Tree Biomass and Leaf Area Allometric Relations for Betula pendula Roth Based on Samplings in the Western Carpathians

. 2023 Apr 10 ; 12 (8) : . [epub] 20230410

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37111832

Grantová podpora
EVA4.0", No. Z.02.1.01/0.0/0.0/16_019/0000803 OP RDE
APVV-18-0086 Slovak Research and Development Agency
APVV-19-0387 Slovak Research and Development Agency
APVV-20-0168 Slovak Research and Development Agency
APVV-20-0215 Slovak Research and Development Agency

Biomass allometric relations are necessary for precise estimations of biomass forest stocks, as well as for the quantification of carbon sequestered by forest cover. Therefore, we attempted to create allometric models of total biomass in young silver birch (Betula pendula Roth) trees and their main components, i.e., leaves, branches, stem under bark, bark, and roots. The models were based on data from 180 sample trees with ages up to 15 years originating from natural regeneration at eight sites in the Western Carpathians (Slovakia). Sample trees represented individuals with stem base diameters (diameter D0) from about 4.0 to 113.0 mm and tree heights between 0.4 to 10.7 m. Each tree component was dried to constant mass and weighed. Moreover, subsamples of leaves (15 pieces of each tree) were scanned, dried, and weighed. Thus, we also obtained data for deriving a model expressing total leaf area at the tree level. The allometric models were in the form of regression relations using diameter D0 or tree height as predictors. The models, for instance, showed that while the total tree biomass of birches with a D0 of 50 mm (and a tree height of 4.06 m) was about 1653 g, the total tree biomass of those with a D0 of 100 mm (tree height 6.79 m) reached as much as 8501 g. Modeled total leaf areas for the trees with the above-mentioned dimensions were 2.37 m2 and 8.54 m2, respectively. The results prove that diameter D0 was a better predictor than tree height for both models of tree component biomass and total leaf area. Furthermore, we found that the contribution of individual tree components to total biomass changed with tree size. Specifically, while shares of leaves and roots decreased, those of all other components, especially stems with bark, increased. The derived allometric relations may be implemented for the calculation of biomass stock in birch-dominant or birch-admixed stands in the Western Carpathians or in other European regions, especially where no species- and region-specific models are available.

Zobrazit více v PubMed

San-Miguel-Ayanz J., de Rigo D., Caudullo G., Durrant T.H. European Atlas of Forest Tree Species. Publication Office of European Union; Luxembourg: 2016. p. 200.

Šebeň V. Národná Inventarizácia a Monitoring Lesov Slovenskej Republiky 2015–2016. Lesnícke štúdie 65; Národné Lesnícke Centrum, Slovakia; Zvolen, Slovakia: 2017. p. 256. (In Slovak)

Kunca A., Zúbrik M., Galko J., Vakula J., Leontovyč R., Konôpka B., Nikolov C., Gubka A., Longauerová V., Maľová M., et al. Salvage felling in the Slovak Republic’s forests during the last twenty years (1998–2017) Centr. Eur. For. J. 2019;65:3–11. doi: 10.2478/forj-2019-0007. DOI

Konôpka B., Šebeň V., Pajtík J. Species Composition and Carbon Stock of Tree Cover at a Postdisturbance Area in Tatra National Park, Western Carpathians. Mount. Res. Dev. 2019;39:71–80. doi: 10.1659/MRD-JOURNAL-D-19-00008.1. DOI

Kula E. Bříza a Její Význam Pro Trvalý Rozvoj Lesa v Imisných Oblastech. Prague, Publishing House for Forestry; Prague, Czech Republic: 2011. p. 276. (In Czech)

Kacálek D., Mauer O., Podrázský V., Slodičák M. Soil Improving and Stabilising Function of Forest Trees. Prague, Lesnická Práce; Prague, Czech Republic: 2017. p. 300.

Konôpka B., Šebeň V., Pajtík J., Shipley L.A. Excluding Large Wild Herbivores Reduced Norway Spruce Dominance and Supported Tree Species Richness in a Young, Naturally Regenerated Stand. Forests. 2021;12:737. doi: 10.3390/f12060737. DOI

Hynynen J., Niemisto P., Vihera-Aarnio A., Brunner A., Hein S., Velling P. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh) northern Europe. Forestry. 2010;83:103–119. doi: 10.1093/forestry/cpp035. DOI

Uri V., Varik M., Aosaar J., Kanal A., Kukumägi M., Lohmus K. Biomass production and carbon sequestration in a fertile silver bitch (Betula pendula Roth) forest chronosequence. For. Ecol. Manag. 2012;267:117–126. doi: 10.1016/j.foreco.2011.11.033. DOI

Kurvits V., Ots K., Kangur A., Korjus H., Muiste P. Assessment of load and quality of logging residues from clear-felling areas in Järveselja: A case study from Southeast Estonia. Centr. Eur. For. J. 2020;66:3–11.

Dubois H., Verkasalo E., Claessens H. Potential of Birch (Betula pendula Roth and B. pubescens Ehr.) for Forestry and Forest-Based Industry Sector within the Changing Climatic and Socio-Economic Context of Western Europe. Forests. 2020;11:336. doi: 10.3390/f11030336. DOI

Dubois H., Claessens H., Ligot G. Towards Silviculture Guidelines to Produce Large-Sized Silver Birch (Betula pendula Roth) Logs in Western Europe. Forests. 2021;12:599. doi: 10.3390/f12050599. DOI

Konôpka B., Pajtík J., Šebeň V., Surový P., Merganičová K. Young Silver Birch Grows Faster and Allocates Higher Portion of Biomass into Stem Than Norway Spruce, a Case Study from a Post-Disturbance Forest. Forests. 2021;12:433. doi: 10.3390/f12040433. DOI

Konôpka B., Pajtík J., Šebeň V., Merganičová K., Surový P. Silver birch aboveground biomass allocation pattern, stem and foliage traits with regard to intraspecific crown competition. Cent. Eur. For. J. 2020;66:159–169. doi: 10.2478/forj-2020-0013. DOI

Kanerva S., Smolander A. Microbial activity in forest floor layers under silver birch, Norway spruce and Scots pine. Soil. Biol. Biochem. 2007;39:1459–1467. doi: 10.1016/j.soilbio.2007.01.002. DOI

Schua K., Wende S., Wagner S., Feger K.-H. Soil chemical and microbial properties in a mixed stand of spruce and birch in the Ore Mountains (Germany)—A case study. Forests. 2015;6:1949–1965. doi: 10.3390/f6061949. DOI

Martiník A., Adamec Z., Houška J. Production and soil restoration effect of pioneer tree species in a region of allochthonous Norway spruce dieback. J. For. Sci. 2017;63:34–44. doi: 10.17221/98/2016-JFS. DOI

Emmer I.M., Fanta J., Kobus A.T., Kooijman A., Sevink J. Reversing borealization as a means to restore biodiversity in Central-European mountain forests—An example from the Krkonose Mountains, Czech Republic. Biodivers. Conserv. 1998;7:229–247. doi: 10.1023/A:1008840603549. DOI

Woodcock B.A., Leather S.R., Watt A.D. Changing management in Scottish birch woodlands: A potential threat to local invertebrate biodiversity. Bull. Entomol. Res. 2003;93:159–167. doi: 10.1079/BER2003227. PubMed DOI

Felton A., Andersson E., Ventorp D., Lindbladh M. A comparison of avian diversity in spruce monocultures and spruce-birch polycultures in southern Sweden. Silva Fenn. 2011;45:1143–1150. doi: 10.14214/sf.92. DOI

Holmström E., Carlström M., Goude M., Lidman F.D., Felton A. Keeping mixture of Norway spruce and birch in production forests: Insights from survey data. Scand. J. For. Res. 2021;36:155–163. doi: 10.1080/02827581.2021.1883729. DOI

Martiník A., Knott R., Krejza J., Černý J. Biomass utilization of Betula pendula Roth stands regenerated in the region of allochtonous Picea abies (L.) dieback. Silva Fenn. 2018;52:45.

Huuskonen D., Dormisch T., Finér L., Hantula J., Hynynen J., Matala J., Miina J., Neuovone S., Nevalainen S., Niemstö P. What is the potential for replacing monocultures with mixed-species stands to enhance ecosystem services in boreal forests in Fennoscandia? For. Ecol. Manag. 2021;479:118558. doi: 10.1016/j.foreco.2020.118558. DOI

Bronisz K., Mechtätalo L. Seemingly Unrelated Mixed-Effects Biomass Models for Young Silver Birch Stands on Post-Agricultural Lands. Forests. 2020;11:381. doi: 10.3390/f11040381. DOI

Pajtík J., Konôpka B., Lukac M. Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. For. Ecol. Manag. 2008;256:1096–1103. doi: 10.1016/j.foreco.2008.06.013. DOI

Repola J. Biomass equations for birch in Finland. Silva Fenn. 2008;42:605–624. doi: 10.14214/sf.236. DOI

Smith A., Granhus A., Astrup R. Functions for estimating belowground and whole tree biomass of birch in Norway. Scand. J. For. Res. 2016;31:568–582. doi: 10.1080/02827581.2016.1141232. DOI

Johansson T. Biomass production and allometric above- and below-ground relations for young birch stands planted at four spacings on abandoned farmland. Forestry. 2007;80:41–52. doi: 10.1093/forestry/cpl049. DOI

Hochbichler E., Bellos P., Lick E. Biomass functions for estimating needle and branch biomass of spruce (Picea abies) and Scots pine (Pinus sylvestris) and branch biomass of beech (Fagus sylvatica) and oak (Quercus robur and petrea) Austr. J. For. Sci. 2006;123:35–46.

Wang J., Zhang C., Xia F., Zhao X., Wu L., von Gadow K. Biomass Structure and Allometry of Abies nephrolepis (Maxim) in Northeast China. Silva Fenn. 2011;45:211–226. doi: 10.14214/sf.113. DOI

Pajtík J., Konôpka B., Šebeň B. Mathematical Biomass Models for Young Individuals of Forest Tree Species in the Region of the Western Carpathians. Zvolen National Forest Centre; Zvolen, Slovakia: 2018. p. 89.

Waring R., Landsberg J., Linder S. Tamm review: Insights gained from light use and leaf growth efficiency indices. For. Ecol. Manag. 2016;379:232–242. doi: 10.1016/j.foreco.2016.08.023. DOI

Kozlowski T.T., Pallardy S.G. Physiology of Woody Plants. 2nd ed. Academic Press, Inc.; London, UK: 1997. p. 411.

Fender A.-C., Mentilla-Contreras J., Leuschner C. Multiple environmental control of leaf area and its significance for productivity in beech saplings. Trees. 2011;25:847–857. doi: 10.1007/s00468-011-0560-z. DOI

West P.W. Tree and Forest Measurement. Springer; Berlin/Heidelberg, Germany: 2009. p. 191.

Enquist B.J. Universal scaling in tree and vascular plant allometry: Toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol. 2002;22:1045–1064. doi: 10.1093/treephys/22.15-16.1045. PubMed DOI

Merganičová K., Merganič J., Lehtonen A., Vacchiano G., Sever M.Z., Augustynczik L.D., Grote R., Kyselová I., Mäkelä A., Yousefpour R., et al. Forest carbon allocation modelling under climate change. Tree Physiol. 2019;39:1937–1960. doi: 10.1093/treephys/tpz105. PubMed DOI PMC

Dowell R.C., Gibbins D., Rhoads J.R., Pallardy S.G. Biomass production physiology and soil carbon dynamics in short-rotation grown Populus deltoides and P. deltoides × P. nigra hybrids. For. Ecol. Manag. 2009;257:134–142. doi: 10.1016/j.foreco.2008.08.023. DOI

Jarčuška B., Barna M. Plasticity in above-ground biomass allocation in Fagus sylvatica L. saplings in response to light availability. Ann. For. Res. 2011;54:151–160.

Chen R., Ran J., Hu W., Dong L., Ji M., Jia X., Lu J., Gong H., Aqeel M., Yao S., et al. Effects of biotic and abiotic factors on forest biomass fractions. Natl. Sci. Rev. 2021;8:nwab025. doi: 10.1093/nsr/nwab025. PubMed DOI PMC

Wirth C., Schumacher J., Schulze E.D. Generic biomass functions for Norway spruce in Central Europe-a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol. 2004;24:121–139. doi: 10.1093/treephys/24.2.121. PubMed DOI

Šebeň V., Konôpka B., Pajtík J. Quantifying carbon in dead and living trees; A case study in young beech and spruce stand over 9 years. Centr. Eur. For. J. 2017;63:133–141. doi: 10.1515/forj-2017-0009. DOI

Larsen J.B., Angelstam P., Bauhus J., Carvalho J.F., Diaci J., Dobrowolska D., Gazda A., Gustafsson L., Krumm F., Knoke T., et al. Closer-to-Nature Forest Management. From Science to Policy 12. European Forest Institute; Joensuu, Finland: 2022. p. 54.

Atkinson M.D. Betula pendula Roth (B. verrucosa Ehrh.) and B. pubescens Ehrh. J. Ecol. 1992;80:837–870. doi: 10.2307/2260870. DOI

Pagan J., Randuška D. Atlas drevín. 1—Pôvodné Dreviny. Obzor; Bratislava, Slovakia: 1987. p. 360. (In Slovak)

Easlon H.M., Bloom A.J. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Appl. Plant Sci. 2014;2:1400033. doi: 10.3732/apps.1400033. PubMed DOI PMC

Greenwell B.M., Schubert Kabban C.M. Investr: An R Package for Inverse Estimation. R J. 2014;6:90–100. doi: 10.32614/RJ-2014-009. DOI

R Core Team R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2022. [(accessed on 12 January 2022)]. Available online: https://www.R-project.org/

Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA: 2016. [(accessed on 12 January 2022)]. Available online: https://ggplot2.tidyverse.org.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...