Can latent fingerprint disclose the sex of the donor? A preliminary test study using GC-MS analysis of latent fingerprints
Language English Country United States Media print-electronic
Document type Journal Article
- Keywords
- chemical analysis, classification, fingermarks, mass spectrometry, profiling,
- MeSH
- Dermatoglyphics * MeSH
- Humans MeSH
- Gas Chromatography-Mass Spectrometry MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
While fingerprints are a highly used means of identification, not every fingerprint left behind on a potential crime scene can be used for identification purposes. In some cases, the fingerprint may be smudged, partially preserved or overlapping with other prints hence distorting the ridge pattern and may therefore be not appropriate for identification. Further, fingermark residue yields a very low abundance of genetic material for DNA analysis. In such cases, the fingermark may be used to retrieve basic donor information such as sex. The focus of this paper was to assess the possibility of differentiating between the sexes of the donor of latent fingermarks. Analytical method was GC-MS analysis of the chemical compounds of latent fingermarks using 22 male and 22 female donors. Results showed 44 identified compounds. Two alcohols, octadecanol C18 and eicosanol C20 , were found to show a difference that was statistically significant between male and female donors. There is also some evidence for the possibility of distinguishing sex of the fingermark donor based on the distribution of branched chain fatty acids, as free compounds or esterified in wax esters.
Department of Anatomy Masaryk University Brno Czech Republic
James Hutton Institute Dundee UK
Warwick Manufacturing Group University of Warwick Coventry UK
See more in PubMed
Yager N, Amin A. Fingerprint classification: a review. Pattern Anal Appl. 2004;7:77-93. https://doi.org/10.1007/s10044-004-0204-7
Girod A, Ramotowski R, Weyermann C. Composition of fingermark residue: a qualitative and quantitative review. Forensic Sci Int. 2012;223(1-3):10-24. https://doi.org/10.1016/j.forsciint.2012.05.018
Su B. Recent progress on fingerprint visualization and analysis by imaging ridge residue components. Anal Bioanal Chem. 2016;408:2781-91. https://doi.org/10.1007/s00216-015-9216-y
Xu L, Zhang C, He Y, Su B. Advances in the development and component recognition of latent fingerprints. Sci China Chem. 2015;58(7):1090-6. https://doi.org/10.1007/s11426-014-5294-5
Knowles AM. Aspects of physiochemical methods for the detection of latent fingerprints. J Phys E: Sci Intrum. 1978;11:713-21. https://doi.org/10.1088/0022-3735/11/8/001
Croxton RS, Baron MG, Butler D, Kent T, Sears VG. Variation in amino acid and lipid composition of latent fingerprints. Forensic Sci Int. 2010;199(1-3):93-102. https://doi.org/10.1016/j.forsciint.2010.03.019
Ramotowski RS. Composition of latent print residue. In: Lee H, Gaensslen RE, editors. Advances in Fingerprint Technology. 2nd ed. Boca Raton, FL: CRC Press; 2001. p. 64-95.
van Helmond W, van Herwijnen AW, van Riemsdijk JJH, van Bochove MA, de Poot CJ, de Puit M. Chemical profiling of fingerprints using mass spectrometry. Forensic Chem. 2019;16:100183. https://doi.org/10.1016/j.forc.2019.100183
Benton M, Rowell F, Sundar L, Jan M. Direct detection of nicotine and cotinine in dust latent fingermarks of smokers by using hydrophobic silica particles and MS. Surf Interface Anal. 2010;42:378-85. https://doi.org/10.1002/sia.3112
Schulte KQ, Hewitt FC, Manley TE, Reed AJ, Baniasad M, Albright NC, et al. Fractionation of DNA and protein from individual latent fingerprints for forensic analysis. Forensic Sci Int Genet. 2021;50:102405. https://doi.org/10.1016/j.fsigen.2020.102405
Hartzell-Baguley B, Hipp RE, Morgan NR, Morgan SL. Chemical composition of latent fingerprints by gas chromatography-mass spectrometry. An experiment for an instrumental analysis course. J Chem Educ. 2007;84:689-91. https://doi.org/10.1021/ed084p689
Weyermann C, Roux C, Champod C. Initial results on the composition of fingerprints and its evolution as a function of time by GC/MS analysis. J Forensic Sci. 2011;56(1):102-8. https://doi.org/10.1111/j.1556-4029.2010.01523.x
Frick AA, Beryman D, Lewis SW. Mass spectral imaging: a powerful new tool for the study of latent fingerprint chemistry. Indentification Canada. 2011;34:84-95.
Ferguson LS, Wulfert F, Wolstenholme R, Fonville JM, Clench MR, Carolan VA, et al. Direct detection of peptides and small proteins in fingermarks and determination of sex by MALDI mass spectrometry profiling. Analyst. 2012;137(20):4686-92. https://doi.org/10.1039/c2an36074h
Helsens K, Martens L, Vandekerckhove J, Gevaert K. Mass spectrometry-driven proteomics: an introduction. Methods Mol Biol. 2011;753:1-27. https://doi.org/10.1007/978-1-61779-148-2_1
Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem. 2007;389(4):1017-31. https://doi.org/10.1007/s00216-007-1486-6
Mong GM, Petersen CE, Clauss TRW. Advanced fingerprint analysis project - fingerprint constituents. Richland, WA: US Department of Energy, Pacific Northwest National Laboratory; 1999 Report No: PNNL-13019.
Wertheim K. Fingerprint age determination: is there any hope? J Forensic Identif. 2003;53(1):42-9.
Hinners P, Thomas M, Lee YJ. Determining fingerprint age with mass spectrometry imaging via ozonolysis of triacylglycerols. Anal Chem. 2020;92(4):3125-32. https://doi.org/10.1021/acs.analchem.9b04765
Muramoto S, Sisco E. Strategies for potential age dating of fingerprints through the diffusion of sebum molecules on a nonporous surface analyzed using time-of-flight secondary ion mass spectrometry. Anal Chem. 2015;87:8035-8. https://doi.org/10.1021/acs.analchem.5b02018
O'Neill KC, Lee YJ. Effect of aging and surface interactions on the diffusion of endogenous compounds in latent fingerprints studied by mass spectrometry imaging. J Forensic Sci. 2018;63(3):708-13. https://doi.org/10.1111/1556-4029.13591
Wolstenholme R, Bradshaw R, Clench MR, Francese S. Study of latent fingermarks by matrix-assisted laser desorption/ionisation mass spectrometry imaging of endogenous lipids. Rapid Commun Mass Spectrom. 2009;23(19):3031-9. https://doi.org/10.1002/rcm.4218
Archer NE, Charles Y, Elliott JA, Jickells SM. Changes in the lipid composition of latent fingerprint residue with time after deposition on a surface. Forensic Sci In. 2005;154(2-3):224-39. https://doi.org/10.1016/j.forsciint.2004.09.120
Szabóová Ž, Galbavá P, Szabó AH, Cigáň M, Nižnanský Ľ, Kubinec R, et al. GC-MS/MS method for age determination of fingerprints. Monatsh Chem. 2017;148(9):1673-8. https://doi.org/10.1007/s00706-017-1984-y
Ramasastry P, Downing DT, Pochi PE, Strauss JS. Chemical composition of human skin surface lipids from birth to puberty. J Invest Dermatol. 1970;54(2):139-44. https://doi.org/10.1111/1523-1747.ep12257164
Pochi PE, Strauss JS, Downing DT. Age-related changes in sebaceous gland activity. J Invest Dermatol. 1979;73(1):108-11. https://doi.org/10.1111/1523-1747.ep12532792
Zhou Z, Zare RN. Personal information from latent fingerprints using desorption electrospray ionization mass spectrometry and machine learning. Anal Chem. 2017;89(2):1369-72. https://doi.org/10.1021/acs.analchem.6b04498
Buchanan MV, Asano K, Bohanon A. Chemical characterization of fingerprints from adults and children. Forensic Sci Int. 1997;2941:89-95. https://doi.org/10.1117/12.266300
Antoine KM, Mortazavia S, Miller A, Miller LM. Chemical differences are observed in children's versus adults' latent ringerprints as a runction of time. J Forensic Sci. 2010;55(2):513-8. https://doi.org/10.1111/j.1556-4029.2009.01262.x
Nazzaro-Porro M, Passi S, Boniforti L, Belsito F. Effects on aging on fatty acids in skin surface lipids. J Invest Dermatol. 1979;73(1):112-7. https://doi.org/10.1111/1523-1747.ep12532793
Bouslimani A, Melnik AV, Xu Z, Amir A, da Silva RR, Wang M, et al. Lifestyle chemistries from phones for individual profiling. Proc Natl Acad Sci U S A. 2016;113(48):E7645-E54. https://doi.org/10.1073/pnas.1610019113
Leggett R, Lee-Smith EE, Jickells SM, Russell DA. "intelligent" fingerprinting: simultaneous identification of drug metabolites and individuals by using antibody-functionalized nanoparticles. Angew Chem Int Ed Engl. 2007;46(22):4100-3. https://doi.org/10.1002/anie.200700217
Bailey MJ, Bradshaw R, Francese S, Salter TL, Costa C, Ismail M, et al. Rapid detection of cocaine, benzoylecgonine and methylecgonine in fingerprints using surface mass spectrometry. Analyst. 2015;140(18):6254-9. https://doi.org/10.1039/c5an00112a
Asano K, Bayne CK, Horsman KM, Buchanan MV. Chemical composition of fingerprints for gender determination. J Forensic Sci. 2002;47(4):805-7. https://doi.org/10.1520/JFS15460J
Emerson B, Gidden J, Lay JO, Durham B. Laser desorption/ionization time-of-flight mass spectrometry of triacylglycerols and other components in fingermark samples. J Forensic Sci. 2011;56(2):381-9. https://doi.org/10.1111/j.1556-4029.2010.01655.x
de Puit M, Ismail M, Xu X. LCMS analysis of fingerprints, the amino acid profile of 20 donors. J Forensic Sci. 2014;59(2):364-70. https://doi.org/10.1111/1556-4029.12327
Cuthbertson F. The chemistry of fingerprints. London, U.K: United Kingdom Atomic Energy Authority, Atomic Weapons Research Establishment (AWRE). 1969 Report No: 013/69.
Michalski S, Shaler R, Dorman FL. The evaluation of fatty acid ratios in latent fingermarks by gas chromatography/mass spectrometry (GC/MS) analysis. J Forensic Sci. 2013;58(Suppl 1):S215-20. https://doi.org/10.1111/1556-4029.12010
Shepherd T, Dobson G, Verrall SR, Connor S, Griffiths DW, McNicol JW, et al. Potato metabolomics by GC-MS: what are the limiting factors? Metabolomics. 2007;3:474-88. https://doi.org/10.1007/s11306-007-0058-2
Christie WW. Fatty acids and lipids: structures, extraction and fractionation into classes. Gas chromatography and lipids. A practical guide. 3rd ed. Dundee, U.K: The Oily Press Ltd; 1989. p. 5-23.
Shepherd T, Robertson GW, Griffiths DW. Compositional analysis of intact alkyl esters in leaf epicuticular wax in swede by capillary gas chromatography and electron-impact mass spectrometry. Phytochem Anal. 1995;6:65-73. https://doi.org/10.1002/pca.2800060202
Rawlings AV. Skin waxes: their composition, properties, structures and biological significance. In: Hamilton RJ, editor. Waxes, chemistry, molecular biology and functions. Dundee, U.K: The Oily Press Ltd.; 1995. p. 223-89.
Smith KR, Thiboutot DM. Thematic review series: skin lipids. Sebaceous gland lipids: friend or foe? J Lipid Res. 2008;49(2):271-81. https://doi.org/10.1194/jlr.r700015-jlr200
Picardo M, Ottaviani M, Camera E, Mastrofrancesco A. Sebaceous gland lipids. Dermatoendocrinol. 2009;1:68-71. https://doi.org/10.4161/derm.1.2.8472
Ottaviani M, Camera E, Picardo M. Lipid mediators in acne. Mediators Inflamm. 2010;2010:858176. https://doi.org/10.1155/2010/858176
Girod A, Spyratou A, Holmes D, Weyermann C. Aging of target lipid parameters in fingermark residue using GC/MS: effects of influencing factors and perspective for dating purposes. Sci Justice. 2016;56(3):165-80. https://doi.org/10.1016/j.scijus.2015.12.004
Coiffard L, Couteau C. Soap and syndets: differences and analogies, source of great confusion. Eur Rev Med Pharmacol Sci. 2020;24:11432-9. https://doi.org/10.26355/eurrev_202011_23637
Kerr AC. A survey of the availability of sunscreen filters in the UK. Clin Exp Dermatol. 2011;36(5):541-3. https://doi.org/10.1111/j.1365-2230.2010.04007.x
Thiele JJ, Hsieh SN, Ekanayake-Mudiyanselage S. Vitamin E: critical review of its current use in cosmetics and clinical dermatology. Dermatol Surg. 2005;31:805-13. https://doi.org/10.1111/j.1524-4725.2005.31724
Gasser T, Kneipt A, Binding A, Prader A, Molinari L. The dynamics of linear growth in distance, velocity and acceleration. Ann Hum Biol. 1991;18(3):187-205. https://doi.org/10.1080/03014469100001522
Roenneberg T, Kuehnle T, Pramstaller PP, Ricken J, Havel M, Guth A, et al. A marker for the end of adolescence. Curr Biol. 2004;14(24):R1038-9. https://doi.org/10.1016/j.cub.2004.11.039
Hemmila A, McGill J, Ritter D. Fourier transform infrared reflectance spectra of latent fingerprints: a biometric gauge for the age of an individual. J Forensic Sci. 2008;53(2):369-76. https://doi.org/10.1111/j.1556-4029.2007.00649.x
Gooren L. Hormone treatment of the adult transesual patient. Horm Res. 2005;64:31-6. https://doi.org/10.1159/000087751
T'Sjoen G, Arcelus J, Gooren L, Klink DT, Tangpricha V. Endocrinology of transgender medicine. Endocr Rev. 2019;40(1):97-117. https://doi.org/10.1210/er.2018-00011
Ericson-Neilsen W, Kaye D. Steroids: pharmacology, complications, and practice delivery issues. Oshsner J. 2014;14:203-7.
Patel M, Shaw D. A review of standard pharmacological therapy for adult asthma - steps 1 to 5. Chron Respir Dis. 2015;12(2):165-76. https://doi.org/10.1177/1479972315573529
Penn DJ, Oberzaucher E, Grammer K, Fischer G, Soini HA, Wiesler D, et al. Individual and gender fingerprints in human body odour. J R Soc Interface. 2007;4(13):331-40. https://doi.org/10.1098/rsif.2006.0182
Shepherd T. Wax pathways. In: Thomas B, Murphy DJ, Murray BG, editors. Encyclopedia of applied plant science. Oxford, U.K: Elsevier; 2003. p. 1204-25.
Shepherd T, Griffiths DW. The effects of stress on plant cuticular waxes. New Phytol. 2006;171:469-99. https://doi.org/10.1111/j.1469-8137.2006.01826.x