• This record comes from PubMed

Comparative SIR/SEIR modeling of the Antonine Plague in Rome

. 2025 ; 20 (2) : e0313684. [epub] 20250213

Language English Country United States Media electronic-ecollection

Document type Journal Article, Historical Article, Comparative Study

Some scholars consider the Antonine Plague to have been a major disease outbreak in the 2nd century CE that caused a significant decline in the population of the Roman Empire. Although there is currently no molecular evidence of the specific pathogen, literary evidence indicates the parameters of the disease that it caused and how significant the impact on Roman society was. One way to advance the current discussion concerning the Antonine Plague's impact on the Roman Empire's population is to examine the currently available sources and comparatively model the spread of different pathogens in a specific location with known demographic data for the relevant period. To accomplish this, we developed a series of dynamic ordinary differential equation models of the spread of disease in Rome between 165 and 189 CE for several pathogens. We found that daily disease deaths in the final years of the pandemic were inconsistent with estimates reported in primary sources, suggesting that either (a) the impact of the Antonine Plague may have been exaggerated in the descriptions of ancient authors, or (b) the daily deaths in ca. 189 CE were caused by a different disease event than the Antonine Plague, or (c) seasonality might have been a significant factor changing the intensity of disease spread, with the population more severely affected during the winter months. Although none of the pathogens we analyzed emerged as the likely causative agent of the Antonine Plague, the models show that the overall mortality rate would have increased maximally by 7%. This result contradicts the mortality rate accepted by historians who defend the thesis of the significant impact of this epidemic on the demography of the Roman Empire.

See more in PubMed

McNeill WH. Plagues and Peoples. Garden City, New York: Anchor Press / Doubleday; 1976.

Duncan-Jones RP. The impact of the Antonine plague. Journal of Roman Archaeology. 1996;9:108–36.

Scheidel W. A model of demographic and economic change in Roman Egypt after the Antonine plague. Journal of Roman Archaeology. 2002;15:97–114.

Haldon J, Elton H, Huebner SR, Izdebski A, Mordechai L, Newfield TP. Plagues, climate change, and the end of an empire. A response to Kyle Harper’s The Fate of Rome (2): Plagues and a crisis of empire. Hist Compass. 2018;16(12):e12506.

Gilliam JF. The Plague under Marcus Aurelius. Am J Philol. 1961;82(3):225–51.

Bagnall RS. The effects of plague: model and evidence. Journal of Roman Archaeology. 2002;15:114–20.

Littman RJ, Littman ML. Galen and the Antonine plague. Am J Philol. 1973;94(3):243–55. PubMed

Manley J. Measles and Ancient Plagues: A Note on New Scientific Evidence. The Classical World. 2014;107(3):393–7.

Flemming R. Galen and the Plague. In: Petit C, editor. Galen’s Treatise Περὶ Ἀλυπίας (De indolentia) in Context. Leiden: Brill; 2019. pp. 219–44.

Zelener Y. Genetic Evidence, Density Dependence and Epidemiological Models of the ‘Antonine Plague.’ In: lo Cascio E, editor. L’impatto Della “peste Antonina.” Bari: Edipuglia; 2012. pp. 167–77.

Everton SF, Schroeder R. Plagues, Pagans, and Christians: Differential Survival, Social Networks, and the Rise of Christianity. J Sci Study Relig. 2019. Dec 4;58(4):775–89.

White LA, Mordechai L. Modeling the Justinianic Plague: Comparing hypothesized transmission routes. PLoS One. 2020;15(4):e0231256. doi: 10.1371/journal.pone.0231256 PubMed DOI PMC

Tutsoy O, Polat A, Çolak Ş, Balikci K. Development of a Multi-Dimensional Parametric Model With Non-Pharmacological Policies for Predicting the COVID-19 Pandemic Casualties. IEEE Access. 2020;8:225272–83. doi: 10.1109/ACCESS.2020.3044929 PubMed DOI PMC

Tutsoy O, Çolak Ş, Polat A, Balikci K. A Novel Parametric Model for the Prediction and Analysis of the COVID-19 Casualties. IEEE Access. 2020;8:193898–906. doi: 10.1109/ACCESS.2020.3033146 PubMed DOI PMC

Tutsoy O, Polat A. Linear and non-linear dynamics of the epidemics: System identification based parametric prediction models for the pandemic outbreaks. ISA Trans. 2022;124:90–102. doi: 10.1016/j.isatra.2021.08.008 PubMed DOI PMC

Maier BF, Brockmann D. Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science (1979). 2020;368(6492):742–6. doi: 10.1126/science.abb4557 PubMed DOI PMC

Abou-Ismail A. Compartmental Models of the COVID-19 Pandemic for Physicians and Physician-Scientists. SN Compr Clin Med. 2020;2(7):852–8. doi: 10.1007/s42399-020-00330-z PubMed DOI PMC

Arenas AJ, González-Parra G, Chen-Charpentier BM. Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order. Math Comput Simul. 2016;121:48–63.

Chen YC, Lu PE, Chang CS, Liu TH. A Time-Dependent SIR Model for COVID-19 With Undetectable Infected Persons. IEEE Trans Netw Sci Eng. 2020;7(4):3279–94. doi: 10.1109/TNSE.2020.3024723 PubMed DOI PMC

Duncan-Jones RP. The Antonine Plague Revisited. Arctos. 2018;52:41–72.

Harper K. The Fate of Rome. The Fate of Rome. Princeton/Oxford: Princeton University Press; 2017.

Hanson JW, Ortman SG. A systematic method for estimating the populations of Greek and Roman settlements. Journal of Roman Archaeology. 2017;30(1):301–24.

Frier BW. Demography. In: Bowman A, Garnsey P, Rathbone D, editors. The Cambridge Ancient History. Cambridge: Cambridge University Press; 2000. pp. 787–816.

Gage KL, Kosoy MY. Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol. 2004;50:505–28. PubMed

Keeling MJ, Gilligan CA. Bubonic plague: a metapopulation model of a zoonosis. Proc R Soc Lond B Biol Sci. 2000;267(1458):2219–30. doi: 10.1098/rspb.2000.1272 PubMed DOI PMC

Keeling MJ, Gilligan CA. Metapopulation dynamics of bubonic plague. Nature. 2000;407(6806):903–6. doi: 10.1038/35038073 PubMed DOI

Dean KR, Krauer F, Walløe L, Lingjærde OC, Bramanti B, Stenseth NC, et al.. Human ectoparasites and the spread of plague in Europe during the Second Pandemic. Proc Natl Acad Sci U S A. 2018;115(6):1304–9. doi: 10.1073/pnas.1715640115 PubMed DOI PMC

May RM, Hassell MP, Anderson RM, Tonkyn DW. Density dependence in host-parasitoid models. J Anim Ecol. 1981;50(3):865.

Nguyen VK, Parra-Rojas C, Hernandez-Vargas EA. The 2017 plague outbreak in Madagascar: Data descriptions and epidemic modelling. Epidemics. 2018;25:20–5. doi: 10.1016/j.epidem.2018.05.001 PubMed DOI

Nikiforov V v., Gao H, Zhou L, Anisimov A. Plague: Clinics, diagnosis and treatment. Adv Exp Med Biol. 2016;918:293–312. doi: 10.1007/978-94-024-0890-4_11 PubMed DOI

Gani R, Leach S. Epidemiologic determinants for modeling pneumonic plague outbreaks. Emerg Infect Dis. 2004;10(4):608–14. doi: 10.3201/eid1004.030509 PubMed DOI PMC

Begier EM, Asiki G, Anywaine Z, Yockey B, Schriefer ME, Aleti P, et al.. Pneumonic plague cluster. Emerg Infect Dis. 2006;12(3):460–7. PubMed PMC

Ratsitorahina M, Chanteau S, Rahalison L, Ratsifasoamanana L, Boisier P. Epidemiological and diagnostic aspects of the outbreak of pneumonic plague in Madagascar. Lancet. 2000;355(9198):111–3. doi: 10.1016/S0140-6736(99)05163-6 PubMed DOI

Kool JL, Weinstein RA. Risk of person-to-person transmission of pneumonic plague. Clin Infect Dis. 2005;40(8):1166–72. doi: 10.1086/428617 PubMed DOI

Schotthoefer AM, Bearden SW, Holmes JL, Vetter SM, Montenieri JA, Williams SK, et al.. Effects of temperature on the transmission of Yersinia Pestis by the flea, Xenopsylla Cheopis, in the late phase period. Parasit Vectors. 2011;4(1):1–11. doi: 10.1186/1756-3305-4-191 PubMed DOI PMC

Webb CT, Brooks CP, Gage KL, Antolin MF. Classic flea-borne transmission does not drive plague epizootics in prairie dogs. Proc Natl Acad Sci U S A. 2006;103(16):6236–41. doi: 10.1073/pnas.0510090103 PubMed DOI PMC

Gascuel F, Choisy M, Duplantier JM, Débarre F, Brouat C. Host resistance, population structure and the long-term persistence of bubonic plague: Contributions of a modelling approach in the Malagasy focus. PLoS Comput Biol. 2013;9(5):e1003039. doi: 10.1371/journal.pcbi.1003039 PubMed DOI PMC

Tollenaere C, Rahalison L, Ranjalahy M, Duplantier JM, Rahelinirina S, Telfer S, et al.. Susceptibility to Yersinia pestis experimental infection in wild Rattus rattus, reservoir of plague in Madagascar. Ecohealth. 2010;7(2):242–7. doi: 10.1007/s10393-010-0312-3 PubMed DOI

Biggins DE, Kosoy MY. Influences of introduced plague on North American mammals: Implications from ecology of plague in Asia. J Mammal. 2001;82(4):906–16.

Bacot AW, Martin CJ. The respective influences of temperature and moisture upon the survival of the rat flea (Xenopsylla cheopis) away from its host. Epidemiol Infect. 1924;23(1):98–105. doi: 10.1017/s0022172400008500 PubMed DOI PMC

Kugeler KJ, Staples JE, Hinckley AF, Gage KL, Mead PS. Epidemiology of human plague in the United States, 1900–2012. Emerg Infect Dis. 2015;21(1):16–22. doi: 10.3201/eid2101.140564 PubMed DOI PMC

Alsofrom DJ, Mettler FA, Mann JM. Radiographic manifestations of plaque in New Mexico, 1975–1980. A review of 42 proved cases. Radiology. 1981;139(3):561–5. doi: 10.1148/radiology.139.3.7232721 PubMed DOI

Inglesby T v, Dennis DT, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, et al.. Plague as a biological weapon: Medical and public health management. JAMA. 2000;283(17):2281–90. PubMed

Darling RG, Catlett CL, Huebner KD, Jarrett DG. Threats in bioterrorism I: CDC category A agents. Emerg Med Clin North Am. 2002;20(2):273–309. PubMed

Fenner F, Henderson DA, Arita I, Ježek Z, Ladnyi ID. Smallpox and its eradication. Geneva: World Health Organization; 1988.

Kiang KM, Krathwohl MD. Rates and risks of transmission of smallpox and mechanisms of prevention. J Lab Clin Med. 2003;142(4):229–38. doi: 10.1016/S0022-2143(03)00147-1 PubMed DOI

Graeden E, Fielding R, Steinhouse KE, Rubin IN. Modeling the effect of herd immunity and contagiousness in mitigating a smallpox outbreak. Medical Decision Making. 2015;35(5):648–59. doi: 10.1177/0272989X14561681 PubMed DOI

Breman JG. Smallpox eradication: African origin, African solutions, and relevance for COVID-19. Am J Trop Med Hyg. 2021;104(2):421. doi: 10.4269/ajtmh.20-1557 PubMed DOI PMC

Smirnova A, deCamp L, Chowell G. Forecasting epidemics through nonparametric estimation of time-dependent transmission rates using the SEIR model. Bull Math Biol. 2019;81(11):4343–65. doi: 10.1007/s11538-017-0284-3 PubMed DOI

Guerra FM, Bolotin S, Lim G, Heffernan J, Deeks SL, Li Y, et al.. The basic reproduction number (R0) of measles: a systematic review. Lancet Infect Dis. 2017;17(12):e420–8. doi: 10.1016/S1473-3099(17)30307-9 PubMed DOI

Hempel K, Earn DJD. A century of transitions in New York City’s measles dynamics. J R Soc Interface. 2015;12(106):20150024. doi: 10.1098/rsif.2015.0024 PubMed DOI PMC

Alexander ME, Moghadas SM, Rohani P, Summers AR. Modelling the effect of a booster vaccination on disease epidemiology. J Math Biol. 2006;52(3):290–306. doi: 10.1007/s00285-005-0356-0 PubMed DOI

Marguta R, Parisi A. Human mobility and measles. In: Vigo-Aguiar J, Hamilton IP, Medina J, Schwerdtfeger P, Sprößig W, Demiralp M, et al.., editors. Proceedings of the 14th Conference on Computational and Mathematical Methods in Science and Engineering. CMMSE; 2014. pp. 868–70.

Lessler J, Reich NG, Brookmeyer R, Perl TM, Nelson KE, Cummings DA. Incubation periods of acute respiratory viral infections: a systematic review. Lancet Infect Dis. 2009;9(5):291–300. doi: 10.1016/S1473-3099(09)70069-6 PubMed DOI PMC

Heymann DL, editor. Control of communicable diseases manual. 20th ed. Control of Communicable Diseases Manual. American Public Health Association; 2014.

Perry RT, Halsey NA. The clinical significance of measles: A review. J Infect Dis. 2004;189(Supplement_1):S4–16. doi: 10.1086/377712 PubMed DOI

Soetaert K, Petzoldt T, Setzer RW. Solving Differential Equations in R: Package deSolve. J Stat Softw. 2010;33(9):1–25. PubMed

Wu J, Dhingra R, Gambhir M, Remais J v. Sensitivity analysis of infectious disease models: methods, advances and their application. J R Soc Interface. 2013;10(86). doi: 10.1098/rsif.2012.1018 PubMed DOI PMC

Carnell R. lhs: Latin hypercube samples [R package lhs version 1.1.3] [Internet]. Comprehensive R Archive Network (CRAN); 2021. [cited 2022 Jan 2]. Available from: https://CRAN.R-project.org/package=lhs

Iooss B, da Veiga S, Janon A, Pujol G, Broto B, Boumhaout K, et al.. sensitivity: Global sensitivity analysis of model outputs [Internet]. 2021. [cited 2022 Jan 2]. Available from: https://CRAN.R-project.org/package=sensitivity

Kühn KG, editor. Claudii Galeni Opera Omnia. Vol. 19. Leipzig: C. Cnobloch; 1830.

Cassius Dio. Historiae Romanae (Dio’s Roman History). Cary E, Foster HB, editors. Vol. 9. Cambridge, MA & London: Harvard University Press & William Heinemann Ltd.; 1969.

Seeck O. Geschichte des Untergangs der antiken Welt. Geschichte des Untergangs der antiken Welt. Stuttgart; 1910.

Rathbone DW. Villages, land and population in Graeco-Roman Egypt. Proceedings of the Cambridge Philological Society. 1990;36(216):103–42.

Harris. The Great Pestilence and the complexities of the Antonine-Severan economy. In: lo Cascio E, editor. L’impatto Della “peste Antonina.” Bari: Edipuglia; 2012. pp. 331–8.

Karasaridis A. SDCAS and Joukowsky Institute webinars on epidemics and pandemics in Antiquity. Sacra. 2020;18(2):51–5.

Scheidel W. Roman Wellbeing and the Economic Consequences of the “Antonine Plague.” SSRN Electronic Journal. 2009.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...