Metaverse and Healthcare: Machine Learning-Enabled Digital Twins of Cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37106642
PubMed Central
PMC10136137
DOI
10.3390/bioengineering10040455
PII: bioengineering10040455
Knihovny.cz E-zdroje
- Klíčová slova
- artificial intelligence, breast cancer, cancer, digital twins, healthcare, machine learning, metaverse,
- Publikační typ
- časopisecké články MeSH
Medical digital twins, which represent medical assets, play a crucial role in connecting the physical world to the metaverse, enabling patients to access virtual medical services and experience immersive interactions with the real world. One serious disease that can be diagnosed and treated using this technology is cancer. However, the digitalization of such diseases for use in the metaverse is a highly complex process. To address this, this study aims to use machine learning (ML) techniques to create real-time and reliable digital twins of cancer for diagnostic and therapeutic purposes. The study focuses on four classical ML techniques that are simple and fast for medical specialists without extensive Artificial Intelligence (AI) knowledge, and meet the requirements of the Internet of Medical Things (IoMT) in terms of latency and cost. The case study focuses on breast cancer (BC), the second most prevalent form of cancer worldwide. The study also presents a comprehensive conceptual framework to illustrate the process of creating digital twins of cancer, and demonstrates the feasibility and reliability of these digital twins in monitoring, diagnosing, and predicting medical parameters.
Dentistry School Babol University of Medical Sciences Babol 4717647745 Iran
Department of Anatomy Faculty of Medicine in Pilsen Charles University 32300 Pilsen Czech Republic
Department of Computer Engineering Mashhad Branch Islamic Azad University Mashhad 9187147578 Iran
Faculty of Electrical Engineering University of West Bohemia 30100 Pilsen Czech Republic
Zobrazit více v PubMed
Jamshidi M., Lalbakhsh A., Talla J., Peroutka Z., Hadjilooei F., Lalbakhsh P., Jamshidi M., La Spada L., Mirmozafari M., Dehghani M. Artificial intelligence and COVID-19: Deep learning approaches for diagnosis and treatment. IEEE Access. 2020;8:109581–109595. doi: 10.1109/ACCESS.2020.3001973. PubMed DOI PMC
Jamshidi M.B., Talla J., Lalbakhsh A., Sharifi-Atashgah M.S., Sabet A., Peroutka Z. A Conceptual Deep Learning Framework for COVID-19 Drug Discovery; Proceedings of the 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON); New York, NY, USA. 1–4 December 2021; pp. 30–34.
Kaul R., Ossai C., Forkan A.R.M., Jayaraman P.P., Zelcer J., Vaughan S., Wickramasinghe N. The role of AI for developing digital twins in healthcare: The case of cancer care. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2022;13:e1480. doi: 10.1002/widm.1480. DOI
Meraghni S., Benaggoune K., Al Masry Z., Terrissa L.S., Devalland C., Zerhouni N. Towards digital twins driven breast cancer detection; Proceedings of the Intelligent Computing: Proceedings of the 2021 Computing Conference; 15–16 July 2021; Berlin/Heidelberg, Germany: Springer; 2021. pp. 87–99. Virtually.
Wickramasinghe N., Jayaraman P.P., Zelcer J., Forkan A.R.M., Ulapane N., Kaul R., Vaughan S. A vision for leveraging the concept of digital twins to support the provision of personalised cancer care. IEEE Internet Comput. 2021;26:17–24. doi: 10.1109/MIC.2021.3065381. DOI
Jamshidi M.B., Daneshfar F. A Hybrid Echo State Network for Hypercomplex Pattern Recognition, Classification, and Big Data Analysis; Proceedings of the 2022 12th International Conference on Computer and Knowledge Engineering (ICCKE); Mashhad, Iran. 17–18 November 2022; pp. 7–12.
Wang G., Badal A., Jia X., Maltz J.S., Mueller K., Myers K.J., Niu C., Vannier M., Yan P., Yu Z. Development of metaverse for intelligent healthcare. Nat. Mach. Intell. 2022;4:922–929. doi: 10.1038/s42256-022-00549-6. PubMed DOI PMC
Daneshfar F., Jamshidi M.B. An Octonion-Based Nonlinear Echo State Network for Speech Emotion Recognition in Metaverse. Neural Netw. 2023 doi: 10.1016/j.neunet.2023.03.026. PubMed DOI
Keshmiri Neghab H., Jamshidi M., Keshmiri Neghab H. Digital twin of a magnetic medical microrobot with stochastic model predictive controller boosted by machine learning in cyber-physical healthcare systems. Information. 2022;13:321. doi: 10.3390/info13070321. DOI
Carey B. Metaverse Technologies, Behavioral Predictive Analytics, and Customer Location Tracking Tools in Blockchain-based Virtual Worlds. Rev. Contemp. Philos. 2022;21:188–204.
Musamih A., Yaqoob I., Salah K., Jayaraman R., Al-Hammadi Y., Omar M., Ellahham S. Metaverse in Healthcare: Applications, Challenges, and Future Directions. IEEE Consum. Electron. Mag. 2022:1–13. doi: 10.1109/MCE.2022.3223522. DOI
Dwivedi Y.K., Hughes L., Wang Y., Alalwan A.A., Ahn S.J., Balakrishnan J., Barta S., Belk R., Buhalis D., Dutot V. Metaverse marketing: How the metaverse will shape the future of consumer research and practice. Psychol. Mark. 2022;40:750–776. doi: 10.1002/mar.21767. DOI
Yang Y., Siau K., Xie W., Sun Y. Smart Health: Intelligent Healthcare Systems in the Metaverse, Artificial Intelligence, and Data Science Era. J. Organ. End User Comput. (JOEUC) 2022;34:1–14. doi: 10.4018/JOEUC.308814. DOI
Alazab M., Khan L.U., Koppu S., Ramu S.P., Iyapparaja M., Boobalan P., Baker T., Maddikunta P.K.R., Gadekallu T.R., Aljuhani A. Digital twins for healthcare 4.0-recent advances, architecture, and open challenges. IEEE Consum. Electron. Mag. 2022:1–8. doi: 10.1109/MCE.2022.3208986. DOI
De Benedictis A., Mazzocca N., Somma A., Strigaro C. Digital twins in healthcare: An architectural proposal and its application in a social distancing case study. IEEE J. Biomed. Health Inform. 2022:1–12. doi: 10.1109/JBHI.2022.3205506. PubMed DOI
Sahal R., Alsamhi S.H., Brown K.N. Personal digital twin: A close look into the present and a step towards the future of personalised healthcare industry. Sensors. 2022;22:5918. doi: 10.3390/s22155918. PubMed DOI PMC
Björnsson B., Borrebaeck C., Elander N., Gasslander T., Gawel D.R., Gustafsson M., Jörnsten R., Lee E.J., Li X., Lilja S. Digital twins to personalize medicine. Genome Med. 2020;12:4. doi: 10.1186/s13073-019-0701-3. PubMed DOI PMC
Jamshidi M.B., Ebadpour M., Moghani M.M. Cancer Digital Twins in Metaverse; Proceedings of the 2022 20th International Conference on Mechatronics-Mechatronika (ME); Pilsen, Czech Republic. 7–9 December 2022; pp. 1–6.
Zhang J., Li L., Lin G., Fang D., Tai Y., Huang J. Cyber resilience in healthcare digital twin on lung cancer. IEEE Access. 2020;8:201900–201913. doi: 10.1109/ACCESS.2020.3034324. DOI
Filippo M.D., Damiani C., Vanoni M., Maspero D., Mauri G., Alberghina L., Pescini D. Metabolic Flux Analysis in Eukaryotic Cells. Springer; Berlin/Heidelberg, Germany: 2020. Single-cell digital twins for cancer preclinical investigation; pp. 331–343. PubMed
Thiong’o G.M., Rutka J.T. Digital Twin Technology: The Future of Predicting Neurological Complications of Pediatric Cancers and Their Treatment. Front. Oncol. 2021;11:781499. doi: 10.3389/fonc.2021.781499. PubMed DOI PMC
Ebadpour M., Talla J., Jamshidi M.B., Peroutka Z. EKF Digital Twinning of Induction Motor Drives for the Metaverse; Proceedings of the 2022 20th International Conference on Mechatronics-Mechatronika (ME); Pilsen, Czech Republic. 7–9 December 2022; pp. 1–6.
Zhou W., Jia Y., Peng A., Zhang Y., Liu P. The effect of iot new features on security and privacy: New threats, existing solutions, and challenges yet to be solved. IEEE Internet Things J. 2018;6:1606–1616. doi: 10.1109/JIOT.2018.2847733. DOI
Banerjee I., Sofela M., Yang J., Chen J.H., Shah N.H., Ball R., Mushlin A.I., Desai M., Bledsoe J., Amrhein T. Development and performance of the pulmonary embolism result forecast model (PERFORM) for computed tomography clinical decision support. JAMA Netw. Open. 2019;2:e198719. doi: 10.1001/jamanetworkopen.2019.8719. PubMed DOI PMC
Miguel P., José P., Joana C., Paulo M., Manuel G. Using Resistin, glucose, age and BMI to predict the presence of breast cancer. BMC Cancer. 2018;18:123–130. PubMed PMC
Maulud D., Abdulazeez A.M. A review on linear regression comprehensive in machine learning. J. Appl. Sci. Technol. Trends. 2020;1:140–147. doi: 10.38094/jastt1457. DOI
Rong S., Bao-Wen Z. The research of regression model in machine learning field. MATEC Web Conf. 2018;176:01033. doi: 10.1051/matecconf/201817601033. DOI
Tso G.K., Yau K.K. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy. 2007;32:1761–1768. doi: 10.1016/j.energy.2006.11.010. DOI
Xu M., Watanachaturaporn P., Varshney P.K., Arora M.K. Decision tree regression for soft classification of remote sensing data. Remote Sens. Environ. 2005;97:322–336. doi: 10.1016/j.rse.2005.05.008. DOI
Kwak S., Kim J., Ding H., Xu X., Chen R., Guo J., Fu H. Machine learning prediction of the mechanical properties of γ-TiAl alloys produced using random forest regression model. J. Mater. Res. Technol. 2022;18:520–530. doi: 10.1016/j.jmrt.2022.02.108. DOI
Dai L., Ge J., Wang L., Zhang Q., Liang T., Bolan N., Lischeid G., Rinklebe J. Influence of soil properties, topography, and land cover on soil organic carbon and total nitrogen concentration: A case study in Qinghai-Tibet plateau based on random forest regression and structural equation modeling. Sci. Total Environ. 2022;821:153440. doi: 10.1016/j.scitotenv.2022.153440. PubMed DOI
Zhang J., Ma G., Huang Y., Aslani F., Nener B. Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression. Constr. Build. Mater. 2019;210:713–719. doi: 10.1016/j.conbuildmat.2019.03.189. DOI
Dyer A.S., Zaengle D., Nelson J.R., Duran R., Wenzlick M., Wingo P.C., Bauer J.R., Rose K., Romeo L. Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks. Mar. Struct. 2022;83:103152. doi: 10.1016/j.marstruc.2021.103152. DOI
Jafari S., Shahbazi Z., Byun Y.-C., Lee S.-J. Lithium-ion battery estimation in online framework using extreme gradient boosting machine learning approach. Mathematics. 2022;10:888. doi: 10.3390/math10060888. DOI
Das K., Jiang J., Rao J. Mean squared error of empirical predictor. Ann. Statist. 2004;32:818–840. doi: 10.1214/009053604000000201. DOI
Chai T., Draxler R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014;7:1247–1250. doi: 10.5194/gmd-7-1247-2014. DOI
Willmott C.J., Matsuura K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005;30:79–82. doi: 10.3354/cr030079. DOI
Angulo C., Gonzalez-Abril L., Raya C., Ortega J.A. A proposal to evolving towards digital twins in healthcare; Proceedings of the International Work-Conference on Bioinformatics and Biomedical Engineering; Granada, Spain. 6–8 May 2020; pp. 418–426.
Apidianakis Y., Eliopoulos A.G. A holo’ome approach in colon cancer: We change as we age. EMBO Rep. 2015;16:1239–1240. doi: 10.15252/embr.201541224. PubMed DOI PMC
Predicting Chronic Hyperplastic Candidiasis Retro-Angular Mucosa Using Machine Learning