The effect of deep brain stimulation in Parkinson's disease reflected in EEG microstates

. 2023 Apr 17 ; 9 (1) : 63. [epub] 20230417

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37069159

Grantová podpora
NU21-04-00445 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21-04-00445 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21-04-00445 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21-04-00445 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21-04-00445 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21-04-00445 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)

Odkazy

PubMed 37069159
PubMed Central PMC10110608
DOI 10.1038/s41531-023-00508-x
PII: 10.1038/s41531-023-00508-x
Knihovny.cz E-zdroje

Mechanisms of deep brain stimulation (DBS) on cortical networks were explored mainly by fMRI. Advanced analysis of high-density EEG is a source of additional information and may provide clinically useful biomarkers. The presented study evaluates EEG microstates in Parkinson's disease and the effect of DBS of the subthalamic nucleus (STN). The association between revealed spatiotemporal dynamics of brain networks and changes in oscillatory activity and clinical examination were assessed. Thirty-seven patients with Parkinson's disease treated by STN-DBS underwent two sessions (OFF and ON stimulation conditions) of resting-state EEG. EEG microstates were analyzed in patient recordings and in a matched healthy control dataset. Microstate parameters were then compared across groups and were correlated with clinical and neuropsychological scores. Of the five revealed microstates, two differed between Parkinson's disease patients and healthy controls. Another microstate differed between ON and OFF stimulation conditions in the patient group and restored parameters in the ON stimulation state toward to healthy values. The mean beta power of that microstate was the highest in patients during the OFF stimulation condition and the lowest in healthy controls; sources were localized mainly in the supplementary motor area. Changes in microstate parameters correlated with UPDRS and neuropsychological scores. Disease specific alterations in the spatiotemporal dynamics of large-scale brain networks can be described by EEG microstates. The approach can reveal changes reflecting the effect of DBS on PD motor symptoms as well as changes probably related to non-motor symptoms not influenced by DBS.

Zobrazit více v PubMed

Lozano AM, et al. Deep brain stimulation: current challenges and future directions. Nat. Rev. Neurol. 2019;15:148–160. doi: 10.1038/s41582-018-0128-2. PubMed DOI PMC

Habets JGV, et al. An update on adaptive deep brain stimulation in Parkinson’s disease. Mov. Disord. 2018;33:1834–1843. doi: 10.1002/mds.115. PubMed DOI PMC

Halje P, et al. Oscillations in cortico-basal ganglia circuits: implications for Parkinson’s disease and other neurologic and psychiatric conditions. J. Neurophysiol. 2019;122:203–231. doi: 10.1152/jn.00590.2018. PubMed DOI

Horn A, et al. Connectivity Predicts deep brain stimulation outcome in Parkinson disease. Ann. Neurol. 2017;82:67–78. doi: 10.1002/ana.24974. PubMed DOI PMC

Horn A, et al. Deep brain stimulation induced normalization of the human functional connectome in Parkinson’s disease. Brain. 2019;142:3129–3143. doi: 10.1093/brain/awz239. PubMed DOI

Kahan J, et al. Resting state functional MRI in Parkinson’s disease: the impact of deep brain stimulation on ‘effective’ connectivity. Brain. 2014;137:1130–1144. doi: 10.1093/brain/awu027. PubMed DOI PMC

Jech, R. & Mueller, K. Investigating network effects of DBS with fMRI. In Connectomic Deep Brain Stimulation 275–301 (Elsevier, 2022). 10.1016/B978-0-12-821861-7.00026-9.

Younce JR, et al. Resting‐State Functional Connectivity Predicts STN DBS Clinical Response. Mov. Disord. 2021;36:662–671. doi: 10.1002/mds.28376. PubMed DOI PMC

Shen L, et al. Subthalamic Nucleus Deep Brain Stimulation Modulates 2 Distinct Neurocircuits. Ann. Neurol. 2020;88:1178–1193. doi: 10.1002/ana.25906. PubMed DOI PMC

Michel, C. M., Koenig, T. & Brandeis, D. Electrical Neuroimaging. Electrical Neuroimaging (Cambridge University Press, 2009). 10.1017/CBO9780511596889

Giannicola G, et al. The effects of levodopa and ongoing deep brain stimulation on subthalamic beta oscillations in Parkinson’s disease. Exp. Neurol. 2010;226:120–127. doi: 10.1016/j.expneurol.2010.08.011. PubMed DOI

Bočková M, et al. Suboptimal response to STN-DBS in Parkinson’s disease can be identified via reaction times in a motor cognitive paradigm. J. Neural Transm. 2020;127:1579–1588. doi: 10.1007/s00702-020-02254-3. PubMed DOI

Hirschmann J, et al. A direct relationship between oscillatory subthalamic nucleus–cortex coupling and rest tremor in Parkinson’s disease. Brain. 2013;136:3659–3670. doi: 10.1093/brain/awt271. PubMed DOI

Bočková M, et al. Cortical network organization reflects clinical response to subthalamic nucleus deep brain stimulation in Parkinson’s disease. Hum. Brain Mapp. 2021;42:5626–5635. doi: 10.1002/hbm.25642. PubMed DOI PMC

Michel CM, Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. Neuroimage. 2018;180:577–593. doi: 10.1016/j.neuroimage.2017.11.062. PubMed DOI

Khanna A, Pascual-Leone A, Michel CM, Farzan F. Microstates in resting-state EEG: Current status and future directions. Neurosci. Biobehav. Rev. 2015;49:105–113. doi: 10.1016/j.neubiorev.2014.12.010. PubMed DOI PMC

Bréchet L, et al. Capturing the spatiotemporal dynamics of self-generated, task-initiated thoughts with EEG and fMRI. Neuroimage. 2019;194:82–92. doi: 10.1016/j.neuroimage.2019.03.029. PubMed DOI

Britz J, Van De Ville D, Michel CM. BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage. 2010;52:1162–1170. doi: 10.1016/j.neuroimage.2010.02.052. PubMed DOI

Rajkumar, R. et al. Comparison of EEG microstates with resting state fMRI and FDG-PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data. Hum. Brain Mapp. 1–12 (2018). 10.1002/hbm.24429 PubMed PMC

Custo A, et al. Electroencephalographic Resting-State Networks: Source Localization of Microstates. Brain Connect. 2017;7:671–682. doi: 10.1089/brain.2016.0476. PubMed DOI PMC

Lamoš M, Morávková I, Ondráček D, Bočková M, Rektorová I. Altered Spatiotemporal Dynamics of the Resting Brain in Mild Cognitive Impairment with Lewy Bodies. Mov. Disord. 2021;36:2435–2440. doi: 10.1002/mds.28741. PubMed DOI

Nishida K, et al. EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer’s disease. Clin. Neurophysiol. 2013;124:1106–1114. doi: 10.1016/j.clinph.2013.01.005. PubMed DOI

Pal A, Behari M, Goyal V, Sharma R. Study of EEG microstates in Parkinson’s disease: a potential biomarker? Cogn. Neurodyn. 2021;15:463–471. doi: 10.1007/s11571-020-09643-0. PubMed DOI PMC

Schumacher J, et al. Dysfunctional brain dynamics and their origin in Lewy body dementia. Brain. 2019;142:1767–1782. doi: 10.1093/brain/awz069. PubMed DOI PMC

Sverak T, Albrechtova L, Lamos M, Rektorova I, Ustohal L. Intensive repetitive transcranial magnetic stimulation changes EEG microstates in schizophrenia: A pilot study. Schizophr. Res. 2018;193:451–452. doi: 10.1016/j.schres.2017.06.044. PubMed DOI

Koenig T, et al. A deviant EEG brain microstate in acute, neuroleptic-naive schizophrenics at rest. Eur. Arch. Psychiatry Clin. Neurosci. 1999;249:205–211. doi: 10.1007/s004060050088. PubMed DOI

Chu C, et al. Spatiotemporal EEG microstate analysis in drug-free patients with Parkinson’s disease. NeuroImage Clin. 2020;25:102132. doi: 10.1016/j.nicl.2019.102132. PubMed DOI PMC

Serrano JI, et al. EEG Microstates Change in Response to Increase in Dopaminergic Stimulation in Typical Parkinson’s Disease Patients. Front. Neurosci. 2018;12:1–9. doi: 10.3389/fnins.2018.00714. PubMed DOI PMC

Li Z, et al. Dysfunctional Brain Dynamics of Parkinson’s Disease and the Effect of Acute Deep Brain Stimulation. Front. Neurosci. 2021;15:1–11. PubMed PMC

Kühn AA, Kupsch A, Schneider G-H, Brown P. Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur. J. Neurosci. 2006;23:1956–1960. doi: 10.1111/j.1460-9568.2006.04717.x. PubMed DOI

Brown, P. Bad oscillations in Parkinson’s disease. In Parkinson’s Disease and Related Disorders 27–30 (Springer Vienna, 2006). 10.1007/978-3-211-45295-0_6. PubMed

Cagnan H, Denison T, McIntyre C, Brown P. Emerging technologies for improved deep brain stimulation. Nat. Biotechnol. 2019;37:1024–1033. doi: 10.1038/s41587-019-0244-6. PubMed DOI PMC

Bočková M, Rektor I. Electrophysiological biomarkers for deep brain stimulation outcomes in movement disorders: state of the art and future challenges. J. Neural Transm. 2021;128:1169–1175. doi: 10.1007/s00702-021-02381-5. PubMed DOI

Telkes I, et al. Local field potentials of subthalamic nucleus contain electrophysiological footprints of motor subtypes of Parkinson’s disease. Proc. Natl Acad. Sci. U. S. A. 2018;115:E8567–E8576. doi: 10.1073/pnas.1810589115. PubMed DOI PMC

Bouthour W, et al. Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond. Nat. Rev. Neurol. 2019;15:343–352. doi: 10.1038/s41582-019-0166-4. PubMed DOI

Little S, et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 2013;74:449–457. doi: 10.1002/ana.23951. PubMed DOI PMC

Little S, et al. Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 2016;87:717–721. doi: 10.1136/jnnp-2015-310972. PubMed DOI PMC

Rosa M, et al. Adaptive deep brain stimulation in a freely moving parkinsonian patient. Mov. Disord. 2015;30:1003–1005. doi: 10.1002/mds.26241. PubMed DOI PMC

Bočková M, Rektor I. Impairment of brain functions in Parkinson’s disease reflected by alterations in neural connectivity in EEG studies: A viewpoint. Clin. Neurophysiol. 2019;130:239–247. doi: 10.1016/j.clinph.2018.11.013. PubMed DOI

Geraedts VJ, et al. Preoperative Electroencephalography-Based Machine Learning Predicts Cognitive Deterioration After Subthalamic Deep Brain Stimulation. Mov. Disord. 2021;36:2324–2334. doi: 10.1002/mds.28661. PubMed DOI PMC

Bréchet L, Brunet D, Perogamvros L, Tononi G, Michel CM. EEG microstates of dreams. Sci. Rep. 2020;10:17069. doi: 10.1038/s41598-020-74075-z. PubMed DOI PMC

Oswal A, et al. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease. Brain. 2016;139:1482–1496. doi: 10.1093/brain/aww048. PubMed DOI PMC

Kikuchi M, et al. Native EEG and treatment effects in neuroleptic-naïve schizophrenic patients: Time and frequency domain approaches. Schizophr. Res. 2007;97:163–172. doi: 10.1016/j.schres.2007.07.012. PubMed DOI

Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack RA. Triangulating a Cognitive Control Network Using Diffusion-Weighted Magnetic Resonance Imaging (MRI) and Functional MRI. J. Neurosci. 2007;27:3743–3752. doi: 10.1523/JNEUROSCI.0519-07.2007. PubMed DOI PMC

Litvak V, et al. Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease. Brain. 2011;134:359–374. doi: 10.1093/brain/awq332. PubMed DOI

Brown P. Oscillatory nature of human basal ganglia activity: Relationship to the pathophysiology of Parkinson’s disease. Mov. Disord. 2003;18:357–363. doi: 10.1002/mds.10358. PubMed DOI

Eusebio A, et al. Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J. Neurol. Neurosurg. Psychiatry. 2011;82:569–573. doi: 10.1136/jnnp.2010.217489. PubMed DOI PMC

Whitmer D, et al. High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson’s disease. Front. Hum. Neurosci. 2012;6:1–18. doi: 10.3389/fnhum.2012.00155. PubMed DOI PMC

Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods. 2004;134:9–21. doi: 10.1016/j.jneumeth.2003.10.009. PubMed DOI

Brunet D, Murray MM, Michel CM. Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput. Intell. Neurosci. 2011;2011:813870. doi: 10.1155/2011/813870. PubMed DOI PMC

Michel CM, Brunet D. EEG Source Imaging: A Practical Review of the Analysis Steps. Front. Neurol. 2019;10:1–18. doi: 10.3389/fneur.2019.00325. PubMed DOI PMC

Seeber M, et al. Subcortical electrophysiological activity is detectable with high-density EEG source imaging. Nat. Commun. 2019;10:753. doi: 10.1038/s41467-019-08725-w. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Revealing connectivity patterns of deep brain stimulation efficacy in Parkinson's disease

. 2024 Dec 30 ; 14 (1) : 31652. [epub] 20241230

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace