeson, A. , & Müller, J. (2022). High resolution 3D forest structure explains ecomorphological trait variation in assemblages of saproxylic beetles. Dryad Digital Repository, 10.5061/dryad.f4qrfj707 PubMed DOI PMC

Elgar, M. , Zhang, D. , Wang, Q. , Wittwer, B. , Pham, H. T. , Johnson, T. L. , Freelance, C. B. , & Coquilleau, M. P. (2018). Insect antennal morphology: The evolution of diverse solutions to odorant perception. The Yale Journal of Biology and Medicine, 91, 457–469. PubMed PMC

Fischer, M. , Bossdorf, O. , Gockel, S. , Hänsel, F. , Hemp, A. , Hessenmöller, D. , Korte, G. , Nieschulze, J. , Pfeiffer, S. , Prati, D. , Renner, S. C. , Schöning, I. , Schumacher, U. , Wells, K. , Buscot, F. , Kalko, E. K. , Linsenmair, K. E. , Schulze, E. , & Weisser, W. W. (2010). Implementing large‐scale and long‐term functional biodiversity research: The biodiversity Exploratories. Basic and Applied Ecology, 11, 473–485.

Fountain‐Jones, N. , Baker, S. C. , & Jordan, G. J. (2015). Moving beyond the guild concept: Developing a practical functional trait framework for terrestrial beetles. Ecological Entomology, 40, 1–13.

Freude, H. , Harde, K. , & Lohse, G. A. (1983). Die Käfer Mitteleuropas. Goecke and Evers.

Gelman, A. , & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–472.

Gillespie, M. , Birkemoe, T. , & Sverdrup‐Thygeson, A. (2017). Interactions between body size, abundance, seasonality, and phenology in forest beetles. Ecology and Evolution, 7, 1091–1100. PubMed PMC

Gossner, M. , Lachat, T. , Brunet, J. , Isacsson, G. , Bouget, C. , Brustel, H. , Brandl, R. , Weisser, W. , & Müller, J. (2013). Current near‐to‐nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conservation Biology: The journal of the Society for Conservation Biology, 27(3), 605–614. PubMed

Gouveia, S. F. , Villalobos, F. , Dobrovolski, R. , Beltrao‐Mendes, R. , & Ferrari, S. F. (2014). Forest structure drives global diversity of primates. Journal of Animal Ecology, 83, 1523–1530. PubMed

Hagge, J. , Abrego, N. , Bässler, C. , Bouget, C. , Brin, A. , Brustel, H. , Christensen, M. , Gossner, M. M. , Heilmann‐Clausen, J. , Horák, J. , Gruppe, A. , Isacsson, G. , Köhler, F. , Lachat, T. , Larrieu, L. , Schlaghamersky, J. , Thorn, S. , Zapponi, L. , & Müller, J. (2019). Congruent patterns of functional diversity in saproxylic beetles and fungi across European beech forests. Journal of Biogeography, 46(5), 1054–1065.

Hagge, J. , Müller, J. , Birkemoe, T. , Buse, J. , Christensen, R. H. , Gossner, M. , Gruppe, A. , Heibl, C. , Jarzabek‐Müller, A. , Seibold, S. , Siitonen, J. , Soutinho, J. G. , Sverdrup‐Thygeson, A. , Thorn, S. , & Drag, L. (2021). What does a threatened saproxylic beetle look like? Modelling extinction risk using a new morphological trait database. The Journal of Animal Ecology, 90, 1934–1947. PubMed

Heidrich, L. , Bae, S. , Levick, S. , Seibold, S. , Weisser, W. , Krzystek, P. , Magdon, P. , Nauss, T. , Schall, P. , Serebryanyk, A. , Wöllauer, S. , Ammer, C. , Bässler, C. , Doerfler, I. , Fischer, M. , Gossner, M. , Heurich, M. , Hothorn, T. , Jung, K. , … Müller, J. (2020). Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nature Ecology & Evolution, 4, 1–9. PubMed

Hinsley, S. A. , Hill, R. A. , Gaveau, D. L. , & Bellamy, P. E. (2002). Quantifying woodland structure and habitat quality for birds using airborne laser scanning. Functional Ecology, 16, 851–857.

Hodkinson, I. (2005). Terrestrial insects along elevation gradients: Species and community responses to altitude. Biological Reviews, 80, 489–513. PubMed

Hof, C. (2021). Towards more integration of physiology, dispersal and land‐use change to understand the responses of species to climate change. Journal of Experimental Biology, 224, jeb238352. PubMed

Hof, C. , Rahbek, C. , & Araújo, M. B. (2010). Phylogenetic signals in the climatic niches of the world's amphibians. Ecography, 33, 242–250.

Janssen, P. , Fuhr, M. , Cateau, E. , Nusillard, B. , & Bouget, C. (2017). Forest continuity acts congruently with stand maturity in structuring the functional composition of saproxylic beetles. Biological Conservation, 205, 1–10.

Jung, K. , Kaiser, S. , Böhm, S. M. , Nieschulze, J. , & Kalko, E. K. (2012). Moving in three dimensions: Effects of structural complexity on occurrence and activity of insectivorous bats in managed forest stands. Journal of Applied Ecology, 49, 523–531.

Köhler, F. (2000). Totholzkäfer in Naturwaldzellen des nördlichen Rheinlands. Schriftenreihe der Landesanstal für Ökologie, Bodenordnung und Forsten/Landesamt für Agrarordnung Nordrhein‐Westfalen.

Komonen, A. , & Müller, J. (2018). Dispersal ecology of deadwood organisms and connectivity conservation. Conservation Biology, 32, 535–545. PubMed

Kuuluvainen, T. , & Siitonen, J. (2013). Fennoscandian boreal forests as complex adaptive systems. Properties, management challenges and opportunities. In Messier C., Puettman K. J., & Coates K. D. (Eds.), Managing forests as complex adaptive systems. Building resilience to the challenge of global change (pp. 244–268). Routledge, Earthscan.

Laaksonen, M. , Punttila, P. , Siitonen, J. , & Ovaskainen, O. (2020). Saproxylic beetle assemblages in recently dead scots pines: How traits modulate species' response to forest management? Forest Ecology and Management, 473, 118300.

Lachat, T. , Wermelinger, B. , Gossner, M. M. , Bussler, H. , Isacsson, G. , & Müller, J. (2012). Saproxylic beetles as indicator species for dead‐wood amount and temperature in European beech forests. Ecological Indicators, 23, 323–331.

Lennon, J. J. , Beale, C. M. , Reid, C. L. , Kent, M. , & Pakeman, R. J. (2011). Are richness patterns of common and rare species equally well explained by environmental variables. Ecography, 34, 529–539.

Levin, S. A. (1992). The problem of pattern and scale in ecology: The Robert H. MacArthur Award Lecture. Ecology, 73, 1943–1967.

Liu, H. , Xu, Q. , He, P. , Santiago, L. S. , Yang, K. , & Ye, Q. (2015). Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae. Scientific Reports, 5, 12246. PubMed PMC

McGill, B. J. , Enquist, B. J. , Weiher, E. , & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178–185. PubMed

Melin, M. , Packalen, P. , Matala, J. , Mehtätalo, L. , & Pusenius, J. (2013). Assessing and modeling moose (Alces alces) habitats with airborne laser scanning data. International Journal of Applied Earth Observation and Geoinformation, 23, 389–396.

Micó, E. , Ramilo, P. , Thorn, S. , Müller, J. , Galante, E. , & Carmona, C. P. (2020). Contrasting functional structure of saproxylic beetle assemblages associated to different microhabitats. Scientific Reports, 10, 1520. PubMed PMC

Möller, G. (2009). Struktur und Substratbindung holzbewohnender Insekten, Schwerpunkt Coleoptera ‐Käfer. Freie Universität Berlin.

Moretti, M. , Dias, A. T. C. , de Bello, F. , Altermatt, F. , Chown, S. L. , Azcárate, F. M. , Bell, J. R. , Fournier, B. , Hedde, M. , Hortal, J. , Ibanez, S. , Öckinger, E. , Sousa, J. P. , Ellers, J. , & Berg, M. P. (2017). Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology, 31(3), 558–567.

Müller, J. , Bae, S. , Röder, J. , Chao, A. , & Didham, R. K. (2014). Airborne LiDAR reveals context dependence in the effects of canopy architecture on arthropod diversity. Forest Ecology and Management, 312, 129–137.

Müller, J. , & Brandl, R. (2009). Assessing biodiversity by remote sensing in mountainous terrain: The potential of LiDAR to predict forest beetle assemblages. Journal of Applied Ecology, 46, 897–905.

Müller, J. , Noss, R. , Bussler, H. , & Brandl, R. (2010). Learning from a benign neglect strategy in a national park: Response of saproxylic beetles to dead wood accumulation. Biological Conservation, 143, 2559–2569.

Müller, J. , Stadler, J. , & Brandl, R. (2010). Composition versus physiognomy of vegetation as predictors of bird assemblages: The role of lidar. Remote Sensing of Environment, 114(3), 490–495.

Müller, J. , Ulyshen, M. , Seibold, S. , Cadotte, M. , Chao, A. , Bässler, C. , Vogel, S. , Hagge, J. , Weiss, I. , Baldrian, P. , Tláskal, V. , & Thorn, S. (2020). Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos, 129, 1579–1588.

Naimi, B. , Hamm, N. A. S. , Groen, T. A. , Skidmore, A. K. , & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191–203.

Neate‐Clegg, M. H. , Jones, S. E. , Tobias, J. A. , Newmark, W. D. , & Şekercioğlu, Ç. H. (2021). Ecological correlates of elevational range shifts in tropical birds. Frontiers in Ecology and Evolution, 9, 621749.

Ovaskainen, O. , & Abrego, N. (2020). Joint species distribution modelling: With applications in R. Cambridge University Press.

Peters, R. H. (1983). The ecological implications of body size. Cambridge University Press.

Quinto, J. , Micó, E. , Martínez‐Falcón, A. , Galante, E. , & Marcos‐garcía, M. (2014). Influence of tree hollow characteristics on the diversity of saproxylic insect guilds in Iberian Mediterranean woodlands. Journal of Insect Conservation, 18, 981–992.

R Core Team . (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R‐project.org

Raine, E. H. , Gray, C. L. , Mann, D. J. , & Slade, E. M. (2018). Tropical dung beetle morphological traits predict functional traits and show intraspecific differences across land uses. Ecology and Evolution, 8, 8686–8696. PubMed PMC

Rinker, H. B. , Lowman, M. D. , Hunter, M. D. , Schowalter, T. D. , & Fonte, S. J. (2001). Literature review: Canopy herbivory and soil ecology, the top‐down impact of forest processes. Selbyana, 22(2), 225–231.

Säterberg, T. , Jonsson, T. , Yearsley, J. , Berg, S. , & Ebenman, B. (2019). A potential role for rare species in ecosystem dynamics. Scientific Reports, 9, 11107. PubMed PMC

Schmidl, J. , & Bussler, H. (2004). Ökologiesche Gilden xylobionter Käfer Deutschlands. Naturschutz Und Landschaftsplanung, 36(7), 202–218.

Seibold, S. , Brandl, R. , Buse, J. , Hothorn, T. , Schmidl, J. , Thorn, S. , & Müller, J. (2015). Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conservation Biology, 29(2), 382–390. PubMed

Speight, M. C. D. (1989). Saproxylic invertebrates and their conservation. Council of Europe, Nature and Environment Series, 42, 1–79.

Stein, A. , Gerstner, K. , & Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17(7), 866–800. PubMed

Talarico, F. , Roméo, M. , Massolo, A. , Brandmayr, P. , & Zetto, T. (2007). Morphometry and eye morphology in three species of Carabus (Coleoptera: Carabidae) in relation to habitat demands. Journal of Zoological Systematics and Evolutionary Research, 45, 33–38.

Thorn, S. , Bässler, C. , Gottschalk, T. , Hothorn, T. , Bussler, H. , Raffa, K. , & Müller, J. (2014). New insights into the consequences of post‐windthrow salvage logging revealed by functional structure of saproxylic beetles assemblages. PLoS ONE, 9(7), e101757. PubMed PMC

Thorn, S. , Müller, J. , Bässler, C. , Gminder, A. , Brandl, R. , & Heibl, C. (2015). Host abundance, durability, basidiome form and phylogenetic isolation determine fungivore species richness. Biological Journal of the Linnean Society, 114, 699–708.

Tikhonov, G. , Opedal, Ø. H. , Abrego, N. , Lehikoinen, A. , de Jonge, M. M. J. , Oksanen, J. , & Ovaskainen, O. (2020). Joint species distribution modelling with the r‐package Hmsc. Methods in Ecology and Evolution, 11(3), 442–447. PubMed PMC

Tobias, J. A. (2022). A bird in the hand: Global‐scale morphological trait datasets open new frontiers of ecology, evolution and ecosystem science. Ecology Letters, 25(3), 573–580. PubMed

True, J. R. (2003). Insect melanism: The molecules matter. Trends in Ecology & Evolution, 18, 640–647.

Trullas, S. C. , Wyk, J. H. , & Spotila, J. R. (2007). Thermal melanism in ectotherms. Journal of Thermal Biology, 32, 235–245.

Violle, C. , Navas, M. , Vile, D. , Kazakou, E. , Fortunel, C. , Hummel, I. , & Garnier, E. (2007). Let the concept of trait be functional. Oikos, 116, 882–892.

Wetherbee, R. , Birkemoe, T. , Skarpaas, O. , & Sverdrup‐Thygeson, A. (2020). Hollow oaks and beetle functional diversity: Significance of surroundings extends beyond taxonomy. Ecology and Evolution, 10, 819–831. PubMed PMC

Winemiller, K. O. , Fitzgerald, D. B. , Bower, L. M. , & Pianka, E. R. (2015). Functional traits, convergent evolution, and periodic tables of niches. Ecology Letters, 18, 737–751. PubMed PMC

Yates, M. , Andrew, N. R. , Binns, M. R. , & Gibb, H. (2014). Morphological traits: Predictable responses to macrohabitats across a 300 km scale. PeerJ, 2, e271. PubMed PMC

See more in PubMed

Dryad
10.5061/dryad.f4qrfj707

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...