Evaluation of drought-tolerant endophytic fungus Talaromyces purpureogenus as a bioinoculant for wheat seedlings under normal and drought-stressed circumstances
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
09/677(0041)/2019-EMR1.
CSIR
PubMed
37076748
DOI
10.1007/s12223-023-01051-1
PII: 10.1007/s12223-023-01051-1
Knihovny.cz E-zdroje
- Klíčová slova
- Bioinoculant, Drought, Endophytic fungi, Plant-growth promoter, Wheat,
- MeSH
- antioxidancia MeSH
- endofyty MeSH
- fylogeneze MeSH
- období sucha MeSH
- pšenice MeSH
- semenáček * MeSH
- Talaromyces * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
The present work is aimed to hypothesize that fungal endophytes associated with wheat (Triticum aestivum L.) plants can play a variety of roles in biotechnology including plant growth. Out of 67 fungal isolates, five maximum drought-tolerant isolates were used to check their various plant growth-promoting traits, antioxidants, and antifungal activities under secondary screening. Fungal isolate #8TAKS-3a exhibited the maximum drought tolerance capacity and potential to produce auxin, gibberellic acid, ACC deaminase, phosphate, zinc solubilization, ammonia, siderophore, and extracellular enzyme activities followed by #6TAKR-1a isolate. In terms of antioxidant activities, #8TAKS-3a culture also showed maximum DPPH scavenging, total antioxidant, and NO-scavenging activities. However, #6TAKR-1a exhibited maximum total flavonoid content, total phenolic content, and Fe-reducing power and also the highest growth inhibition of Aspergillus niger (ITCC 6152) and Colletotrichum sp. (ITCC 6152). Based on morphological characters and multi-locus phylogenetic analysis of the nuc rDNA internal transcribed spacer region (ITS1-5.8S-ITS2 = ITS), β-tubulin (TUB 2), and RNA polymerase II second largest subunit (RPB2) genes, potent fungal isolate #8TAKS-3a was identified as Talaromyces purpureogenus. Under the in vitro conditions, T. purpureogenus (#8TAKS-3a) was used as a bioinoculant that displayed a significant increase in various physio-biochemical growth parameters under normal and stressed conditions (p < 0.05). Our results indicate that drought stress-tolerant T. purpureogenus can be further used for field testing as a growth promoter.
Zobrazit více v PubMed
Abaya A, Xue A, Hsiang T (2021) Selection and screening of fungal endophytes against wheat pathogens. Biol Control 154:104511. https://doi.org/10.1016/j.biocontrol.2020.104511
Adhikari P, Pandey A (2019) Phosphate solubilization potential of endophytic fungi isolated from Taxus wallichiana Zucc. roots. Rhizosphere 9:2–9. https://doi.org/10.1016/j.rhisph.2018.11.002 DOI
Ali S, Khan N (2021) Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiol Res 249:126771. https://doi.org/10.1016/j.micres.2021.126771
Altaf A, Gull S, Zhu X, Zhu M, Rasool G et al (2021) Study of the effect of peg-6000 imposed drought stress on wheat (Triticum aestivum L.) cultivars using relative water content (RWC) and proline content analysis. Pak J Agric Sci https://doi.org/10.21162/PAKJAS/21.953
Bhardwaj M, Kumar P, Kumar S, Dagar V, Kumar A (2022) A district-level analysis for measuring the effects of climate change on production of agricultural crops, i.e., wheat and paddy: evidence from India. Environ Sci Pollut Res 29:31861–31885. https://doi.org/10.1007/s11356-021-17994-2 DOI
Breitkreuz C, Herzig L, Buscot F, Reitz T, Tarkka M (2021) Interactions between soil properties, agricultural management and cultivar type drive structural and functional adaptations of the wheat rhizosphere microbiome to drought. Environ Microbiol 23:5866–5882. https://doi.org/10.1111/1462-2920.15607 PubMed DOI
Chand K, Shah S, Sharma J, Paudel MR, Pant B (2020) Isolation, characterization, and plant growth-promoting activities of endophytic fungi from a wild orchid Vanda cristata. Plant Signal Behav 15:1744294. https://doi.org/10.1080/15592324.2020.1744294 PubMed DOI PMC
Chandra H, Kumari P, Prasad R, Gupta SC, Yadav S (2021) Antioxidant and antimicrobial activity displayed by a fungal endophyte Alternaria alternata isolated from Picrorhiza kurroa from Garhwal Himalayas, India. Biocatal Agric Biotechnol 33:101955. https://doi.org/10.1016/j.bcab.2021.101955
Chowdappa S, Jagannath S, Konappa N, Udayashankar AC, Jogaiah S (2020) Detection and characterization of antibacterial siderophores secreted by endophytic fungi from Cymbidium aloifolium. Biomolecules 10:1412. https://doi.org/10.3390/biom10101412 PubMed DOI PMC
Chowdhury MK, Hasan MA, Bahadur MM, Islam MR, Hakim MA et al (2021) Evaluation of drought tolerance of some wheat (Triticum aestivum L.) genotypes through phenology, growth, and physiological indices. Agronomy 11:1792. https://doi.org/10.3390/agronomy
Cui G, Zhao Y, Zhang J, Chao M, Xie K et al (2019) Proteomic analysis of the similarities and differences of soil drought and polyethylene glycol stress responses in wheat (Triticum aestivum L.). Plant Mol Biol 100:391–410. https://doi.org/10.1007/s11103-019-00866-2 PubMed DOI
Dien DC, Mochizuki T, Yamakawa T (2019) Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in Rice (Oryza sativa L.) varieties. Plant Prod Sci 22:530–545. https://doi.org/10.1080/1343943X.2019.1647787 DOI
Dubey A, Saiyam D, Kumar A, Hashem A, Abd_Allah EF, Khan ML (2021) Bacterial root endophytes: characterization of their competence and plant growth promotion in soybean (Glycine max (L.) Merr.) under drought stress. Int J Environ Res Public Health 18:931. https://doi.org/10.3390/ijerph18030931
El Boukhari ME, Barakate M, Choumani N, Bouhia Y, Lyamlouli K (2021) Ulva lactuca extract and fractions as seed priming agents mitigate salinity stress in tomato seedlings. Plants 10:1104. https://doi.org/10.3390/plants10061104 PubMed DOI PMC
Elkhouly HI, Hamed AA, El Hosainy AM, Ghareeb MA, Sidkey NM (2021) Bioactive secondary metabolite from endophytic Aspergillus Tubenginses ASH4 isolated from Hyoscyamus muticus: antimicrobial, antibiofilm, antioxidant and anticancer activity. Pharmacogn J. https://doi.org/10.5530/pj.2021.13.55 DOI
El-Shahir AA, El-Tayeh NA, Ali OM, Abdel Latef AA, Loutfy N (2021) The Effect of endophytic Talaromyces pinophilus on growth, absorption and accumulation of heavy metals of Triticum aestivum grown on sandy soil amended by sewage sludge. Plants 10:2659. https://doi.org/10.3390/plants10122659 PubMed DOI PMC
Erfandoust R, Habibipour R, Soltani J (2020) Antifungal activity of endophytic fungi from Cupressaceae against human pathogenic Aspergillus fumigatus and Aspergillus niger. J Mycol Méd 30:100987. https://doi.org/10.1016/j.mycmed.2020.100987
Farid M, Nasaruddin YM, Ridwan I, Anshori MF (2021) Research article effective screening of tropical wheat mutant lines under hydroponically induced drought stress using multivariate analysis approach. Asian J Plant Sci 172–182. https://doi.org/10.3923/ajps.2021.172.182
Filgueiras L, Silva R, Almeida I, Vidal M, Baldani JI, Meneses CH (2020) Gluconacetobacter diazotrophicus mitigates drought stress in Oryza sativa L. Plant Soil 451:57–73. https://doi.org/10.1007/s11104-019-04163-1 DOI
Food and Agriculture Organization of the United Nations (2018) The future of food and agriculture. Alternative pathways to 2050, FAO, FAO, Rome http://www.fao.org/3/I8429EN/i8429en.pdf
Gontia-Mishra I, Sapre S, Tiwari S (2017) Zinc solubilizing bacteria from the rhizosphere of rice as prospective modulator of zinc biofortification in rice. Rhizosphere 3:185–190. https://doi.org/10.1016/j.rhisph.2017.04.013 DOI
Groundwater Resource of Punjab State (2017) Water resources and Environment Directorate, Punjab Water Resources Department and Central ground water board, North Western Region, Chandigarh
Gul Jan F, Hamayun M, Hussain A et al (2019) An endophytic isolate of the fungus Yarrowia lipolytica produces metabolites that ameliorate the negative impact of salt stress on the physiology of maize. BMC Microbiol 19:1. https://doi.org/10.1186/s12866-018-1374-6 DOI
Han L, Zhang H, Xu Y, Li Y, Zhou J (2021) Biological characteristics and salt-tolerant plant growth-promoting effects of an ACC deaminase-producing Burkholderia pyrrocinia strain isolated from the tea rhizosphere. Arch Microbiol 203:2279–2290. https://doi.org/10.1007/s00203-021-02204-x PubMed DOI
Hu Z, Wu Z, Islam AR, You X, Liu C, Li Q, Zhang X (2021) Spatiotemporal characteristics and risk assessment of agricultural drought disasters during the winter wheat-growing season on the Huang-Huai-Hai Plain, China. Theor Appl Climatol 143:1393–1407. https://doi.org/10.1007/s00704-020-03506-8/Published DOI
Ikram M, Ali N, Jan G, Jan FG, Pervez R, Romman M et al (2022) Isolation of endophytic fungi from halophytic plants and their identification and screening for auxin production and other plant growth promoting traits. J Plant Growth Regul 31:1–7. https://doi.org/10.1007/s00344-022-10685-3 DOI
Ismail AH, Mehmood AS, Qadir MU, Husna AI, Hamayun MU, Khan NA (2020) Thermal stress alleviating potential of endophytic fungus rhizopus oryzae inoculated to sunflower (Helianthus annuus L.) and soybean (Glycine max L.). Pak J Bot 52:1857–65. https://doi.org/10.30848/PJB2020-5(10)
Itam MO, Mega R, Gorafi YS, Yamasaki Y, Tahir IS, Akashi K, Tsujimoto H (2022) Genomic analysis for heat and combined heat–drought resilience in bread wheat under field conditions. Theor Appl Genetics 135:337–350. https://doi.org/10.1007/s00122-021-03969-x DOI
Jayakumar A, Krishna A, Nair IC, Radhakrishnan EK (2020) Drought-tolerant and plant growth-promoting endophytic Staphylococcus sp. having synergistic effect with silicate supplementation. Arch Microbiol 202:1899–1906. https://doi.org/10.1007/s00203-020-01911-1 PubMed DOI
Jia M, Ming QL, Zhang QY, Chen Y, Cheng N et al (2014) Gibberella moniliformis AH13 with antitumor activity, an endophytic fungus strain producing triolein isolated from adlay (Coix lacryma-jobi: Poaceae). Curr Microbiol 69:381–387. https://doi.org/10.1007/s00284-014-0590-z PubMed DOI
Kartik VP, Jinal HN, Amaresan N (2021) Inoculation of cucumber (Cucumis sativus L.) seedlings with salt-tolerant plant growth promoting bacteria improves nutrient uptake, plant attributes and physiological profiles. J Plant Growth Regul 40:1728–1740. https://doi.org/10.1007/s00344-020-10226-w DOI
Khalil D, El-Zayat SA, El-Sayed MA (2020) Phytochemical screening and antioxidant potential of endophytic fungi isolated from Hibiscus sabdariffa. J Appl Biotechnol Rep 22; 7:116–24. https://doi.org/10.30491/jabr.2020.109287
Khan MN, Zhang J, Luo T, Liu J, Ni F, Rizwan M, Fahad S, Hu L (2019) Morpho-physiological and biochemical responses of tolerant and sensitive rapeseed cultivars to drought stress during early seedling growth stage. Acta Physiol Plant 41:1–3. https://doi.org/10.1007/s11738-019-2812-2 DOI
Khokhar A, Sharma V, Singh MJ, Yousuf A, Sandhu PS, Kumar V, Bhat MA (2022) Effect of potassium and magnesium application on growth, yield and nutrient uptake of rainfed maize in the sub-montaneous region of Punjab, India. J Plant Nutr 7:1–1. https://doi.org/10.1080/01904167.2022.2063732 DOI
Langridge P, Reynolds M (2021) Breeding for drought and heat tolerance in wheat. Theor Appl Genet 134:1753–1769. https://doi.org/10.1007/s00122-021-03795-1 PubMed DOI
Larran S, Perelló A, Simón MR, Moreno V (2007) The endophytic fungi from wheat (Triticum aestivum L.). World J Microbiol Biotechnol 23:565–572. https://doi.org/10.1007/s11274-006-9266-6 DOI
Larran S, Siurana MP, Caselles JR, Simón MR, Perelló A (2020) Fusarium sudanense, endophytic fungus causing typical symptoms of seedling blight and seed rot on wheat. J King Saud Univ Sci 32:468–474. https://doi.org/10.1016/j.jksus.2018.07.005 DOI
Li J, Zheng H, Yu ZF, Qiao M (2022) Colletotrichum litangense sp. nov., isolated as an endophyte of Hippuris vulgaris, an aquatic plant in sichuan, china. Curr Microbiol 79:1. https://doi.org/10.1007/s00284-022-02846-0 DOI
Manjunatha BS, Paul S, Aggarwal C, Bandeppa S, Govindasamy V et al (2019) Diversity and tissue preference of osmotolerant bacterial endophytes associated with pearl millet genotypes having differential drought susceptibilities. Microb Ecol 77:676–688. https://doi.org/10.1007/s00248-018-1257-2 PubMed DOI
Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Khan N (2019) In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis 77:225–235. https://doi.org/10.1007/s13199-018-0583-y DOI
Mollaei S, Khanehbarndaz O, Gerami-Khashal Z, Ebadi M (2019) Molecular identification and phytochemical screening of endophytic fungi isolated from Lithospermum officinale L. roots: a new source of shikonin. Phytochemistry 168:112116. https://doi.org/10.1016/j.phytochem.2019.112116
Nuangmek W, Aiduang W, Kumla J, Lumyong S, Suwannarach N (2021) Evaluation of a newly identified endophytic fungus, Trichoderma phayaoense for plant growth promotion and biological control of gummy stem blight and wilt of muskmelon. Front Microbiol 12:634772. https://doi.org/10.3389/fmicb.2021.634772
Ogbe AA, Gupta S, Stirk WA, Finnie JF, Van Staden J (2023) Growth-promoting characteristics of fungal and bacterial endophytes isolated from a drought-tolerant mint species Endostemon obtusifolius (E. Mey. ex Benth.) NE Br. Plants 12:638. https://doi.org/10.3390/plants12030638
Pandey PK, Singh S, Singh MC, Singh AK, Yadav SK, Pandey AK, Heisnam P (2018) Diversity, ecology, and conservation of fungal and bacterial endophytes. In Microbial Resource Conservation (pp. 393–430). Springer, Cham. https://doi.org/10.1007/978-3-319-96971-8_15
Pandya ND, Desai PV, Jadhav HP, Sayyed RZ (2018) Plant growth promoting potential of Aspergillus sp. NPF7, isolated from wheat rhizosphere in South Gujarat. India Environ Sustain 1:245–252. https://doi.org/10.1007/s42398-018-0025-z DOI
Panzade KP, Kale SS, Kapale V, Chavan NR (2021) Genome-wide analysis of heat shock transcription factors in Ziziphus jujuba identifies potential candidates for crop improvement under abiotic stress. Appl Biochem Biotechnol 193:1023–1041. https://doi.org/10.1007/s12010-020-03463-y PubMed DOI
Pathak K, Kataria S, Gadre R (2019) Trending methods to enhance antioxidant activities in wheat. In Wheat Production in Changing Environments (pp. 241–260). Springer, Singapore. https://doi.org/10.1007/978-981-13-6883-7_11
Prathyusha AM, Sheela GM, Bramhachari PV (2018) Chemical characterization and antioxidant properties of exopolysaccharides from mangrove filamentous fungi Fusarium equiseti ANP2. Biotechnol Rep 1;19: e00277. https://doi.org/10.1016/j.btre.2018.e00277
Priyadharsini P, Muthukumar T (2017) The root endophytic fungus Curvularia geniculata from Parthenium hysterophorus roots improves plant growth through phosphate solubilization and phytohormone production. Fungal Ecol 27:69–77. https://doi.org/10.1016/j.funeco.2017.02.007 DOI
Qiang X, Ding J, Lin W, Li Q, Xu C, Zheng Q, Li Y (2019) Alleviation of the detrimental effect of water deficit on wheat (Triticum aestivum L.) growth by an indole acetic acid-producing endophytic fungus. Plant Soil. 439:373–91. https://doi.org/10.1007/s11104-019-04028-7
Ratajczak K, Sulewska H, Błaszczyk L, Basińska-Barczak A, Mikołajczak K, Salamon S, Szymańska G, Dryjański L (2020) Growth and photosynthetic activity of selected spelt varieties (Triticum aestivum ssp. spelta L.) cultivated under drought conditions with different endophytic core microbiomes. Int J Mol Sci 21:7987. https://doi.org/10.3390/ijms21217987
Reshna OP, Beena R, Joy M, Viji MM, Roy S (2022) Elucidating the effect of growth promoting endophytic fungus Piriformospora indica for seedling stage salinity tolerance in contrasting rice genotypes. J Crop Sci Biotechnol 25:1–6. https://doi.org/10.1007/s12892-022-00153-5 DOI
Reuter T, Singh S, Sinha AK, Mehta S (2021) Land grab practices and a threat to livelihood and food security in India? A Case Study from Aerocity Expansion Project from SAS Nagar, Punjab. J Land Rural Stud 9:97–118. https://doi.org/10.1177/2321024920968328 DOI
Ripa FA, Cao WD, Tong S, Sun JG (2019) Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. BioMed Res Int. https://doi.org/10.1155/2019/6105865 PubMed DOI PMC
Rocha PD, Paula VM, Olinto SC, Dos Santos EL et al (2020) Diversity, chemical constituents and biological activities of endophytic fungi isolated from Schinus terebinthifolius Raddi. Microorganisms 8:859. https://doi.org/10.3390/microorganisms8060859 PubMed DOI PMC
Rouyendegh BD, Savalan Ş (2022) An integrated fuzzy mcdm hybrid methodology to analyze agricultural production. Sustainability 14:4835. https://doi.org/10.3390/su14084835 DOI
Salamon S, Mikołajczak K, Błaszczyk L, Ratajczak K, Sulewska H (2020) Changes in root-associated fungal communities in Triticum aestivum ssp. spelta L. and Triticum aestivum ssp. vulgare L. under drought stress and in various soil processing. Plos one. https://doi.org/10.1371/journal.pone.0240037
Salwan R, Sharma V, Saini R, Pandey M (2021) Identification of plant beneficial Bacillus spp. for Resilient agricultural ecosystem. Curr Res Microb Sci 2:100046. https://doi.org/10.1016/j.crmicr.2021.100046
Sethi S, Joshi A, Arora B, Bhowmik A, Sharma RR, Kumar P (2020) Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. Eur Food Res Technol 246:591–598. https://doi.org/10.1007/s00217-020-03432-z DOI
Sopalun K, Laosripaiboon W, Wachirachaikarn A, Iamtham S (2021) Biological potential and chemical composition of bioactive compounds from endophytic fungi associated with thai mangrove plants. S Afr J Bot 141:66–76. https://doi.org/10.1016/j.sajb.2021.04.031 DOI
Strobel G (2018) The emergence of endophytic microbes and their biological promise. J Fungi. https://doi.org/10.3390/jof4020057 DOI
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–9. https://doi.org/10.1093/molbev/mst197
Vujanovic V, Germida JJ (2017) Seed endosymbiosis: a vital relationship in providing prenatal care to plants. Can J Plant Sci 97:972–981. https://doi.org/10.1139/cjps-2016-0261 DOI
Yang H, Hu W, Zhao J, Huang X, Zheng T, Fan G (2021) Genetic improvement combined with seed ethephon priming improved grain yield and drought resistance of wheat exposed to soil water deficit at tillering stage. Plant Growth Regul 95:399–419. https://doi.org/10.1007/s10725-021-00749-x DOI
Zhang Q, Qi T, Singh VP, Chen YD, Xiao M (2015) Regional frequency analysis of droughts in China: a multivariate perspective. Water Resour Manag 29:1767–1787. https://doi.org/10.1007/s11269-014-0910-x DOI