Temperature- and pH-Responsive Super-Absorbent Hydrogel Based on Grafted Cellulose and Capable of Heavy Metal Removal from Aqueous Solutions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ASRT-22-01
the Czech Academy of Sciences
PubMed
37102908
PubMed Central
PMC10138026
DOI
10.3390/gels9040296
PII: gels9040296
Knihovny.cz E-zdroje
- Klíčová slova
- Cr(VI) adsorption, cellulose-based hydrogels, graft copolymerization, stimuli-sensitive hydrogels, swelling kinetics,
- Publikační typ
- časopisecké články MeSH
In this work, we prepared highly swelling, stimuli-responsive hydrogels capable of the highly efficient adsorption of inorganic pollutants. The hydrogels were based on hydroxypropyl methyl cellulose (HPMC) grafted with acrylamide (AM) and 3-sulfopropyl acrylate (SPA) and were synthesized via the growth (radical polymerization) of the grafted copolymer chains on HPMC, which was activated by radical oxidation. These grafted structures were crosslinked to an infinite network by a small amount of di-vinyl comonomer. HPMC was chosen as a cheap hydrophilic and naturally sourced polymer backbone, while AM and SPA were employed to preferentially bond coordinating and cationic inorganic pollutants, respectively. All the gels displayed a pronounced elastic character, as well as considerably high values of stress at break (several hundred %). The gel with the highest fraction of the ionic comonomer SPA (with an AM/SPA ratio = 0.5) displayed the highest equilibrium swelling ratio (12,100%), the highest volume response to temperature and pH, and the fastest swelling kinetics, but also the lowest modulus. The other gels (with AM/SPA = 1 and 2) displayed several times higher moduli but more modest pH responses and only very modest temperature sensitivity. Cr(VI) adsorption tests indicated that the prepared hydrogels removed this species from water very efficiently: between 90 and 96% in one step. The hydrogels with AM/SPA ratios of 0.5 and 1 appeared to be promising regenerable (via pH) materials for repeated Cr(VI) adsorption.
Zobrazit více v PubMed
Abd Ellah R.G. Water resources in Egypt and their challenges, Lake Nasser case study. Egypt J. Aquat. Res. 2020;46:1–12. doi: 10.1016/j.ejar.2020.03.001. DOI
Shikalgar P., Ghatge P., Kumbhar P., Patil S., Kolekar S., Sartapem A. Adsorption of Hexavalent Chromium for Waste Water Remediation by Various Adsorbents—A Review Article. BEPLS. 2022;1:189–196.
Tohamy H.A.S., El-Sakhawy M., Kamel S. Development of Magnetite/Graphene Oxide Hydrogels from Agricultural Wastes for Water Treatment. J. Renew. Mater. 2022;10:1889–1909. doi: 10.32604/jrm.2022.019211. DOI
Tohamy H.A.S., El-Sakhawy M., Kamel S. Eco-friendly Synthesis of Carbon Quantum Dots as an Effective Adsorbent. J. Fluoresc. 2023;33:423–435. doi: 10.1007/s10895-022-03085-z. PubMed DOI PMC
Jury W.A., Vaux H., Jr. The role of science in solving the world’s emerging water problems. Proc. Natl. Acad. Sci. USA. 2005;102:15715–15720. doi: 10.1073/pnas.0506467102. PubMed DOI PMC
Monser L., Adhoum N. Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Sep. Purif. Technol. 2002;26:137–146. doi: 10.1016/S1383-5866(01)00155-1. DOI
Leyva Ramos R., Ovalle-Turrubiatres J., Sanchez-Castillo M.A. Adsorption of fluoride from aqueous solution on aluminium-impregnated carbon. Carbon. 1999;37:609–617. doi: 10.1016/S0008-6223(98)00231-0. DOI
Tohamy H.A.S., El-Sakhawy M., Kamel S. Development of graphene oxide-based styrene/acrylic elastomeric disks from sugarcane bagasse as adsorbents of Nickel (II) ions. J. Polym. Res. 2022;29:75. doi: 10.1007/s10965-021-02830-5. DOI
Abousalman-Rezvani Z., Roghani-Mamaqani H., Riazi H., Abousalman-Rezvani O. Water treatment using stimuli-responsive polymers. Polym. Chem. 2022;13:5940–5964. doi: 10.1039/D2PY00992G. DOI
Qiu X., Hu S. “Smart” Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications. Materials. 2013;6:738–781. doi: 10.3390/ma6030738. PubMed DOI PMC
Tohamy H.A.S., Magar H.S. A Flexible, Low-Cost, Disposable Non-Enzymatic Electrochemical Sensor Based on MnO2/Cellulose Nanostructure. ECS J. Solid. State Sci. Technol. 2022;11:127003. doi: 10.1149/2162-8777/acad27. DOI
Tohamy H.A.S., Fathy N.A., El-Sakhawy M., Kamel S. Boosting the adsorption capacity and photocatalytic activity of activated carbon by graphene quantum dots and titanium dioxide. Diam. Relat. Mater. 2023;132:109640. doi: 10.1016/j.diamond.2022.109640. DOI
Tohamy H.-A.S., El-Sakhawy M., Kamel S. Carbon Nanotubes from Agricultural Wastes: Effective Environmental Adsorbent. Egypt J. Chem. 2022;65:437–446.
Bonetti L., De Nardo L., Farè S. Thermo-responsive methylcellulose hydrogels: From design to applications as smart biomaterials. Tissue Eng. Part B Rev. 2021;27:486–513. doi: 10.1089/ten.teb.2020.0202. PubMed DOI
Guo Z., Liu H., Dai W., Lei Y. Responsive principles and applications of smart materials in biosensing. Smart Mater. Med. 2020;1:54–65. doi: 10.1016/j.smaim.2020.07.001. PubMed DOI PMC
Štular D., Simončič B., Tomšič B. Stimuli-responsive Hydrogels for Textile Functionalisation: A Review. Tekstilec. 2017;60:76–96. doi: 10.14502/Tekstilec2017.60.76-96. DOI
Nasseri R., Deutschman C.P., Han L., Pope M.A., Tam K.C. Cellulose nanocrystals in smart and stimuli-responsive materials: A review. Mater. Today Adv. 2020;5:100055. doi: 10.1016/j.mtadv.2020.100055. DOI
Ding F.Y., Shi X.W., Wu S., Liu X.H., Deng H.B., Du Y.M., Li H.B. Flexible Polysaccharide Hydrogel with pH-Regulated Recovery of Self-Healing and Mechanical Properties. Macromol. Mater. Eng. 2017;302:1700221. doi: 10.1002/mame.201700221. DOI
Austria H.F.M., Subrahmanya T.M., Setiawan O., Widakdo J., Chiao Y.H., Hung W.S., Wang C.F., Hu C.C., Lee K.R., Lai J.Y. A review on the recent advancements in graphene-based membranes and their applications as stimuli-responsive separation materials. J. Mater. Chem. 2021;9:21510–21531. doi: 10.1039/D1TA04882A. DOI
Moon R.J., Martini A., Nairn J., Simonsenf J., Youngblood J. Cellulose nanomaterials review: Structure, properties and nanocomposites Chem. Soc. Rev. 2011;40:3941–3994. doi: 10.1039/c0cs00108b. PubMed DOI
El-Sayed N.S., Awad H., El-Sayed G.M., Nagieb Z.A., Kamel S. Synthesis and characterization of biocompatible hydrogel based on hydroxyethyl cellulose-g-poly (hydroxyethyl methacrylate) Polym. Bull. 2020;77:6333–6347. doi: 10.1007/s00289-019-02962-1. DOI
Safarzadeh H., Peighambardoust S.J., Mousavi S.H., Foroutan R., Mohammadi R., Peighambardoust S.H. Adsorption ability evaluation of the poly (methacrylic acid-co-acrylamide)/cloisite 30B nanocomposite hydrogel as a new adsorbent for cationic dye removal. Environ. Res. 2022;212:113349. doi: 10.1016/j.envres.2022.113349. PubMed DOI
Strachota B., Strachota A., Šlouf M., Brus J., Cimrová V. Monolithic intercalated PNIPAm/starch hydrogels with very fast and extensive one-way volume and swelling responses to temperature and pH: Prospective actuators and drug release systems. Soft Matter. 2019;15:752–769. doi: 10.1039/C8SM02153H. PubMed DOI
Bashir S., Hina M., Iqbal J., Rajpar A.H., Mujtaba M.A., Alghamdi N.A., Wageh S., Ramesh K., Ramesh S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers. 2020;12:2702. doi: 10.3390/polym12112702. PubMed DOI PMC
Turky G., Moussa M.A., Hasanin M., El-Sayed N.S., Kamel S. Carboxymethyl cellulose-based hydrogel: Dielectric study, antimicrobial activity and biocompatibility. Arab. J. Sci. Eng. 2020;46:17–30. doi: 10.1007/s13369-020-04655-8. DOI
Wang W., Wang A. Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly (sodium acrylate) and polyvinylpyrrolidone. Carbohydr. Polym. 2010;80:1028–1036. doi: 10.1016/j.carbpol.2010.01.020. DOI
Pourjavadi A., Ayyari M., Amini-Fazl M.S. Taguchi optimized synthesis of collagen-g-poly (acrylic acid)/kaolin composite superabsorbent hydrogel. Eur. Polym. J. 2008;44:1209–1216. doi: 10.1016/j.eurpolymj.2008.01.032. DOI
El-Sayed N.S., Moussa M.A., Kamel S., Turky G. Development of electrical conducting nanocomposite based on carboxymethyl cellulose hydrogel/silver nanoparticles@ polypyrrole. Synth. Met. 2019;250:104–114. doi: 10.1016/j.synthmet.2019.03.010. DOI
Tohamy H.A.S. Reinforced modified carboxymethyl cellulose films with graphene oxide/silver nanoparticles as antimicrobial agents. Egypt J. Chem. 2022;65:509–518.
Strachotová B., Strachota A., Uchman M., Šlouf M., Brus J., Pleštil J., Matějka L. Super porous organic-inorganic poly(N-isopropylacrylamide)-based hydrogel with a very fast temperature response. Polymer. 2007;48:1471–1482. doi: 10.1016/j.polymer.2007.01.042. DOI
Strachota B., Šlouf M., Matějka L. Tremendous reinforcing, pore-stabilizing and response-accelerating effect of in situ generated nanosilica in thermoresponsive poly(N-isopropylacrylamide) cryogels. Polym. Int. 2017;66:1510–1521. doi: 10.1002/pi.5406. DOI
Karadağ E., Kundakcı S. Swelling performance studies of acrylamide/potassium 3-sulfopropyl methacrylate/sodium alginate/bentonite biohybrid sorbent hydrogels in binary mixtures of water-solvent. J. Encapsulation Adsorpt. Sci. 2019;9:35–61. doi: 10.4236/jeas.2019.91003. DOI
Lalji S.M., Ali S.I., Ahmed R., Hashmi S., Awan Z.U.H. Comparative performance analysis of different swelling kinetic models for the evaluation of shale swelling. J. Pet. Explor. Prod. Technol. 2022;12:1237–1249. doi: 10.1007/s13202-021-01387-9. DOI
Zohra R. Ph.D. Thesis. Higher Education Commission, Pakistan, Bahauddin Zakariya University; Multan, Pakistan: 2016. Synthesis, Characterization and Swelling Kinetics of Co-polymeric Hydrogels.
Mohan Y.M., Dickson J.P., Geckeler K.E. Swelling and diffusion characteristics of novel semi-interpenetrating network hydrogels composed of poly [(acrylamide)-co-(sodium acrylate)] and poly [(vinylsulfonic acid), sodium salt] Polym. Int. 2007;56:175–185. doi: 10.1002/pi.2113. DOI
Narimani F., Zohuriaan-Mehr M.J., Kabiri K., Bouhendi H., Omidian H., Najafi V. Overentrant swelling behaviour of poly(potassium, 3-sulfopropyl acrylate-acrylic acid) gels. J. Polym. Res. 2012;19:7. doi: 10.1007/s10965-012-0007-2. DOI
Li X., Wang Y., Li A., Ye Y., Peng S., Deng M., Jiang B. A novel pH-and salt-responsive n-succinyl-chitosan hydrogel via a one-step hydrothermal process. Molecules. 2019;24:4211. doi: 10.3390/molecules24234211. PubMed DOI PMC
Yu J., Zhang H., Li Y., Lu Q., Wang Q., Yang W. Synthesis, characterization, and property testing of PGS/P (AMPS-co-AM) superabsorbent hydrogel initiated by glow-discharge electrolysis plasma. Colloid. Polym. Sci. 2016;294:257–270. doi: 10.1007/s00396-015-3751-0. DOI
Eid M., Yehia R. Swelling Modelling and Kinetics Investigation of Polymer Hydrogel Composed of Chitosan-g-(AA-AM) Egypt J. Chem. 2021;64:5999–6005. doi: 10.21608/ejchem.2021.88530.4260. DOI
Chen H., Hou S., Ma H., Li X., Tan Y. Controlled gelation kinetics of cucurbit [7] uril-adamantane cross-linked supramolecular hydrogels with competing guest molecules. Sci. Rep. 2016;6:20722. doi: 10.1038/srep20722. PubMed DOI PMC
Solar C., Palacio D., Sánchez S., Urbano B.F. Oscillatory strain sweeps of hydrogels from methacrylated alginate macromonomers: Assessment of synthesis and acquisition variables. J. Chil. Chem. Soc. 2019;64:4542–4546. doi: 10.4067/S0717-97072019000304542. DOI
Eri I.R., Pramudinta N.K., Nurmayanti D. Adsorption Kinetics of Edamame Soybean Peel Activated Carbon in Reducing the Level of Phosphate. J. Ecol. Eng. 2022;23:97–107.
Ilavský M. Effect of phase transition on swelling and mechanical behavior of synthetic hydrogels. Adv. Polym. Sci. 1993;109:173–206.
Paşcalău V., Popescu V., Popescu G.L., Dudescu M.C., Borodi G., Dinescu A.M., Moldovan M. Obtaining and characterizing alginate/k-carrageenan hydrogel cross-linked with adipic dihydrazide. Adv. Mater. Sci. Eng. 2013;2013:380716. doi: 10.1155/2013/380716. DOI
Alamzeb M., Tullah M., Ali S., Khan B., Setzer W.N., Al-Zaqri N., Ibrahim M.N.M. Kinetic, Thermodynamic and Adsorption Isotherm Studies of Detoxification of Eriochrome Black T Dye from Wastewater by Native and Washed Garlic Peel. Water. 2022;14:3713. doi: 10.3390/w14223713. DOI