Synthesis and antimicrobial activity of molecular hybrids based on eugenol and chloramphenicol pharmacophores
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
finance code 001'
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
APQ-00686-18
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
PubMed
37118368
DOI
10.1007/s12223-023-01057-9
PII: 10.1007/s12223-023-01057-9
Knihovny.cz E-zdroje
- Klíčová slova
- Antimicrobial, Chloramphenicol, Eugenol, Hybridisation, Rapidly growing mycobacteria,
- MeSH
- antibakteriální látky terapeutické užití MeSH
- antiinfekční látky * farmakologie MeSH
- chloramfenikol farmakologie MeSH
- eugenol farmakologie MeSH
- farmakofor MeSH
- methicilin rezistentní Staphylococcus aureus * MeSH
- mikrobiální testy citlivosti MeSH
- Staphylococcus aureus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- antiinfekční látky * MeSH
- chloramfenikol MeSH
- eugenol MeSH
In the constant search for new pharmacological compounds, molecular hybridisation is a well-known technique whereby two or more known pharmacophoric subunits are combined to create a new "hybrid" compound. This hybrid is expected to maintain the characteristics of the original compounds whilst demonstrating improvements to their pharmacological action. Accordingly, we report here a series of molecular hybrid compounds based upon eugenol and chloramphenicol pharmacophores. The hybrid compounds were screened for their in vitro antimicrobial potential against Gram-negative and Gram-positive bacteria and also rapidly growing mycobacteria (RGM). The results highlight that the antimicrobial profiles of the hybrid compounds improve in a very clear fashion when moving through the series. The most prominent results were found when comparing the activity of the hybrid compounds against some of the multidrug-resistant clinical isolates of Pseudomonas aeruginosa, methicillin-resistant clinical isolates of Staphylococcus aureus (MRSA) and clinical isolates of rapidly growing mycobacteria.
Escola de Farmácia Universidade Federal de Ouro Preto Ouro Preto MG 35400 000 Brazil
Instituto de Ciências Biomédicas Universidade Federal de Alfenas Alfenas MG 37130 001 Brazil
Zobrazit více v PubMed
Azevedo-Barbosa H, Ferreira-Silva GA, Silva CF, de Souza TB, Dias DF, de Paula ACC, Ionta M, Carvalho DT (2019) Phenylpropanoid-based sulfonamide promotes cyclin D1 and cyclin E down-regulation and induces cell cycle arrest at G1/S transition in estrogen positive MCF-7 cell line. Toxicol in Vitro 59:150–160. https://doi.org/10.1016/j.tiv.2019.04.023 PubMed DOI
Azevedo-Barbosa H, Vale BPd, Rossi GG, Siqueira FdS, Guterres KB, Campos MMAd, Santos Td, Hawkes JA, Dias DF, Lavorato SN, Souza TBd, Carvalho DT (2021) Design, synthesis, antimicrobial evaluation and in silico studies of eugenol - sulfonamide hybrids. Chem Biodivers 18:e2100066. https://doi.org/10.1002/cbdv.202100066
Berkov-Zrihen Y, Green KD, Labby LJ, Freldman M, Garneau-Tsodikova S, Fridman M (2013) Synthesis and evaluation of hetero- and homodimers of ribosome targeting antibiotics: antimicrobial activity, in vitro inhibition of translation, and drug resistance. J Med Chem 56:5613–5625. https://doi.org/10.1021/jm400707f PubMed DOI
Brady AJ, Gray JD (1957) The treatment of fungous infection of the skin with nicetin. Can Med Assoc J 76:725–729 (PMID: 13426911) PubMed PMC
Brancaglion GA, Toyota AE, Cardoso Machado JV, Fernandes AA, Silveira AT, Boas DFV, dos Santos EG, Caldas IS, Carvalho DT (2018) In vitro and in vivo trypanocidal activities of 8-methoxy-3-(4-nitrobenzoyl)-6-propyl-2H-cromen-2-one, a new synthetic coumarin of low cytotoxicity against mammalian cells. Chem Biol Drug Des 92:1888–1898. https://doi.org/10.1111/cbdd.13362 PubMed DOI
Carone BR, Xu T, Murphy KC, Marinus MG (2014) High incidence of multiple antibiotic resistant cells in cultures of in enterohemorrhagic Escherichia coli O157:H7. Mutat Res 759:1–8. https://doi.org/10.1016/j.mrfmmm.2013.11.008 PubMed DOI
Carvalho LISd, Alvarenga DJ, Carmo LCFd, Oliveira LGd, Silva NC, Dias ALT, Coelho LFL, Souza TBd, Dias DF, Carvalho DT (2017) Antifungal activity of new eugenol-benzoxazole hybrids against candida spp. J Chem ID:5207439. https://doi.org/10.1155/2017/5207439
Knowledgebase - The Antimicrobial Index. Database Article: Chloramphenicol (Chloromycetin). Available Online: http://antibiotics.toku-e.com/antimicrobial_507.html Accessed 21 December 2021.
CLSI (Clinical and Laboratory Standards Institute) Document M24–2A - Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes. 2018. ISBN (Print) 978168440025; ISBN (Electronic) 9781684400263. Available online: https://clsi.org/standards/products/microbiology/documents/m24/ Accessed 14 March 2022
CLSI (Clinical and Laboratory Standards Institute) Document M100 - Performance Standards for Antimicrobial Susceptibility Testing. 2020. 30th Ed. ISBN (Print) 9781684400669; ISBN (Electronic) 9781684400676. Available online: https://clsi.org/standards/products/microbiology/documents/m100/ Accessed 16/03/2022.
Dajani AS, Kauffman RE (1981) The renaissance of chloramphenicol. Pediatr Clin North Am 28:195–202. https://doi.org/10.1016/s0031-3955(16)33970-0 PubMed DOI
Das B, Mandal D, Dash SK, Chattopadhyay S, Tripathy S, Dolai DP, Dey SK, Roy S (2016) Eugenol provokes ROS-mediated membrane damage-associated antibacterial activity against clinically isolated multidrug-resistant staphylococcus aureus strains. Infectious Diseases: Research and Treatment 9. https://doi.org/10.4137/IDRT.S31741
Dinos GP, Athanassopoulos CM, Missiri DA, Giannopoulou PC, Vlachogiannis IA, Papadopoulos GE, Papaioannou D, Kalpaxis DL (2016) Chloramphenicol derivatives as antibacterial and anticancer agents: historic problems and current solutions. Antibiotics 5:20–41. https://doi.org/10.3390/antibiotics5020020 PubMed DOI PMC
Dunkle JA, Xiong L, Mankin AS, Cate JHD (2010) Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc Natl Acad Sci 107:17151–17157. https://doi.org/10.1073/pnas.1007988107 DOI
EUCAST (The European Committee on Antimicrobial Susceptibility Testing). Breakpoint tables for interpretation of MICs and zone diameters. 2020. Version 10.0. Available online: https://www.eucast.org/clinical_breakpoints/ Accessed 16/03/2022.
Faure C, Jamet H, Belle C, d’Hardemare AdM (2020) Exploring coumarins reduction: NaBH DOI
Hazra BG, Pore VS, Dey SK, Data S, Darokar MP, Saikia D, Khanuga SPS, Thakur AP (2004) Bile acid amides derived from chiral amino alcohols: novel antimicrobials and antifungals. Bioorg Med Chem Lett 14:773–777. https://doi.org/10.1016/j.bmcl.2003.11.018 PubMed DOI
Hemaiswarya S, Soudaminikkutty R, Narasumani ML, Doble M (2011) Phenylpropanoids inhibit protofilament formation of Escherichia coli cell division protein FtsZ. J Med Microbiol. 60. https://doi.org/10.1099/jmm.0.030536-0
Hipólito TMM, Bastos GTL, Barbosa TWL, Souza TB, Coelho LFL, Dias ALT, Rodriguez IC, Santos MH, Dias DF, Franco LL, Carvalho DT (2018) Synthesis, activity, and docking studies of eugenol-based glucosides as new agents against Candida Sp. Chem Biol Drug Des 92:1514–1524. https://doi.org/10.1111/cbdd.13318 PubMed DOI
IARC (International Agency for Research on Cancer) Working Group on the Evaluation of Carcinogenic Risks to Humans. Pharmaceutical Drugs. In IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans, No. 50 - Chloramphenicol. 1990. ISBN 9283212509. Available online: https://www.ncbi.nlm.nih.gov/books/NBK526253/ . Accessed 21 December 2021
ISO 10993–5:2009. Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. International Organization for Standardisation. Available online: https://www.iso.org/standard/36406.html Accessed 17/03/2022
Kadin SB (1965) Reduction of conjugated double bonds with sodium borohydride. J Org Chem 31:620–622. https://doi.org/10.1021/jo01340a523 DOI
Kostopoulou ON, Magoulas GE, Papadopoulos GE, Mouzaki A, Dinos GP, Papaioannou D, Kalpaxis DL (2015) Synthesis and evaluation of chloramphenicol homodimers: molecular target, antimicrobial activity, and toxicity against human cells. PLoS ONE 10:e0134526. https://doi.org/10.1371/journal.pone.0134526
Kwon M, Kim H-J, Lee J, Yu J (2006) Enhanced binding affinity of neomycin-chloramphenicol (or linezolid) conjugates to A-site model of 16S ribosomal RNA. Bull Korean Chem Soc 27:1664–1666 DOI
Laferriere CI, Marks MI (1982) Chloramphenicol: properties and clinical use. Pediatr Infect Dis 1:257–264 (PMID: 7177917) PubMed DOI
Lietman PS (1979) Chloramphenicol and the Neonate - 1979 view. Clin Perinatol 6:151–162. https://doi.org/10.1016/s0095-5108(18)31169-2 PubMed DOI
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infec 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x DOI
Marchese A, Barbieri R, Coppo E, Orhan IE, Daglia M, Nabavi SF, Izadi M, Abdollahi M, Nabavi SM, Ajami M (2017) Antimicrobial activity of eugenol and essential oils containing eugenol: a mechanistic viewpoint. Crit Ver Microbiol 43:668–689. https://doi.org/10.1080/1040841X.2017.1295225 DOI
Moore AM, Patel S, Forsberg KJ, Wang B, Bentley G, Razia Y, Qin X, Tarr PI, Dantas G (2013) Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes. PLOS ONE 8:e78822. https://doi.org/10.1371/journal.pone.0078822
Morten H, Tina M, Rikke M (2012) Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Frontiers in Microbiology 3. https://doi.org/10.3389/fmicb.2012.00012
Pelozo MF, Lima GFS, Cordeiro CF, Silva LS, Caldas IS, Carvalho DT, Lavorato SN, Hawkes JA, Franco LL (2021). Synthesis of new hybrid derivatives from metronidazole and eugenol analogues as trypanocidal agents. J Pharm Pharm Sci 24:421–434. https://doi.org/10.18433/jpps31839
Rao KV, Seshadri TR, Thiruvengadam TR (1949) Nuclear oxidation in flavones and related compounds. Proc Indian Acad Sci 30:114–119. https://doi.org/10.1007/BF03049176 DOI
Shaw WV (1984) Bacterial resistance to chloramphenicol. Br Med Bull 40:36–41. https://doi.org/10.1093/oxfordjournals.bmb.a071945 PubMed DOI
Siqueira FS, Rossi GG, Machado AK, Alves CFS, Flores VC, Somavilla VD, Agertt VA, Siqueira JD, Dias RS, Copetti PM, Sagrillo MR, Back DF, Campos MMA (2018) Sulfamethoxazole derivatives complexed with metals: a new alternative against biofilms of rapidly growing mycobacteria. Biofouling 34:893–911. https://doi.org/10.1080/08927014.2018.1514497 PubMed DOI
Souza TBd, Orlandi M, Coelho LFL, Malaquias LCC, Dias ALT, de Carvalho RR, Silva NC, Carvalho DT (2014) Synthesis and in vitro evaluation of antifungal and cytotoxic activities of eugenol glycosides. Med Chem Res 23:496–502. https://doi.org/10.1007/s00044-013-0669-2 DOI
Tsirogianni A, Kournoutou GG, Bougas A, Poulou-Sidiropoulou E, Dinos G, Athanassopoulos CM (2021) New chloramphenicol derivatives with a modified dichloroacetyl tail as potential antimicrobial agents. Antibiotics 10:394–405. https://doi.org/10.3390/antibiotics10040394 PubMed DOI PMC
Twentyman PR, Luscombe M (1987) A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer 56:279–285. https://doi.org/10.1038/bjc.1987.190 PubMed DOI PMC
van Hoek AHAM, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJM (2011) Acquired antibiotic resistance genes: an overview. Front Microbiol 203:1–27. https://doi.org/10.3389/fmicb.2011.00203 DOI
CG Wermuth D Aldous P Raboisson D Rognan 2015 The Practice of Medicinal Chemistry 4 Academic Press London 9780124172050
Zemlicka J, Bhuta A (1982) Sparsophenicol: a new synthetic hybrid antibiotic inhibiting ribosomal peptide synthesis. J Med Chem 25:1123–1125. https://doi.org/10.1021/jm00352a004 PubMed DOI
Zemlicka J, Fernandez-Moyano MC, Ariatti M, Zurenko GE, Grady JE, Ballesta JP (1993) Hybrids of antibiotics inhibiting protein synthesis: synthesis and biological activity. J Med Chem 36:1239–1244. https://doi.org/10.1021/jm00061a015 PubMed DOI
Zhang S, Saathoff JM, He L (2017) Chapter 8 – Molecular hybridisation: an emerging tool for the design of novel therapeutics for Alzheimer’s disease. 8:219–237. https://doi.org/10.1016/B978-0-08-101011-2.00008-8