Comparative LC-ESIMS-Based Metabolite Profiling of Senna italica with Senna alexandrina and Evaluating Their Hepatotoxicity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37110216
PubMed Central
PMC10147022
DOI
10.3390/metabo13040559
PII: metabo13040559
Knihovny.cz E-zdroje
- Klíčová slova
- LC-ESIMS, LC-MS/MS, Senna alexandrina, Senna italica, hepatotoxicity, sennosides,
- Publikační typ
- časopisecké články MeSH
Senna Mill. (Fabaceae) is an important medicinal plant distributed worldwide. Senna alexandrina (S. alexandrina), the officinal species of the genus, is one of the most well-known herbal medicines traditionally used to treat constipation and digestive diseases. Senna italica (S. italica), another species of the genus, is native to an area ranging from Africa to the Indian subcontinent, including Iran. In Iran, this plant has been used traditionally as a laxative. However, very little phytochemical information and pharmacological reports investigating its safety of use are available. In the current study, we compared LC-ESIMS metabolite profiles of the methanol extract of S. italica with that of S. alexandrina and measured the content of sennosides A and B as the biomarkers in this genus. By this, we were able to examine the feasibility of using S. italica as a laxative agent like S. alexandrina. In addition, the hepatotoxicity of both species was evaluated against HepG2 cancer cell lines using HPLC-based activity profiling to localize the hepatotoxic components and evaluate their safety of use. Interestingly, the results showed that the phytochemical profiles of the plants were similar but with some differences, particularly in their relative contents. Glycosylated flavonoids, anthraquinones, dianthrones, benzochromenones, and benzophenones constituted the main components in both species. Nevertheless, some differences, particularly in the relative amount of some compounds, were observed. According to the LC-MS results, the amounts of sennoside A in S. alexandrina and S. italica were 1.85 ± 0.095% and 1.00 ± 0.38%, respectively. Moreover, the amounts of sennoside B in S. alexandrina and S. italica were 0.41 ± 0.12 % and 0.32 ± 0.17%, respectively. Furthermore, although both extracts showed significant hepatotoxicity at concentrations of 50 and 100 µg/mL, they were almost non-toxic at lower concentrations. Taken together, according to the results, the metabolite profiles of S. italica and S. alexandrina showed many compounds in common. However, further phytochemical, pharmacological, and clinical studies are necessary to examine the efficacy and safety of S. italica as a laxative agent.
Zobrazit více v PubMed
Marazzi B., Endress P.K., De Queiroz L.P., Conti E. Phylogenetic relationships within Senna (Leguminosae, Cassiinae) based on three chloroplast DNA regions: Patterns in the evolution of floral symmetry and extrafloral nectaries. Am. J. Bot. 2006;93:288–303. doi: 10.3732/ajb.93.2.288. PubMed DOI
Rama Reddy N.R., Mehta R.H., Soni P.H., Makasana J., Gajbhiye N.A., Ponnuchamy M., Kumar J. Next generation sequencing and transcriptome analysis predicts biosynthetic pathway of sennosides from Senna (Cassia angustifolia Vahl.), a non-model plant with potent laxative properties. PLoS ONE. 2015;10:e0129422. doi: 10.1371/journal.pone.0129422. PubMed DOI PMC
Agarkar S., Jadge D. Phytochemical and pharmacological investigations of genus Cassia: A review. Asian J. Chem. 1999;11:295–299.
Naz H., Nawaz H., Hanif M.A., Ayub M.A., Khatun S. Medicinal Plants of South Asia. Elsevier; Amsterdam, The Netherlands: 2020. Indian Senna; pp. 439–449.
POWO Plants of the World Online. 2022. [(accessed on 1 September 2022)]. Available online: http://www.plantsoftheworldonline.org/
Ramchander P.J., Middha A. Recent advances on senna as a laxative: A comprehensive review. J. Pharmacogn. Phytochem. 2017;6:349–353.
Leung L., Riutta T., Kotecha J., Rosser W. Chronic constipation: An evidence-based review. J. Am. Board Fam. Med. 2011;24:436–451. doi: 10.3122/jabfm.2011.04.100272. PubMed DOI
Akbar S. Handbook of 200 Medicinal Plants. Springer; Berlin/Heidelberg, Germany: 2020. Senna alexandrina Mill.(Fabaceae/Leguminosae) pp. 1629–1637.
Sreejith G., Latha P.G., Shine V.J., Anuja G.I., Suja S.R., Sini S., Shyama S., Pradeep S., Shikha P., Rajasekharan S. Anti-allergic, anti-inflammatory and anti-lipidperoxidant effects of Cassia occidentalis Linn. Indian J. Exp. Biol. 2010;48:494–498. PubMed
Oladeji O.S., Adelowo F.E., Oluyori A.P. The genus Senna (Fabaceae): A review on its traditional uses, botany, phytochemistry, pharmacology and toxicology. S. Afr. J. Bot. 2021;138:1–32. doi: 10.1016/j.sajb.2020.11.017. DOI
Srivastava M., Srivastava S., Rawat A. Chemical standardization of Cassia angustifolia Vahl seed. Pharmacogn. J. 2010;2:554–560. doi: 10.1016/S0975-3575(10)80059-8. DOI
Nkantchoua G.C.N., Njapdounke J.S.K., Fifen J.J., Taiwe G.S., Ojong L.J., Kandeda A.K., Bum E.N. Anticonvulsant effects of Senna spectabilis on seizures induced by chemicals and maximal electroshock. J. Ethnopharmacol. 2018;212:18–28. doi: 10.1016/j.jep.2017.09.042. PubMed DOI
Silva C., Monteiro M., Rocha H., Ribeiro A., Caldeira-de-Araujo A., Leitão A., Bezerra R., Pádula M. Assessment of antimutagenic and genotoxic potential of senna (Cassia angustifolia Vahl.) aqueous extract using in vitro assays. Toxicol. In Vitro. 2008;22:212–218. doi: 10.1016/j.tiv.2007.07.008. PubMed DOI
Takido M. Studies on the Constituents of the Seeds of Cassia obtusifolia L.I. The Structure of Obtusifolin. Chem. Pharm. Bull. 1958;6:397–400. doi: 10.1248/cpb.6.397. PubMed DOI
Ito H., Nishida Y., Yamazaki M., Nakahara K., Michalska-Hartwich M., Furmanowa M., Leistner E., Yoshida T. Chrysophanol glycosides from callus cultures of monocotyledonous Kniphofia spp. (Asphodelaceae) Chem. Pharm. Bull. 2004;52:1262–1264. doi: 10.1248/cpb.52.1262. PubMed DOI
Adedayo O., Anderson W., Moo-Young M., Snieckus V., Patil P., Kolawole D. Kinetics of antibacterial activity and physicochemical damage caused by the extracts of Senna alata flowers. Pharm. Biol. 2002;40:461–465. doi: 10.1076/phbi.40.6.461.8442. DOI
Dave H., Ledwani L. A review on anthraquinones isolated from Cassia species and their applications. Indian J. Nat. Prod. Resour. 2012;3:291–319.
Rai M. A review on some antidiabetic plants of India. Anc. Sci. Life. 1995;14:168. PubMed PMC
Chauhan D., Chauhan J., Siddiqui I., Singh J. Two new anthraquinone glycosides from the leaves of Cassia occidentalis. Indian J. Chem. 2001;40B:860–863.
Majid U., Siddiqi T.O., Aref I.M., Iqbal M. Quantitative changes in proteins, pigments and sennosides of Cassia angustifolia vahl treated with mancozeb. Pak. J. Bot. 2013;45:1509–1514.
Ayo R. Phytochemical constituents and bioactivities of the extracts of Cassia nigricans Vahl: A review. J. Med. Plant Res. 2010;4:1339–1348.
Adelowo F., Oladeji O. An overview of the phytochemical analysis of bioactive compounds in Senna alata. Adv. Biochem. 2017;5:102–109. doi: 10.11648/j.ab.20170505.14. DOI
Laghari A.Q., Memon S., Nelofar A., Laghari A.H. Extraction, identification and antioxidative properties of the flavonoid-rich fractions from leaves and flowers of Cassia Angustifolia. Am. J. Anal. Chem. 2011;2:871. doi: 10.4236/ajac.2011.28100. DOI
Ahmed S.I., Hayat M.Q., Tahir M., Mansoor Q., Ismail M., Keck K., Bates R.B. Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl. BMC Complement. Altern. Med. 2016;16:460. doi: 10.1186/s12906-016-1443-z. PubMed DOI PMC
Jani D.K., Goswami S. Antidiabetic activity of Cassia angustifolia Vahl. and Raphanus sativus Linn. leaf extracts. J. Tradit. Complement. Med. 2020;10:124–131. doi: 10.1016/j.jtcme.2019.03.002. PubMed DOI PMC
Cuellar M., Giner R., Recio M., Manez S., Rıos J. Topical anti-inflammatory activity of some Asian medicinal plants used in dermatological disorders. Fitoterapia. 2001;72:221–229. doi: 10.1016/S0367-326X(00)00305-1. PubMed DOI
Aggarwal B., Prasad S., Reuter S., Kannappan R., Yadav V., Park B., Hye Kim J., Gupta S., Phromnoi K., Sundaram C. Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases:“reverse pharmacology” and “bedside to bench” approach. Curr. Drug Targets. 2011;12:1595–1653. doi: 10.2174/138945011798109464. PubMed DOI PMC
VijayaSekhar V., Prasad M.S., Joshi D., Narendra K., Satya A.K., Rao K. Assessment of phytochemical evaluation and in-vitro antimicrobial activity of Cassia angustifolia. Int. J. Pharmacogn. Phytochem. Res. 2016;8:305–312.
Singanboina K., Chinna V., Kumar Ratnampally S., Karnakar Rao K. Antibacterial activity of Cassia angustifolia (Vahl.) leaf extracts grown in three different soil treatments. Int. J. Pharm. Life Sci. 2014;5:3631–3633.
Lin L.T., Liu L.T., Chiang L.C., Lin C.C. In vitro anti-hepatoma activity of fifteen natural medicines from Canada. Phytother. Res. 2002;16:440–444. doi: 10.1002/ptr.937. PubMed DOI
Safa O., Soltanipoor M.A., Rastegar S., Kazemi M., Dehkordi K.N., Ghannadi A. An ethnobotanical survey on hormozgan province, Iran. Avicenna J. Phytomed. 2013;3:64. PubMed PMC
Abdisa T. Review on traditional medicinal plant and its extract effect on tick control in Ethiopia. J. Vet. Med. Res. 2017;4:102.
El-Sayed N.H., Dooh A.A., El-Khrisy S., Mabry T.J. Flavonoids of Cassia Ital. Phytochemistry. 1992;31:2187. doi: 10.1016/0031-9422(92)80400-9. DOI
Jothi R.S., Bharathy V., Uthayakumari F. Antioxidant potential of aerial part of Senna italica sub species micrantha Mill. J. Pharm. Sci. Res. 2015;7:621.
Kuete V., Wiench B., Alsaid M.S., Alyahya M.A., Fankam A.G., Shahat A.A., Efferth T. Cytotoxicity, mode of action and antibacterial activities of selected Saudi Arabian medicinal plants. BMC Complement. Alternat. Med. 2013;13:354. doi: 10.1186/1472-6882-13-354. PubMed DOI PMC
Masoko P., Gololo S.S., Mokgotho M.P., Eloff J.N., Howard R., Mampuru L. Evaluation of the antioxidant, antibacterial, and antiproliferative activities of the acetone extract of the roots of Senna italica (Fabaceae) Afric. J. Tradit. Complement. Altern. Med. 2010;7:138–148. doi: 10.4314/ajtcam.v7i2.50873. PubMed DOI PMC
Dabai Y., Kawo A., Aliyu R. Phytochemical screening and antibacterial activity of the leaf and root extracts of Senna italica. Afr. J. Pharm. Pharmacol. 2012;6:914–918. doi: 10.5897/AJPP11.852. DOI
Malematja R., Bagla V., Njanje I., Mbazima V., Poopedi K., Mampuru L., Mokgotho M. Potential hypoglycaemic and antiobesity effects of Senna italica leaf acetone extract. Evid.-Based Complement. Altern. Med. 2018;2018:5101656. doi: 10.1155/2018/5101656. PubMed DOI PMC
Sermakkani M., Thangapandian V. Anti-Inflammatory Potential of Cassia italica (Mill) Lam Leaves. Int. J. Pharm. Pharm. Sci. 2013;5:18–22.
Jain S., Jain R., Sharma R., Capasso F. Pharmacological investigation of Cassia italica. J. Ethnopharmacol. 1997;58:135–142. doi: 10.1016/S0378-8741(97)00091-3. PubMed DOI
Saravanapriya P., Devi K.P. Influence of Nutrients, Bioactive Compounds, and Plant Extracts in Liver Diseases. Elsevier; Amsterdam, The Netherlands: 2021. Plant Extracts with Putative Hepatotoxicity Activity; pp. 259–287.
van Gorkom B.A., Karrenbeld A., van der Sluis T., Zwart N., de Vries E.G., Kleibeuker J.H. Apoptosis induction by sennoside laxatives in man; escape from a protective mechanism during chronic sennoside use. J. Pathol. 2001;194:493–499. doi: 10.1002/path.914. PubMed DOI
Lee S.Y., Kim W., Lee Y.G., Kang H.J., Lee S.H., Park S.Y., Min J.K., Lee S.R., Chung S.J. Identification of sennoside A as a novel inhibitor of the Slingshot (SSH) family proteins related to cancer metastasis. Pharmacol. Res. 2017;119:422–430. doi: 10.1016/j.phrs.2017.03.003. PubMed DOI
Akaberi M., Danton O., Tayarani-Najaran Z., Asili J., Iranshahi M., Emami S.A., Hamburger M. HPLC-based activity profiling for antiprotozoal compounds in the endemic Iranian medicinal plant Helichrysum oocephalum. J. Nat. Prod. 2019;82:958–969. doi: 10.1021/acs.jnatprod.8b01031. PubMed DOI
Nesměrák K., Kudláček K., Čambal P., Štícha M., Kozlík P., Červený V. Authentication of senna extract from the eighteenth century and study of its composition by HPLC–MS. Mon. Chem. Chem. Mon. 2020;151:1241–1248. doi: 10.1007/s00706-020-02630-5. DOI
Pluskal T., Castillo S., Villar-Briones A., Orešič M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010;11:395. doi: 10.1186/1471-2105-11-395. PubMed DOI PMC
Božičević A., Dobrzyński M., De Bie H., Gafner F., Garo E., Hamburger M. Automated comparative metabolite profiling of large LC-ESIMS data sets in an ACD/MS workbook suite add-in, and data clustering on a new open-source web platform FreeClust. Anal. Chem. 2017;89:12682–12689. doi: 10.1021/acs.analchem.7b02221. PubMed DOI
Akaberi M., Najaran Z.T., Azizi N., Emami S.A. Metabolite profiling and antiprotozoal activity of three endemic Iranian Helichrysum species. Ind. Crops Prod. 2021;174:114196. doi: 10.1016/j.indcrop.2021.114196. DOI
Akaberi M., Emami S.A., Vatani M., Tayarani-Najaran Z. Evaluation of antioxidant and anti-melanogenic activity of different extracts of aerial parts of N. Sintenisii in murine melanoma B16F10 cells. Iran. J. Pharm. Res. 2018;17:225–235. PubMed PMC
Farag M.A., El Senousy A.S., El-Ahmady S.H., Porzel A., Wessjohann L.A. Comparative metabolome-based classification of Senna drugs: A prospect for phyto-equivalency of its different commercial products. Metabolomics. 2019;15:80. doi: 10.1007/s11306-019-1538-x. PubMed DOI
Omer H.A.A., Caprioli G., Abouelenein D., Mustafa A.M., Uba A.I., Ak G., Ozturk R.B., Zengin G., Yagi S. Phenolic Profile, Antioxidant and Enzyme Inhibitory Activities of Leaves from Two Cassia and Two Senna Species. Molecules. 2022;27:5590. doi: 10.3390/molecules27175590. PubMed DOI PMC
Coetzee J., McIteka L., Malan E., Ferreira D. Structure and synthesis of the first procassinidin dimers based on epicatechin, and gallo- and epigallo-catechin. Phytochemistry. 2000;53:795–804. doi: 10.1016/S0031-9422(00)00017-0. PubMed DOI
Zhou Z.-h., Fang Z., Jin H., Chen Y., He L. Selective Monomethylation of Quercetin. Synthesis. 2010;2010:3980–3986.
Hatano T., Uebayashi H., Ito H., Shiota S., Tsuchiya T., Yoshida T. Phenolic constituents of cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureus. Chem. Pharm. Bull. 1999;47:1121–1127. doi: 10.1248/cpb.47.1121. PubMed DOI
Madkour H.M., Ghareeb M.A., Abdel-Aziz M.S., Khalaf O.M., Saad A.M., El-Ziaty A.K., Abdel-Mogib M. Gas chromatography-mass spectrometry analysis, antimicrobial, anticancer and antioxidant activities of n-hexane and methylene chloride extracts of Senna Ital. J. Appl. Pharm. Sci. 2017;7:23–32.
Wald A. Constipation: Advances in Diagnosis and Treatment. JAMA. 2016;315:185–191. doi: 10.1001/jama.2015.16994. PubMed DOI
Kobayashi M., Yamaguchi T., Odaka T., Nakamura T., Tsuchiya S., Yokosuka O., Yano S. Regionally differential effects of sennoside A on spontaneous contractions of colon in mice. Basic Clin. Pharmacol. Toxicol. 2007;101:121–126. doi: 10.1111/j.1742-7843.2007.00088.x. PubMed DOI
Kon R., Ikarashi N., Nagoya C., Takayama T., Kusunoki Y., Ishii M., Ueda H., Ochiai W., Machida Y., Sugita K., et al. Rheinanthrone, a metabolite of sennoside A, triggers macrophage activation to decrease aquaporin-3 expression in the colon, causing the laxative effect of rhubarb extract. J. Ethnopharmacol. 2014;152:190–200. doi: 10.1016/j.jep.2013.12.055. PubMed DOI
Mncube S., Gololo S., Mogale M. Seasonal variations of phytochemical content and antioxidant activity of Senna italica leaves. Asian J. Chem. 2020;32:2371–2374. doi: 10.14233/ajchem.2020.22739. DOI
Le J., Ji H., Zhou X., Wei X., Chen Y., Fu Y., Ma Y., Han Q., Sun Y., Gao Y., et al. Pharmacology, Toxicology, and Metabolism of Sennoside A, A Medicinal Plant-Derived Natural Compound. Front. Pharmacol. 2021;12:714586. doi: 10.3389/fphar.2021.714586. PubMed DOI PMC
Sun L.L., Jiang H.B., Liu B.Y., Li W.D., Du A.L., Luo X.Q., Li X.Q. Effects of rhein on intestinal transmission, colonic electromyography and expression of aquaporin-3 by colonic epithelium cells in constipated mice. Int. J. Clin. Exp. Pathol. 2018;11:614–623. PubMed PMC
Zhang B., Huo M., Chen Z., Gao F., Liu Y., Zhou X. Long-Term Administration of Anthraquinone Rhein on Induction of Constipation in Sprague-Dawley Rats via SCF/c-Kit Signaling Pathways. Can. J. Gastroenterol. Hepatol. 2021;2021:6649199. doi: 10.1155/2021/6649199. DOI
Zheng Y.F., Liu C.F., Lai W.F., Xiang Q., Li Z.F., Wang H., Lin N. The laxative effect of emodin is attributable to increased aquaporin 3 expression in the colon of mice and HT-29 cells. Fitoterapia. 2014;96:25–32. doi: 10.1016/j.fitote.2014.04.002. PubMed DOI