Multi-population genome-wide association study implicates immune and non-immune factors in pediatric steroid-sensitive nephrotic syndrome
Language English Country Great Britain, England Media electronic
Document type Meta-Analysis, Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural
Grant support
RC2 DK122397
NIDDK NIH HHS - United States
U2C TR002818
NCATS NIH HHS - United States
U54 DK083912
NIDDK NIH HHS - United States
R01 DK076683
NIDDK NIH HHS - United States
R01 DK119380
NIDDK NIH HHS - United States
UL1 TR001873
NCATS NIH HHS - United States
PubMed
37120605
PubMed Central
PMC10148875
DOI
10.1038/s41467-023-37985-w
PII: 10.1038/s41467-023-37985-w
Knihovny.cz E-resources
- MeSH
- Genome-Wide Association Study * MeSH
- Child MeSH
- Genetic Predisposition to Disease MeSH
- Haplotypes MeSH
- Polymorphism, Single Nucleotide MeSH
- Humans MeSH
- Nephrotic Syndrome * genetics MeSH
- Risk Factors MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Pediatric steroid-sensitive nephrotic syndrome (pSSNS) is the most common childhood glomerular disease. Previous genome-wide association studies (GWAS) identified a risk locus in the HLA Class II region and three additional independent risk loci. But the genetic architecture of pSSNS, and its genetically driven pathobiology, is largely unknown. Here, we conduct a multi-population GWAS meta-analysis in 38,463 participants (2440 cases). We then conduct conditional analyses and population specific GWAS. We discover twelve significant associations-eight from the multi-population meta-analysis (four novel), two from the multi-population conditional analysis (one novel), and two additional novel loci from the European meta-analysis. Fine-mapping implicates specific amino acid haplotypes in HLA-DQA1 and HLA-DQB1 driving the HLA Class II risk locus. Non-HLA loci colocalize with eQTLs of monocytes and numerous T-cell subsets in independent datasets. Colocalization with kidney eQTLs is lacking but overlap with kidney cell open chromatin suggests an uncharacterized disease mechanism in kidney cells. A polygenic risk score (PRS) associates with earlier disease onset. Altogether, these discoveries expand our knowledge of pSSNS genetic architecture across populations and provide cell-specific insights into its molecular drivers. Evaluating these associations in additional cohorts will refine our understanding of population specificity, heterogeneity, and clinical and molecular associations.
AP HP Pediatric Nephrology Department Hôpital Robert Debré Paris France
Center for Data Sciences Brigham and Women's Hospital Harvard Medical School Boston MA USA
Centre for Genetics and Genomics Versus Arthritis University of Manchester Manchester UK
Croatian Academy of Medical Sciences Praska 2 3 p p 27 10000 Zagreb Croatia
Department of Advanced Pediatric Medicine Kobe University Graduate School of Medicine Kobe Japan
Department of Biomedical Informatics Harvard Medical School Boston MA USA
Department of Clinical Sciences and Community Health University of Milan Milan Italy
Department of Human Genetics Graduate School of Medicine The University of Tokyo Tokyo Japan
Department of Medicine Boston Children's Hospital Boston MA USA
Department of Nephrology and Renal Transplantation IRCCS Instituto Giannina Gaslini Genoa Italy
Department of Nephrology Centre Hospitalier du Mans Le Mans France
Department of Nephrology Dialysis and Transplant Unit University Hospital of Modena Modena Italy
Department of Pediatric Nephrology University Children's Hospital Skopje Macedonia
Department of Pediatric Nephrology VU University Medical Center Amsterdam The Netherlands
Department of Pediatrics AIIMS New Delhi India
Department of Pediatrics Harvard Medical School Boston MA USA
Department of Pediatrics ISMETT Palermo Italy
Department of Pediatrics Kobe University Graduate School of Medicine Kobe Japan
Department of Pediatrics Nephrology and Hypertension Medical University Gdansk Gdansk Poland
Department of Pediatrics University of Split Split Croatia
Division of Nephrology and Dialysis Unit University of Messina Sicily Italy
Division of Nephrology Beth Israel Deaconess Medical Center Boston MA USA
Division of Nephrology Boston Children's Hospital Boston MA USA
Division of Transplantation Department of Surgery University of Pennsylvania Philadelphia PA USA
Genome Medical Science Project Tokyo Japan
Hyogo Prefectural Kobe Children's Hospital Kobe Japan
Institute for Genomic Health Icahn School of Medicine at Mount Sinai New York NY USA
Institute of Clinical Medicine Faculty of Medicine Vilnius University Vilnius Lithuania
Laboratory on Molecular Nephrology IRCCS Instituto Giannina Gaslini Genoa Italy
Program in Medical and Population Genetics Broad Institute of MIT and Harvard Cambridge MA USA
See more in PubMed
Noone DG, Iijima K, Parekh R. Idiopathic nephrotic syndrome in children. Lancet. 2018;392:61–74. doi: 10.1016/S0140-6736(18)30536-1. PubMed DOI
Gipson DS, et al. Gaining the PROMIS perspective from children with nephrotic syndrome: a Midwest pediatric nephrology consortium study. Health Qual. Life Outcomes. 2013;11:30. doi: 10.1186/1477-7525-11-30. PubMed DOI PMC
Ruth EM, Landolt MA, Neuhaus TJ, Kemper MJ. Health-related quality of life and psychosocial adjustment in steroid-sensitive nephrotic syndrome. J. Pediatr. 2004;145:778–783. doi: 10.1016/j.jpeds.2004.08.022. PubMed DOI
Kerlin BA, et al. Epidemiology and risk factors for thromboembolic complications of childhood nephrotic syndrome: a Midwest Pediatric Nephrology Consortium (MWPNC) study. J. Pediatr. 2009;155:105–110. doi: 10.1016/j.jpeds.2009.01.070. PubMed DOI PMC
Hingorani SR, Weiss NS, Watkins SL. Predictors of peritonitis in children with nephrotic syndrome. Pediatr. Nephrol. Berl. Ger. 2002;17:678–682. doi: 10.1007/s00467-002-0890-6. PubMed DOI
Rheault MN, et al. AKI in children hospitalized with nephrotic syndrome. Clin. J. Am. Soc. Nephrol. CJASN. 2015;10:2110–2118. doi: 10.2215/CJN.06620615. PubMed DOI PMC
Sato M, et al. Prognosis and acute complications at the first onset of idiopathic nephrotic syndrome in children: a nationwide survey in Japan (JP-SHINE study) Nephrol. Dial. Transplant. 2021;36:475–481. doi: 10.1093/ndt/gfz185. PubMed DOI
Ding WY, et al. Initial steroid sensitivity in children with steroid-resistant nephrotic syndrome predicts post-transplant recurrence. J. Am. Soc. Nephrol. JASN. 2014;25:1342–1348. doi: 10.1681/ASN.2013080852. PubMed DOI PMC
Korsgaard T, Andersen RF, Joshi S, Hagstrøm S, Rittig S. Childhood onset steroid-sensitive nephrotic syndrome continues into adulthood. Pediatr. Nephrol. Berl. Ger. 2019;34:641–648. doi: 10.1007/s00467-018-4119-8. PubMed DOI
Ishikura K, et al. Morbidity in children with frequently relapsing nephrosis: 10-year follow-up of a randomized controlled trial. Pediatr. Nephrol. Berl. Ger. 2015;30:459–468. doi: 10.1007/s00467-014-2955-8. PubMed DOI
Fakhouri F, et al. Steroid-sensitive nephrotic syndrome: from childhood to adulthood. Am. J. Kidney Dis. J. Natl Kidney Found. 2003;41:550–557. doi: 10.1053/ajkd.2003.50116. PubMed DOI
Kyrieleis HAC, et al. Long-term outcome of biopsy-proven, frequently relapsing minimal-change nephrotic syndrome in children. Clin. J. Am. Soc. Nephrol. CJASN. 2009;4:1593–1600. doi: 10.2215/CJN.05691108. PubMed DOI PMC
Skrzypczyk P, et al. Long-term outcomes in idiopathic nephrotic syndrome: from childhood to adulthood. Clin. Nephrol. 2014;81:166–173. doi: 10.5414/CN108044. PubMed DOI
Trompeter RS, Lloyd BW, Hicks J, White RH, Cameron JS. Long-term outcome for children with minimal-change nephrotic syndrome. Lancet Lond. Engl. 1985;1:368–370. doi: 10.1016/S0140-6736(85)91387-X. PubMed DOI
Aydin M, et al. The long-term outcome of childhood nephrotic syndrome in Germany: a cross-sectional study. Clin. Exp. Nephrol. 2019;23:676–688. doi: 10.1007/s10157-019-01696-8. PubMed DOI
Lee JM, Kronbichler A, Shin JI, Oh J. Review on long-term non-renal complications of childhood nephrotic syndrome. Acta Paediatr. Oslo Nor. 1992. 2020;109:460–470. PubMed
Hjorten R, Anwar Z, Reidy KJ. Long-term outcomes of childhood onset nephrotic syndrome. Front. Pediatr. 2016;4:53. doi: 10.3389/fped.2016.00053. PubMed DOI PMC
Shalhoub RJ. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet Lond. Engl. 1974;2:556–560. doi: 10.1016/S0140-6736(74)91880-7. PubMed DOI
Iijima K, Sako M, Kamei K, Nozu K. Rituximab in steroid-sensitive nephrotic syndrome: lessons from clinical trials. Pediatr. Nephrol. Berl. Ger. 2018;33:1449–1455. doi: 10.1007/s00467-017-3746-9. PubMed DOI PMC
Gbadegesin RA, et al. HLA-DQA1 and PLCG2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome. J. Am. Soc. Nephrol. JASN. 2015;26:1701–1710. doi: 10.1681/ASN.2014030247. PubMed DOI PMC
Debiec H, et al. Transethnic, genome-wide analysis reveals immune-related risk alleles and phenotypic correlates in pediatric steroid-sensitive nephrotic syndrome. J. Am. Soc. Nephrol. JASN. 2018;29:2000–2013. doi: 10.1681/ASN.2017111185. PubMed DOI PMC
Jia X, et al. Strong association of the HLA-DR/DQ locus with childhood steroid-sensitive nephrotic syndrome in the japanese population. J. Am. Soc. Nephrol. JASN. 2018;29:2189–2199. doi: 10.1681/ASN.2017080859. PubMed DOI PMC
Jia X, et al. Common risk variants in NPHS1 and TNFSF15 are associated with childhood steroid-sensitive nephrotic syndrome. Kidney Int. 2020;98:1308–1322. doi: 10.1016/j.kint.2020.05.029. PubMed DOI PMC
Dufek S, et al. Genetic identification of two novel loci associated with steroid-sensitive nephrotic syndrome. J. Am. Soc. Nephrol. JASN. 2019;30:1375–1384. doi: 10.1681/ASN.2018101054. PubMed DOI PMC
Julia A, et al. A genome-wide association study identifies a novel locus at 6q22.1 associated with ulcerative colitis. Hum. Mol. Genet. 2014;23:6927–6934. doi: 10.1093/hmg/ddu398. PubMed DOI
Schreiber TH, Podack ER. Immunobiology of TNFSF15 and TNFRSF25. Immunol. Res. 2013;57:3–11. doi: 10.1007/s12026-013-8465-0. PubMed DOI
Ovunc B, et al. Mutation analysis of NPHS1 in a worldwide cohort of congenital nephrotic syndrome patients. Nephron Clin. Pract. 2012;120:c139–c146. doi: 10.1159/000337379. PubMed DOI PMC
Mägi R, et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet. 2017;26:3639–3650. doi: 10.1093/hmg/ddx280. PubMed DOI PMC
Ghoussaini M, et al. Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics. Nucleic Acids Res. 2021;49:D1311–D1320. doi: 10.1093/nar/gkaa840. PubMed DOI PMC
Ferland RJ, et al. Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat. Genet. 2004;36:1008–1013. doi: 10.1038/ng1419. PubMed DOI
Kukimoto-Niino M, et al. Cryo-EM structure of the human ELMO1-DOCK5-Rac1 complex. Sci. Adv. 2021;7:eabg3147. doi: 10.1126/sciadv.abg3147. PubMed DOI PMC
Sharma KR, et al. ELMO1 protects renal structure and ultrafiltration in kidney development and under diabetic conditions. Sci. Rep. 2016;6:37172. doi: 10.1038/srep37172. PubMed DOI PMC
Shimazaki A, et al. Genetic variations in the gene encoding ELMO1 are associated with susceptibility to diabetic nephropathy. Diabetes. 2005;54:1171–1178. doi: 10.2337/diabetes.54.4.1171. PubMed DOI
Yu C-C, et al. Abatacept in B7-1–positive proteinuric kidney disease. N. Engl. J. Med. 2013;369:2416–2423. doi: 10.1056/NEJMoa1304572. PubMed DOI PMC
Spada R, et al. NKG2D ligand overexpression in lupus nephritis correlates with increased NK cell activity and differentiation in kidneys but not in the periphery. J. Leukoc. Biol. 2015;97:583–598. doi: 10.1189/jlb.4A0714-326R. PubMed DOI PMC
Rayego-Mateos S, et al. Role of epidermal growth factor receptor (EGFR) and its ligands in kidney inflammation and damage. Mediators Inflamm. 2018;2018:8739473. doi: 10.1155/2018/8739473. PubMed DOI PMC
Ju W, et al. Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Sci. Transl. Med. 2015;7:316ra193. doi: 10.1126/scitranslmed.aac7071. PubMed DOI PMC
Rijvers L, et al. The Role of Autoimmunity-Related Gene CLEC16A in the B Cell Receptor-Mediated HLA Class II Pathway. J. Immunol. Baltim. Md 1950. 2020;205:945–956. PubMed
Tam RCY, et al. Human CLEC16A regulates autophagy through modulating mTOR activity. Exp. Cell Res. 2017;352:304–312. doi: 10.1016/j.yexcr.2017.02.017. PubMed DOI
Pearson G, et al. Clec16a, Nrdp1, and USP8 Form a Ubiquitin-Dependent Tripartite Complex That Regulates β-Cell Mitophagy. Diabetes. 2018;67:265–277. doi: 10.2337/db17-0321. PubMed DOI PMC
Steimle V, Siegrist CA, Mottet A, Lisowska-Grospierre B, Mach B. Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science. 1994;265:106–109. doi: 10.1126/science.8016643. PubMed DOI
Edgar AJ, Birks EJ, Yacoub MH, Polak JM. Cloning of dexamethasone-induced transcript: a novel glucocorticoid-induced gene that is upregulated in emphysema. Am. J. Respir. Cell Mol. Biol. 2001;25:119–124. doi: 10.1165/ajrcmb.25.1.4417. PubMed DOI
Han, S. K. et al. Mapping genomic regulation of kidney disease and traits through high-resolution and interpretable eQTLs. Nat. Commun.14, 2229 (2023). PubMed PMC
GTEx Consortium, et al. Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nat. Genet. 2018;50:956–967. doi: 10.1038/s41588-018-0154-4. PubMed DOI PMC
Schmiedel BJ, et al. Impact of genetic polymorphisms on human immune cell gene expression. Cell. 2018;175:1701–1715.e16. doi: 10.1016/j.cell.2018.10.022. PubMed DOI PMC
Fernández JM, et al. The BLUEPRINT data analysis portal. Cell Syst. 2016;3:491–495.e5. doi: 10.1016/j.cels.2016.10.021. PubMed DOI PMC
Li X, et al. Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways. J. Allergy Clin. Immunol. 2021;147:894–909. doi: 10.1016/j.jaci.2020.07.030. PubMed DOI PMC
Das, S., Miller, M. & Broide, D. H. Chromosome 17q21 Genes ORMDL3 and GSDMB in asthma and immune diseases. Adv. Immunol.135 1–52 (2017). PubMed
Corces MR, et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 2016;48:1193–1203. doi: 10.1038/ng.3646. PubMed DOI PMC
Muto Y, et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat. Commun. 2021;12:2190. doi: 10.1038/s41467-021-22368-w. PubMed DOI PMC
Han, S. K. et al. Quality assessment and refinement of chromatin accessibility data using a sequence-based predictive model. Proc, Natl. Acad. Sci. USA 119, e2212810119 (2022). PubMed PMC
Luo, Y. et al. A high-resolution HLA reference panel capturing global population diversity enables multi-ethnic fine-mapping in HIV host response. 10.1101/2020.07.16.20155606 (2020). PubMed PMC
Frommer L, Flesch BK, König J, Kahaly GJ. Amino acid polymorphisms in Hla class ii differentiate between thyroid and polyglandular autoimmunity. J. Clin. Endocrinol. Metab. 2020;105:dgz164. doi: 10.1210/clinem/dgz164. PubMed DOI
Badenhoop K, et al. Susceptibility and resistance alleles of human leukocyte antigen (HLA) DQA1 and HLA DQB1 are shared in endocrine autoimmune disease. J. Clin. Endocrinol. Metab. 1995;80:2112–2117. PubMed
Rodrigues CHM, Pires DEV, Ascher DB. DynaMut2: assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Sci. Publ. Protein Soc. 2021;30:60–69. doi: 10.1002/pro.3942. PubMed DOI PMC
Ren S, et al. Nephrotic syndrome associated with Kimura’s disease: a case report and literature review. BMC Nephrol. 2018;19:316. doi: 10.1186/s12882-018-1123-y. PubMed DOI PMC
Gallon L, Leventhal J, Skaro A, Kanwar Y, Alvarado A. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N. Engl. J. Med. 2012;366:1648–1649. doi: 10.1056/NEJMc1202500. PubMed DOI
Xu X, et al. Molecular insights into genome-wide association studies of chronic kidney disease-defining traits. Nat. Commun. 2018;9:4800. doi: 10.1038/s41467-018-07260-4. PubMed DOI PMC
Neale Lab. Relationship of LDSR Results with Sample Size. UKB Heritabilityhttps://nealelab.github.io/UKBB_ldsc/viz_sampsize.html (2022).
1000 Genomes Project Consortium. et al. A global reference for human genetic variation. Nature. 2015;526:68–74. doi: 10.1038/nature15393. PubMed DOI PMC
Wojcik GL, et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature. 2019;570:514–518. doi: 10.1038/s41586-019-1310-4. PubMed DOI PMC
Purcell S, et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007;81:559–575. doi: 10.1086/519795. PubMed DOI PMC
Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature,590, 290–299 (2021) PubMed PMC
Das S, et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016;48:1284–1287. doi: 10.1038/ng.3656. PubMed DOI PMC
Fuchsberger C, Abecasis GR, Hinds DA. minimac2: faster genotype imputation. Bioinformatics. 2015;31:782–784. doi: 10.1093/bioinformatics/btu704. PubMed DOI PMC
Hinrichs AS, et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 2006;34:D590–D598. doi: 10.1093/nar/gkj144. PubMed DOI PMC
Manichaikul A, et al. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26:2867–2873. doi: 10.1093/bioinformatics/btq559. PubMed DOI PMC
Clarke L, et al. The international Genome sample resource (IGSR): a worldwide collection of genome variation incorporating the 1000 Genomes Project data. Nucleic Acids Res. 2017;45:D854–D859. doi: 10.1093/nar/gkw829. PubMed DOI PMC
Zhou W, et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 2018;50:1335–1341. doi: 10.1038/s41588-018-0184-y. PubMed DOI PMC
Abraham G, Qiu Y, Inouye M. FlashPCA2: principal component analysis of Biobank-scale genotype datasets. Bioinformatics Oxf. Engl. 2017;33:2776–2778. doi: 10.1093/bioinformatics/btx299. PubMed DOI
Delaneau O, Marchini J, Zagury J-F. A linear complexity phasing method for thousands of genomes. Nat. Methods. 2011;9:179–181. doi: 10.1038/nmeth.1785. PubMed DOI
Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5:e1000529. doi: 10.1371/journal.pgen.1000529. PubMed DOI PMC
Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–2191. doi: 10.1093/bioinformatics/btq340. PubMed DOI PMC
Pruim RJ, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336–2337. doi: 10.1093/bioinformatics/btq419. PubMed DOI PMC
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011;88:76–82. doi: 10.1016/j.ajhg.2010.11.011. PubMed DOI PMC
Yang J, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 2012;44:369–375. doi: 10.1038/ng.2213. PubMed DOI PMC
Bulik-Sullivan BK, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 2015;47:291–295. doi: 10.1038/ng.3211. PubMed DOI PMC
Wen X, Pique-Regi R, Luca F. Integrating molecular QTL data into genome-wide genetic association analysis: probabilistic assessment of enrichment and colocalization. PLOS Genet. 2017;13:e1006646. doi: 10.1371/journal.pgen.1006646. PubMed DOI PMC
Gadegbeku CA, et al. Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney Int. 2013;83:749–756. doi: 10.1038/ki.2012.428. PubMed DOI PMC
Wen X, Lee Y, Luca F, Pique-Regi R. Efficient integrative multi-SNP association analysis via deterministic approximation of posteriors. Am. J. Hum. Genet. 2016;98:1114–1129. doi: 10.1016/j.ajhg.2016.03.029. PubMed DOI PMC
Shi H, et al. Localizing components of shared transethnic genetic architecture of complex traits from GWAS summary data. Am. J. Hum. Genet. 2020;106:805–817. doi: 10.1016/j.ajhg.2020.04.012. PubMed DOI PMC
Maller JB, et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 2012;44:1294–1301. doi: 10.1038/ng.2435. PubMed DOI PMC
Ting YT, et al. A molecular basis for the T cell response in HLA-DQ2.2 mediated celiac disease. Proc. Natl Acad. Sci. USA. 2020;117:3063–3073. doi: 10.1073/pnas.1914308117. PubMed DOI PMC
Mooers BHM. Shortcuts for faster image creation in PyMOL. Protein Sci. Publ. Protein Soc. 2020;29:268–276. doi: 10.1002/pro.3781. PubMed DOI PMC
Halgren TA. MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J. Comput. Chem. 1999;20:730–748. doi: 10.1002/(SICI)1096-987X(199905)20:7<730::AID-JCC8>3.0.CO;2-T. PubMed DOI
Johansson MU, Zoete V, Michielin O, Guex N. Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinformatics. 2012;13:173. doi: 10.1186/1471-2105-13-173. PubMed DOI PMC
Pol-Fachin L, Fernandes CL, Verli H. GROMOS96 43a1 performance on the characterization of glycoprotein conformational ensembles through molecular dynamics simulations. Carbohydr. Res. 2009;344:491–500. doi: 10.1016/j.carres.2008.12.025. PubMed DOI
Jubb HC, et al. Arpeggio: a web server for calculating and visualising interatomic interactions in protein structures. J. Mol. Biol. 2017;429:365–371. doi: 10.1016/j.jmb.2016.12.004. PubMed DOI PMC
Ruan Y, et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 2022;54:573–580. doi: 10.1038/s41588-022-01054-7. PubMed DOI PMC
Ge T, Chen C-Y, Ni Y, Feng Y-CA, Smoller JW. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 2019;10:1776. doi: 10.1038/s41467-019-09718-5. PubMed DOI PMC