Density separation of petrous bone powders for optimized ancient DNA yields
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
M 3108
Austrian Science Fund FWF - Austria
PubMed
37072186
PubMed Central
PMC10234301
DOI
10.1101/gr.277714.123
PII: gr.277714.123
Knihovny.cz E-zdroje
- MeSH
- DNA genetika MeSH
- lidé MeSH
- plastické hmoty MeSH
- prášky, zásypy, pudry MeSH
- skalní kost * MeSH
- starobylá DNA * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- plastické hmoty MeSH
- prášky, zásypy, pudry MeSH
- starobylá DNA * MeSH
Density separation is a process routinely used to segregate minerals, organic matter, and even microplastics, from soils and sediments. Here we apply density separation to archaeological bone powders before DNA extraction to increase endogenous DNA recovery relative to a standard control extraction of the same powders. Using nontoxic heavy liquid solutions, we separated powders from the petrous bones of 10 individuals of similar archaeological preservation into eight density intervals (2.15 to 2.45 g/cm3, in 0.05 increments). We found that the 2.30 to 2.35 g/cm3 and 2.35 to 2.40 g/cm3 intervals yielded up to 5.28-fold more endogenous unique DNA than the corresponding standard extraction (and up to 8.53-fold before duplicate read removal), while maintaining signals of ancient DNA authenticity and not reducing library complexity. Although small 0.05 g/cm3 intervals may maximally optimize yields, a single separation to remove materials with a density above 2.40 g/cm3 yielded up to 2.57-fold more endogenous DNA on average, which enables the simultaneous separation of samples that vary in preservation or in the type of material analyzed. While requiring no new ancient DNA laboratory equipment and fewer than 30 min of extra laboratory work, the implementation of density separation before DNA extraction can substantially boost endogenous DNA yields without decreasing library complexity. Although subsequent studies are required, we present theoretical and practical foundations that may prove useful when applied to other ancient DNA substrates such as teeth, other bones, and sediments.
Centre for Applied Bioanthropology Institute for Anthropological Research 10000 Zagreb Croatia
CIAS Department of Life Sciences University of Coimbra 3000 456 Coimbra Portugal
Department of Anthropology National Museum Prague 115 79 Czech Republic
Department of Archaeology University of Cambridge Cambridge CB2 3DZ United Kingdom
Department of Evolutionary Anthropology University of Vienna 1030 Vienna Austria
Department of Evolutionary Anthropology University of Vienna 1030 Vienna Austria;
Department of Genetics Harvard Medical School Boston Massachusetts 02115 USA
Department of History and Art History Utrecht University 3512 BS Utrecht The Netherlands
Department of Human Evolutionary Biology Harvard University Cambridge Massachusetts 02138 USA
Dipartimento di Biologia Ambientale Sapienza Università di Roma Rome 00185 Italy
Dipartimento di Scienze dell'Antichità Sapienza Università di Roma Rome 00185 Italy
Institute of Archaeology of the Czech Academy of Sciences Prague 118 00 Czech Republic
Zobrazit více v PubMed
Bell LS, Cox G, Sealy J. 2001. Determining isotopic life history trajectories using bone density fractionation and stable isotope measurements: a new approach. Am J Phys Anthropol 116: 66–79. 10.1002/ajpa.1103 PubMed DOI
Bell LS, Kayser M, Jones C. 2008. The mineralized osteocyte: a living fossil. Am J Phys Anthropol 137: 449–456. 10.1002/ajpa.20886 PubMed DOI
Boessenkool S, Hanghøj K, Nistelberger HM, Der Sarkissian C, Gondek AT, Orlando L, Barrett JH, Star B. 2017. Combining bleach and mild predigestion improves ancient DNA recovery from bones. Mol Ecol Resour 17: 742–751. 10.1111/1755-0998.12623 PubMed DOI
Booth TJ. 2016. An investigation into the relationship between funerary treatment and bacterial bioerosion in European archaeological human bone. Archaeometry 58: 484–499. 10.1111/arcm.12190 DOI
Brekhus PJ, Armstrong WD. 1935. A method for the separation of enamel, dentin, and cementum. J Dent Res 15: 23–29. 10.1177/00220345350150010401 DOI
Budd P, Millard A, Chenery C, Lucy S, Roberts C. 2004. Investigating population movement by stable isotope analysis: a report from Britain. Antiquity 78: 127–141. 10.1017/S0003598X0009298X DOI
Busse B, Djonic D, Milovanovic P, Hahn M, Püschel K, Ritchie RO, Djuric M, Amling M. 2010. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell 9: 1065–1075. 10.1111/j.1474-9726.2010.00633.x PubMed DOI
Cameron JR, Skofronick JG, Grant RM, Siegel E. 1993. Medical physics: physics of the body. Am J Phys 61: 1156–1156. 10.1119/1.17319 DOI
Currey JD. 1984. The mechanical adaptations of bones. Princeton University Press, Princeton, NJ.
Dabney J, Knapp M, Glocke I, Gansauge M-T, Weihmann A, Nickel B, Valdiosera C, García N, Pääbo S, Arsuaga J-L, et al. 2013. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci 110: 15758–15763. 10.1073/pnas.1314445110 PubMed DOI PMC
Daley T, Smith AD. 2013. Predicting the molecular complexity of sequencing libraries. Nat Methods 10: 325–327. 10.1038/nmeth.2375 PubMed DOI PMC
Damgaard PB, Margaryan A, Schroeder H, Orlando L, Willerslev E, Allentoft ME. 2015. Improving access to endogenous DNA in ancient bones and teeth. Sci Rep 5: 11184. 10.1038/srep11184 PubMed DOI PMC
Daniel JC, Chin K. 2010. The role of bacterially mediated precipitation in the permineralization of bone. Palaios 25: 507–516. 10.2110/palo.2009.p09-120r DOI
Fu Q, Meyer M, Gao X, Stenzel U, Burbano HA, Kelso J, Pääbo S. 2013. DNA analysis of an early modern human from Tianyuan Cave, China. Proc Natl Acad Sci 110: 2223–2227. 10.1073/pnas.1221359110 PubMed DOI PMC
Gamba C, Jones ER, Teasdale MD, McLaughlin RL, Gonzalez-Fortes G, Mattiangeli V, Domboróczki L, Kővári I, Pap I, Anders A, et al. 2014. Genome flux and stasis in a five millennium transect of European prehistory. Nat Commun 5: 5257. 10.1038/ncomms6257 PubMed DOI PMC
Gansauge M-T, Meyer M. 2013. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat Protoc 8: 737–748. 10.1038/nprot.2013.038 PubMed DOI
Gansauge M-T, Meyer M. 2019. A method for single-stranded ancient DNA library preparation. Methods Mol Biol 1963: 75–83. 10.1007/978-1-4939-9176-1_9 PubMed DOI
Gansauge M-T, Aximu-Petri A, Nagel S, Meyer M. 2020. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat Protoc 15: 2279–2300. 10.1038/s41596-020-0338-0 PubMed DOI
Ginolhac A, Rasmussen M, Gilbert MTP, Willerslev E, Orlando L. 2011. mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics 27: 2153–2155. 10.1093/bioinformatics/btr347 PubMed DOI
Green RE, Briggs AW, Krause J, Prüfer K, Burbano HA, Siebauer M, Lachmann M, Pääbo S. 2009. The Neandertal genome and ancient DNA authenticity. EMBO J 28: 2494–2502. 10.1038/emboj.2009.222 PubMed DOI PMC
Hansen HB, Damgaard PB, Margaryan A, Stenderup J, Lynnerup N, Willerslev E, Allentoft ME. 2017. Comparing ancient DNA preservation in petrous bone and tooth cementum. PLoS One 12: e0170940. 10.1371/journal.pone.0170940 PubMed DOI PMC
Harney É, Cheronet O, Fernandes DM, Sirak K, Mah M, Bernardos R, Adamski N, Broomandkhoshbacht N, Callan K, Lawson AM, et al. 2021. A minimally destructive protocol for DNA extraction from ancient teeth. Genome Res 31: 472–483. 10.1101/gr.267534.120 PubMed DOI PMC
Hedges REM. 2002. Bone diagenesis: an overview of processes. Archaeometry 44: 319–328. 10.1111/1475-4754.00064 DOI
Hernandez CJ, Majeska RJ, Schaffler MB. 2004. Osteocyte density in woven bone. Bone 35: 1095–1099. 10.1016/j.bone.2004.07.002 PubMed DOI
Huang Y, Ringbauer H. 2021. hapCon: estimating contamination of ancient genomes by copying from reference haplotypes. Bioinformatics 38: 3768–3777. 10.1093/bioinformatics/btac390 PubMed DOI PMC
Ibrahim J, Brumfeld V, Addadi Y, Rubin S, Weiner S, Boaretto E. 2022. The petrous bone contains high concentrations of osteocytes: one possible reason why ancient DNA is better preserved in this bone. PLoS One 17: e0269348. 10.1371/journal.pone.0269348 PubMed DOI PMC
Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. 2013. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29: 1682–1684. 10.1093/bioinformatics/btt193 PubMed DOI PMC
Kapp JD, Green RE, Shapiro B. 2021. A fast and efficient single-stranded genomic library preparation method optimized for ancient DNA. J Hered 112: 241–249. 10.1093/jhered/esab012 PubMed DOI PMC
Kemp BM, Smith DG. 2005. Use of bleach to eliminate contaminating DNA from the surface of bones and teeth. Forensic Sci Int 154: 53–61. 10.1016/j.forsciint.2004.11.017 PubMed DOI
Kendall C, Eriksen AMH, Kontopoulos I, Collins MJ, Turner-Walker G. 2018. Diagenesis of archaeological bone and tooth. Palaeogeogr Palaeoclimatol Palaeoecol 491: 21–37. 10.1016/j.palaeo.2017.11.041 DOI
Korlević P, Gerber T, Gansauge M-T, Hajdinjak M, Nagel S, Aximu-Petri A, Meyer M. 2015. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. BioTechniques 59: 87–93. 10.2144/000114320 PubMed DOI
Lee Lyman R. 2021. Bone density and bone attrition. In Manual of forensic taphonomy (ed. Pokines JT, et al.), pp. 79–102. CRC Press, Boca Raton, FL.
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25: 1754–1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.J 17: 10. 10.14806/ej.17.1.200 DOI
Meyer M, Kircher M. 2010. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc 2010: pdb.prot5448. 10.1101/pdb.prot5448 PubMed DOI
Nakatsuka N, Harney É, Mallick S, Mah M, Patterson N, Reich D. 2020. ContamLD: estimation of ancient nuclear DNA contamination using breakdown of linkage disequilibrium. Genome Biol 21: 199. 10.1186/s13059-020-02111-2 PubMed DOI PMC
Pellegrini M, Pouncett J, Jay M, Pearson MP, Richards MP. 2016. Tooth enamel oxygen “isoscapes” show a high degree of human mobility in prehistoric Britain. Sci Rep 6: 34986. 10.1038/srep34986 PubMed DOI PMC
Pinhasi R, Fernandes D, Sirak K, Novak M, Connell S, Alpaslan-Roodenberg S, Gerritsen F, Moiseyev V, Gromov A, Raczky P, et al. 2015. Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS One 10: e0129102. 10.1371/journal.pone.0129102 PubMed DOI PMC
Pinhasi R, Fernandes DM, Sirak K, Cheronet O. 2019. Isolating the human cochlea to generate bone powder for ancient DNA analysis. Nat Protoc 14: 1194–1205. 10.1038/s41596-019-0137-7 PubMed DOI
Rasmussen KL, Milner G, Skytte L, Lynnerup N, Thomsen JL, Boldsen JL. 2019. Mapping diagenesis in archaeological human bones. Heritage Science 7: 41. 10.1186/s40494-019-0285-7 DOI
R Core Team. 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/.
Rohland N, Glocke I, Aximu-Petri A, Meyer M. 2018. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat Protoc 13: 2447–2461. 10.1038/s41596-018-0050-5 PubMed DOI
Sawyer S, Krause J, Guschanski K, Savolainen V, Pääbo S. 2012. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS One 7: e34131. 10.1371/journal.pone.0034131 PubMed DOI PMC
Schroeder H, de Barros Damgaard P, Allentoft ME. 2019. Pretreatment: improving endogenous ancient DNA yields using a simple enzymatic predigestion step. Methods Mol Biol 1963: 21–24. 10.1007/978-1-4939-9176-1_3 PubMed DOI
Sillen A. 1981. Post-depositional changes in Natufian and Aurignacian faunal bones from Hayonim Cave. Paléorient 7: 81–85. 10.3406/paleo.1981.4300 DOI
Simmons ED Jr, Pritzker KP, Grynpas MD. 1991. Age-related changes in the human femoral cortex. J Orthop Res 9: 155–167. 10.1002/jor.1100090202 PubMed DOI
Sirak KA, Fernandes DM, Cheronet O, Novak M, Gamarra B, Balassa T, Bernert Z, Cséki A, Dani J, Gallina JZ, et al. 2017. A minimally-invasive method for sampling human petrous bones from the cranial base for ancient DNA analysis. BioTechniques 62: 283–289. 10.2144/000114558 PubMed DOI
Sirak K, Fernandes D, Cheronet O, Harney E, Mah M, Mallick S, Rohland N, Adamski N, Broomandkhoshbacht N, Callan K, et al. 2020. Human auditory ossicles as an alternative optimal source of ancient DNA. Genome Res 30: 427–436. 10.1101/gr.260141.119 PubMed DOI PMC
Skoglund P, Storå J, Götherström A, Jakobsson M. 2013. Accurate sex identification of ancient human remains using DNA shotgun sequencing. J Archaeol Sci 40: 4477–4482. 10.1016/j.jas.2013.07.004 DOI
Skoglund P, Northoff BH, Shunkov MV, Derevianko AP, Pääbo S, Krause J, Jakobsson M. 2014. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc Natl Acad Sci 111: 2229–2234. 10.1073/pnas.1318934111 PubMed DOI PMC