Normative values of cardiorespiratory fitness in Croatian children and adolescents
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37093827
PubMed Central
PMC10124836
DOI
10.1371/journal.pone.0284410
PII: PONE-D-22-30901
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- kardiorespirační zdatnost * MeSH
- lidé MeSH
- mladiství MeSH
- průřezové studie MeSH
- referenční hodnoty MeSH
- rizikové faktory MeSH
- tělesná výkonnost MeSH
- zátěžový test MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Chorvatsko MeSH
Although defining normative values of cardiorespiratory fitness have been the topic of many Western societies, little evidence has been provided for less developed countries like Croatia. Since cardiorespiratory fitness rapidly declines in Croatian children and adolescents, the newly established normative values would help health-related professionals and physical education teachers to detect 'talented' groups and direct them towards sport and 'risky' groups for planning special interventions. Therefore, the main purpose of the study was to determine normative reference values of cardiorespiratory fitness. A total of 1,612 children and adolescents aged 7-14 years (mean±SD; age 9.7±2.4 years; stature 151.0±17.6 cm; body mass 45.1±19.1 kg; 52.5% girls) participated in this cross-sectional study. Cardiorespiratory fitness was assessed by the Maximal multistage 20-m shuttle run test and the performance was expressed as the number of stages. Maximal oxygen uptake (VO2max) was estimated by equations. Smoothed percentile curves were calculated. Boys outperformed girls in the maximal number of levels achieved after the 20-m shuttle run test and in the VO2max values at each age category. In boys, a gradually higher level of performance between ages 11 and 14 was observed, while in girls the values started to rise after the age of 8. Our study provides one of the first sex- and age-specific normative values for cardiorespiratory fitness assessed by the 20-m shuttle run test in Croatian children and adolescents.
Department of Educational Studies Faculty of Teacher Education University of Rijeka Rijeka Croatia
Department of Health and Physical Education Prince Sultan University Riyadh Saudi Arabia
Zobrazit více v PubMed
Ortega FB, Ruiz JR, Castillo MJ, Sjöström M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes (Lond). 2008;32(1): 1–11. doi: 10.1038/sj.ijo.0803774 PubMed DOI
Armstrong N, Tomkinson GR, Ekelund U. Aerobic fitness and its relationship to sport, exercise training and habitual physical activity during youth. Br J Sports Med. 2011;45: 849–858. doi: 10.1136/bjsports-2011-090200 PubMed DOI
Institute of Medicine. Health-related fitness measures for youth: cardiorespiratory endurance. In: Institute of Medicine, ed. Fitness measures and health outcomes in youth. Washington DC: The National Academy Press, 2012: 111–151.
Haapala EA, Tompuri T, Lintu N, Viitasalo A, Savonen K, Lakka TA, et al.. Is low cardiorespiratory fitness a feature of metabolic syndrome in children and adults? J Sci Med Sport. 2022;25(11): 923–929. doi: 10.1016/j.jsams.2022.08.002 PubMed DOI
Ortega FB, Ruiz JR, Hurtig-Wennlöf A, Vicente-Rodríguez G, Rizzo NS, Castillo MJ, et al.. Cardiovascular fitness modifies the associations between physical activity and abdominal adiposity in children and adolescents: the European Youth Heart Study. Br J Sports Med. 2010;44(4): 256–262. doi: 10.1136/bjsm.2008.046391 PubMed DOI
Lobelo F, Pate RR, Dowda M, Liese AD, Daniels SR. Cardiorespiratory fitness and clustered cardiovascular disease risk in U.S. adolescents. J Adolesc Health. 2010;47(4): 352–359. doi: 10.1016/j.jadohealth.2010.04.012 PubMed DOI
Cleland VJ, Ball K, Magnussen C, Dwyer T, Venn A. Socioeconomic position and the tracking of physical activity and cardiorespiratory fitness from childhood to adulthood. Am J Epidemiol. 2009;170(9): 1069–1077. doi: 10.1093/aje/kwp271 PubMed DOI
Sorić M, Jembrek Gostović M, Gostović M, Hočevar M, Mišigoj-Duraković M. Tracking of BMI, fatness and cardiorespiratory fitness from adolescence to middle adulthood: the Zagreb Growth and Development Longitudinal Study. Ann Hum Biol. 2014;41(3): 238–243. doi: 10.3109/03014460.2013.851739 PubMed DOI
García-Hermoso A, Izquierdo M, Ramírez-Vélez R. Tracking of physical fitness levels from childhood and adolescence to adulthood: a systematic review and meta-analysis. Transl Pediatr. 2022;11(4): 474–486. doi: 10.21037/tp-21-507 PubMed DOI PMC
Tomkinson GR, Olds TS. Secular changes in pediatric aerobic fitness test performance: the global picture. Med Sport Sci. 2007;50: 46–66. doi: 10.1159/000101075 PubMed DOI
Olds T, Tomkinson G, Léger L, Cazorla G. Worldwide variation in the performance of children and adolescents: an analysis of 109 studies of the 20-m shuttle run test in 37 countries. J Sports Sci. 2006;24(10): 1025–1038. doi: 10.1080/02640410500432193 PubMed DOI
Shephard RJ, Allen C, Benade AJ, Davies CT, Di Prampero PE, Hedman R, et al.. The maximum oxygen intake. An international reference standard of cardiorespiratory fitness. Bull World Health Organ. 1968;38(5): 757–764. PubMed PMC
Tomkinson GR, Olds TS. Field tests of fitness. In: Armstrong N, van Mechelen W, eds. Paediatric exercise science and medicine. New York, NY: Oxford University Press, 2008: 109–128.
Carrel AL, Bowser J, White D, Moberg DP, Weaver B, Hisgen J, et al.. Standardized childhood fitness percentiles derived from school-based testing. J Pediatr. 2012;161(1): 120–124. doi: 10.1016/j.jpeds.2012.01.036 PubMed DOI PMC
Pate RR, Wang CY, Dowda M, Farrell SW, O’Neill JR. Cardiorespiratory fitness levels among US youth 12 to 19 years of age: findings from the 1999–2002 National Health and Nutrition Examination Survey. Arch Pediatr Adolesc Med. 2006;160(10): 1005–1012. doi: 10.1001/archpedi.160.10.1005 PubMed DOI
Tremblay MS, Shields M, Laviolette M, Craig CL, Janssen I, Connor Gorber S. Fitness of Canadian children and youth: results from the 2007–2009 Canadian Health Measures Survey. Health Rep. 2010;21(1): 7–20. PubMed
Tomkinson GR, Lang JJ, Tremblay MS, Dale M, LeBlanc AG, Belanger K, et al.. International normative 20 m shuttle run values from 1 142 026 children and youth representing 50 countries. Br J Sports Med. 2017;51(21): 1545–1554. PubMed
Haugen T, Høigaard R, Seiler S. Normative data of BMI and physical fitness in a Norwegian sample of early adolescents. Scand J Public Health. 2014;42(1): 67–73. doi: 10.1177/1403494813504502 PubMed DOI
Sandercock G, Voss C, Cohen D, Taylor M, Stasinopoulos DM. Centile curves and normative values for the twenty metre shuttle-run test in English schoolchildren. J Sports Sci. 2012;30(7): 679–687. doi: 10.1080/02640414.2012.660185 PubMed DOI
Roriz De Oliveira MS, Seabra A, Freitas D, Eisenmann JC, Maia J. Physical fitness percentile charts for children aged 6–10 from Portugal. J Sports Med Phys Fitness. 2014;54(6): 780–792. PubMed
Wang PG, Gong J, Wang SQ, Talbott EO, Zhang B, He QQ. Relationship of body fat and cardiorespiratory fitness with cardiovascular risk in Chinese children. PLoS One. 2011;6(11): e27896. doi: 10.1371/journal.pone.0027896 PubMed DOI PMC
Zou Z, Chen P, Yang Y, Xiao M, Wang Z. Assessment of physical fitness and its correlates in Chinese children and adolescents in Shanghai using the multistage 20-M shuttle-run test. Am J Hum Biol. 2019;31(1): e23148. doi: 10.1002/ajhb.23148 PubMed DOI
Zhang F, Yin X, Bi C, Li Y, Sun Y, Zhang T, et al.. Normative reference values and international comparisons for the 20-metre shuttle run test: analysis of 69,960 test results among Chinese children and youth. J Sports Sci Med. 2020;19(3): 478–488. PubMed PMC
Yang X, Yin X, Ji L, Song G, Wu H, Li Y, et al.. Differences in cardiorespiratory fitness between Chinese and Japanese children and adolescents. Int J Environ Res Public Health. 2019;16(13): 2316. doi: 10.3390/ijerph16132316 PubMed DOI PMC
Gonzalez-Suarez CB, Caralipio N, Gambito E, Reyes JJ, Espino RV, Macatangay R. The association of physical fitness with body mass index and waist circumference in Filipino preadolescents. Asia Pac J Public Health. 2013;25(1): 74–83. doi: 10.1177/1010539511412764 PubMed DOI
Stickland MK, Petersen SR, Bouffard M. Prediction of maximal aerobic power from the 20-m multi-stage shuttle run test. Can J Appl Physiol. 2003;28(2): 272–282. doi: 10.1139/h03-021 PubMed DOI
Kasović M, Štefan L, Petrić V. Secular trends in health-related physical fitness among 11–14-year-old Croatian children and adolescents from 1999 to 2014. Sci Rep. 2021;11(1): 11039. doi: 10.1038/s41598-021-90745-y PubMed DOI PMC
Ortega FB, Leskošek B, Blagus R, Gil-Cosano JJ, Mäestu J, Tomkinson GR, et al.. European fitness landscape for children and adolescents: updated reference values, fitness maps and country rankings based on nearly 8 million test results from 34 countries gathered by the FitBack network. Br J Sports Med. 2023;57(5): 299–310. doi: 10.1136/bjsports-2022-106176 PubMed DOI PMC
Venckunas T, Mieziene B, Emeljanovas A. Aerobic capacity is related to multiple other aspects of physical fitness: a study in a large sample of Lithuanian schoolchildren. Front Physiol. 2018;9: 1797. doi: 10.3389/fphys.2018.01797 PubMed DOI PMC
Ortega FB, Artero EG, Ruiz JR, España-Romero V, Jiménez-Pavón D, Vicente-Rodriguez G, et al.. Physical fitness levels among European adolescents: the HELENA study. Br J Sports Med. 2011;45(1): 20–29. doi: 10.1136/bjsm.2009.062679 PubMed DOI
Léger LA, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1988;6(2): 93–101. doi: 10.1080/02640418808729800 PubMed DOI
Cole TJ. The LMS method for constructing normalized growth standards. Eur J Clin Nutr. 1990;44(1): 45–60. PubMed
Malina RM, Bouchard C. Aerobic power and capacity during growth. In Growth, maturation, and physical activity. Champaign, IL: Human Kinetics, 1991.
Malina RM, Beunen G, Lefevre J, Woynarowska B. Maturity-associated variation in peak oxygen uptake in active adolescent boys and girls. Ann Hum Biol. 1997;24(1): 19–31. doi: 10.1080/03014469700004742 PubMed DOI
Kolle E, Steene-Johannessen J, Andersen LB, Anderssen SA. Objectively assessed physical activity and aerobic fitness in a population-based sample of Norwegian 9- and 15-year-olds. Scand J Med Sci Sports. 2010;20(1): 41–47. PubMed
Ramírez-Vélez R, Palacios-López A, Humberto Prieto-Benavides D, Enrique Correa-Bautista J, Izquierdo M, Alonso-Martínez A, et al.. Normative reference values for the 20 m shuttle-run test in a population-based sample of school-aged youth in Bogota, Colombia: the FUPRECOL study. Am J Hum Biol. 2017;29(1): e22902. doi: 10.1002/ajhb.22902 PubMed DOI PMC
Morton KL, Atkin AJ, Corder K, Suhrcke M, van Sluijs EM. The school environment and adolescent physical activity and sedentary behaviour: a mixed-studies systematic review. Obes Rev. 2016;17(2): 142–158. doi: 10.1111/obr.12352 PubMed DOI PMC
Musić Milanović S, Lang Morović M, Bukal D, Križan H, Buoncristiano M, Breda J. Regional and sociodemographic determinants of the prevalence of overweight and obesity in children aged 7–9 years in Croatia. Acta Clin Croat. 2020;59(2): 303–311. doi: 10.20471/acc.2020.59.02.14 PubMed DOI PMC
Mintjens S, Menting MD, Daams JG, van Poppel MNM, Roseboom TJ, Gemke RJBJ. Cardiorespiratory fitness in childhood and adolescence affects future cardiovascular risk aactors: a systematic review of longitudinal studies. Sports Med. 2018;48(11): 2577–2605. PubMed PMC
Hartwig TB, Sanders T, Vasconcellos D, Noetel M, Parker PD, Lubans DR, et al.. School-based interventions modestly increase physical activity and cardiorespiratory fitness but are least effective for youth who need them most: an individual participant pooled analysis of 20 controlled trials. Br J Sports Med. 2021;55: 721–729. doi: 10.1136/bjsports-2020-102740 PubMed DOI