Analysis of the Mechanical Properties of 3D-Printed Plastic Samples Subjected to Selected Degradation Effects

. 2023 Apr 21 ; 16 (8) : . [epub] 20230421

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37110105

Grantová podpora
FSI-S-22-7957 Modern technologies for processing advanced materials used for interdisciplinary applications
DZRO Military autonomous and robotic systems Project for the Development of the Organization

The Fused Filament Fabrication (FFF) method is an additive technology that is used for the creation of prototypes within Rapid Prototyping (RP) as well as for the creation of final components in piece or small-series production. The possibility of using FFF technology in the creation of final products requires knowledge of the properties of the material and, at the same time, how these properties change due to degradation effects. In this study, the mechanical properties of the selected materials (PLA, PETG, ABS, and ASA) were tested in their non-degenerate state and after exposure of the samples to the selected degradation factors. For the analysis, which was carried out by the tensile test and the Shore D hardness test, samples of normalized shape were prepared. The effects of UV radiation, high temperature environments, high humidity environments, temperature cycles, and exposure to weather conditions were monitored. The parameters obtained from the tests (tensile strength and Shore D hardness) were statistically evaluated, and the influence of degradation factors on the properties of individual materials was assessed. The results showed that even between individual manufacturers of the same filament there are differences, both in the mechanical properties and in the behavior of the material after exposure to degradation effects.

Zobrazit více v PubMed

Chua C.K., Leong K.F., Lim C.S. Rapid Prototyping: Principles and Applications. World Scientific Publishing Co. Pte. Ltd.; Singapore: 2003.

All3DP.com 3D Printing Materials Guide. 2021. [(accessed on 22 August 2022)]. Available online: https://all3dp.com/1/3d-printing-materials-guide-3d-printer-material/

Dey A., Ro Eagle I.N., Yodo N. A Review on Filament Materials for Fused Filament Fabrication. J. Manuf. Mater. Process. 2021;5:69. doi: 10.3390/jmmp5030069. DOI

Babagowda K.M., Goutham R., Srinivas Prasad K.S. Study of Effects on Mechanical Properties of PLA Filament which is blended with Recycled PLA Materials. IOP Conf. Ser. Mater. Sci. Eng. 2018;310:012103. doi: 10.1088/1757-899X/310/1/012103. DOI

Woern A., Byard D., Oakley R., Fiedler M., Snabes S., Pearce J. Fused Particle Fabrication 3-D Printing: Recycled Materials’ Optimization and Mechanical Properties. Materials. 2018;11:1413. doi: 10.3390/ma11081413. PubMed DOI PMC

Monkova K., Monka P.P., Vanca J., Zaludek M., Suba O. Tensile Behaviour of a 3D printed lattice structure; Proceedings of the 11th IEEE International Conference on Mechanical and Aerospace Engineering; Athens, Greece. 14–17 July 2020; pp. 22–26. DOI

Bhagia S., Lowden R.R., Erdman D., III, Rodriguez M., Jr., Haga B.A., Solano I.R.M., Gallego N., Pu Y., Muchero W., Kunc V., et al. Tensile properties of 3D-printed wood-filled PLA materials using poplar trees. Appl. Mater. Today. 2020;21:100832. doi: 10.1016/j.apmt.2020.100832. DOI

Jiang D., Smith D.E. Anisotropic mechanical properties of oriented carbon fiber filled polymer composites produced with fused filament fabrication. Addit. Manuf. 2017;18:84–94. doi: 10.1016/j.addma.2017.08.006. DOI

Rajpurohit S.R., Dave H.K. Flexural strength of fused filament fabricated (FFF) PLA parts on an open-source 3D printer. Adv. Manuf. 2018;6:430–441. doi: 10.1007/s40436-018-0237-6. DOI

Sood A.K., Ohdar R.K., Mahapatra S.S. Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 2010;31:287–295. doi: 10.1016/j.matdes.2009.06.016. DOI

Bonada J., Pastor M.M., Buj-Corral I. Influence of Infill Pattern on the Elastic Mechanical Properties of Fused Filament Fabrication (FFF) Parts through Experimental Tests and Numerical Analyses. Materials. 2021;14:5459. doi: 10.3390/ma14185459. PubMed DOI PMC

Divakara Shetty S., Shetty N. Investigation of mechanical properties and applications of polylactic acids—A review. Mater. Res. Express. 2019;6:112002. doi: 10.1088/2053-1591/ab4648. DOI

Jem J.K., Tan B. The development and challenges of poly (lactic acid) and poly (glycolic acid) Adv. Ind. Eng. Polym. Res. 2020;3:60–70. doi: 10.1016/j.aiepr.2020.01.002. DOI

Breški T., Hentschel L., Godec D., Đuretek I. Suitability of Recycled PLA Filament Application in Fused Filament Fabrication Process. Teh. Glas. 2021;15:491–497. doi: 10.31803/tg-20210805120621. DOI

Wu Z., Zhao J., Wu W., Wang P., Wang B., Li G., Zhang S. Radial Compressive Property and the Proof-of-Concept Study for Realizing Self-expansion of 3D Printing Polylactic Acid Vascular Stents with Negative Poisson’s Ratio Structure. Materials. 2018;11:1357. doi: 10.3390/ma11081357. PubMed DOI PMC

Schippers C., Bahners T., Gutmann J.S., Tsarkova L.A. Elaborating Mechanisms behind the Durability of Tough Polylactide Monofilaments under Elevated Temperature and Humidity Conditions. ACS Appl. Polym. Mater. 2021;3:1406–1414. doi: 10.1021/acsapm.0c01274. DOI

Aldeen N.A., Owaid B. AIP Conference Proceedings. Volume 2213. AIP Publishing; Melville, NY, USA: 2020. Effect of ultraviolet and temperature on mechanical properties of three dimension printed materials; p. 020067. DOI

Solarski S., Ferreira M., Devaux E. Ageing of polylactide and polylactide nanocomposite filaments. Polym. Degrad. Stab. 2008;93:707–713. doi: 10.1016/j.polymdegradstab.2007.12.006. DOI

Yonezawa A., Yamada A. Deterioration of the Mechanical Properties of FFF 3D-Printed PLA Structures. Inventions. 2020;6:1. doi: 10.3390/inventions6010001. DOI

Guo J., Xiao R., Tian C., Jiang M. Optimizing physical aging in poly(ethylene terephthalate)-glycol (PETG) J. Non-Cryst. Solids. 2018;502:15–21. doi: 10.1016/j.jnoncrysol.2018.10.021. DOI

Andersen E., Mikkelsen R., Kristiansen S., Hinge M. Real-time ageing of polyesters with varying diols. Mater. Chem. Phys. 2021;261:124240. doi: 10.1016/j.matchemphys.2021.124240. DOI

Kováčová M., Kozakovičová J., Procházka M., Janigová I., Vysopal M., Černičková I., Krajčovič J., Špitalský Z. Novel Hybrid PETG Composites for 3D Printing. Appl. Sci. 2020;10:3062. doi: 10.3390/app10093062. DOI

Latko-Durałek P., Dydek K., Boczkowska A. Thermal, Rheological and Mechanical Properties of PETG/rPETG Blends. J. Polym. Environ. 2019;27:2600–2606. doi: 10.1007/s10924-019-01544-6. DOI

Khosravani M., Zolfagharian R.A., Jennings M., Reinicke T. Structural performance of 3D-printed composites under various loads and environmental conditions. Polym. Test. 2020;91:106770. doi: 10.1016/j.polymertesting.2020.106770. DOI

Kakanuru P., Pochiraju K. Moisture Ingress and Degradation of Additively Manufactured PLA, ABS and PLA/SiC Composite Parts. Addit. Manuf. 2020;36:101529. doi: 10.1016/j.addma.2020.101529. DOI

Pérez J., Vilas J., Laza J.M., Arnaiz S., Mijangos F., Bilbao E., León L.M. Effect of Reprocessing and Accelerated Weathering on ABS Properties. J. Polym. Environ. 2010;18:71–78. doi: 10.1007/s10924-009-0154-7. DOI

Afshar A., Wood R. Development of Weather-Resistant 3D Printed Structures by Multi-Material Additive Manufacturing. J. Compos. Sci. 2020;4:94. doi: 10.3390/jcs4030094. DOI

Elmushyakhi A. Freeze-thaw stabilization of fused deposition modeling 3D-printed SABIC structures. J. King Saud Univ. Eng. Sci. 2020;34:116–125. doi: 10.1016/j.jksues.2020.09.002. DOI

Di Ludovico M., Piscitelli F., Prota A., Lavorgna M., Mensitieri G., Manfredi G. Improved mechanical properties of CFRP laminates at elevated temperatures and freeze–thaw cycling. Constr. Build. Mater. 2012;31:273–283. doi: 10.1016/j.conbuildmat.2011.12.105. DOI

Adhikary K.B., Pang S., Staiger M.P. Effects of the Accelerated Freeze-Thaw Cycling on Physical and Mechanical Properties of Wood Flour-Recycled Thermoplastic Composites. Polym. Compos. 2009;31:185–194. doi: 10.1002/pc.20782. DOI

Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. International Organization for Standardization; Geneva, Switzerland: 2012.

Anand Kumar S., Shivraj Narayan Y. Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018) Springer; Singapore: 2019. Tensile testing and evaluation of 3D-printed PLA specimens as per ASTM D638 type IV standard; pp. 79–95.

Özen A., Auhl D., Völlmecke C., Kiendl J., Abali B.E. Optimization of Manufacturing Parameters and Tensile Specimen Geometry for Fused Deposition Modeling (FDM) 3D-Printed PETG. Materials. 2021;14:2556. doi: 10.3390/ma14102556. PubMed DOI PMC

Plastics and Ebonite Determination of Indentation Hardness by Means of a Durometer (Shore Hardness) International Organization for Standardization; Geneva, Switzerland: 2003.

Bose S., Vahabzadeh S., Bandyopadhyay A. Bone tissue engineering using 3D printing. Materialstoday. 2013;16:496–504. doi: 10.1016/j.mattod.2013.11.017. DOI

Raney K., Lani E., Kalla D.K. Experimental characterization of the tensile strength of ABS parts manufactured by fused deposition modeling process. Materialstoday. 2017;4:7956–7961. doi: 10.1016/j.matpr.2017.07.132. DOI

Sedlak J., Joska Z., Hrbackova L., Jurickova E., Hrusecka D., Horak O. Determination of mechanical properties of plastic components made by 3D printing. Manuf. Technol. 2022;22:733–746. doi: 10.21062/mft.2022.082. DOI

Simplify3D.com Filament Properties Table. 2021. [(accessed on 19 March 2021)]. Available online: https://www.simplify3d.com/support/materials-guide/properties-table/

Materials. help.prusa3d.com—Prusa Research: Prusa Knowledge Base. [(accessed on 19 March 2021)]. Available online: https://help.prusa3d.com/cs/materials#_ga=2.10865524.1744310426.1616522816-896702491.1583656356.

Cosineadditive.com Materials Available. [(accessed on 19 March 2021)]. Available online: https://www.cosineadditive.com/en/materials.

Amateur Weather Station Kostelec nad Orlicí. [(accessed on 29 April 2021)]. Available online: http://www.pocasi-kno.cz/data.php.

Ward I., Sweeney J. Mechanical Properties of Solid Polymers. 3rd ed. Wiley; Karnataka, India: 2012.

Kumar R., Singh R., Farina I. On the 3D printing of recycled ABS, PLA and HIPS thermoplastics for structural applications. PSU Res. Rev. 2018;2:115–137. doi: 10.1108/PRR-07-2018-0018. DOI

Rodriguez-Panes A., Claver J., Camacho A.M. The Influence of Manufacturing Parameters on the Mechanical Behaviour of PLA and ABS Pieces Manufactured by FDM: A Comparative Analysis. Materials. 2018;11:1–21. doi: 10.3390/ma11081333. PubMed DOI PMC

Clough R.L., Billingham N.C., Gillen K.T. Polymer Durability: Degradation, Stabilization, and Lifetime Prediction. American Chemical Society; Washington, DC, USA: 1996.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

PETG as an Alternative Material for the Production of Drone Spare Parts

. 2024 Oct 24 ; 16 (21) : . [epub] 20241024

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...