Sequence capture: Obsolete or irreplaceable? A thorough validation across phylogenetic distances and its applicability to hybrids and allopolyploids

. 2023 Aug ; 23 (6) : 1348-1360. [epub] 20230430

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37122140

Grantová podpora
RVO67985904 Akademie Věd České Republiky
GAČR 19-18453S Grantová Agentura České Republiky
GAČR 19-21552S Grantová Agentura České Republiky
EXCELLENCE CZ.02.1.01/0.0/0.0/15_003/0000460 OP RD Ministerstvo Školství, Mládeže a Tělovýchovy

As whole-genome sequencing has become pervasive, some have suggested that reduced genomic representation approaches, for example, sequence capture, are becoming obsolete. In the present study, we argue that these techniques still provide excellent tools in terms of price and quality of data as well as in their ability to provide markers with specific features, as required, for example, in phylogenomics. A potential drawback of the wide-scale application of reduced representation approaches could be their drop in efficiency with increasing phylogenetic distance from the reference species. While some studies have focused on the degree and performance of reduced representation techniques in such situations, to our knowledge, none of them evaluated their applicability to inter-specific hybrids and polyploids. This highlights a significant gap in current knowledge since there is increasing evidence for the frequent occurrence of natural hybrids and polyploids, as well as for the major importance of both phenomena in evolution. The main aim of the present study was to carry out a thorough validation of SEQcap applicability to (1) a set of non-model taxa with a wide range of phylogenetic relatedness and (2) inter-specific hybrids of various ploidies and genomic compositions. Considering the latter point, we especially focused on mechanisms causing allelic bias and consequent allelic dropout, as these could have confounding effects with respect to the evolutionary genomic dynamics of hybrids, especially in asexuals, which virtually reproduce as a frozen F1 generation.

Zobrazit více v PubMed

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410.

Andermann, T., Torres Jiménez, M. F., Matos-Maraví, P., Batista, R., Blanco-Pastor, J. L., Gustafsson, A. L. S., Kistler, L., Liberal, I. M., Oxelman, B., Bacon, C. D., & Antonelli, A. (2020). A guide to carrying out a phylogenomic target sequence capture project (Vol. 10, p. 1407). Frontiers in Genetics.

Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G., & Hohenlohe, P. A. (2016). Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics, 17, 81-92.

Andrews, S. F., Krueger, F., Seconds-Pichon, A., Biggins, F., & Wingett, S. F. (2014). A quality control tool for high throughput sequence data. Analytical Biochemistry, 548, 38-43.

Bǎnǎrescu, P. (1992). Zoogeography of fresh waters: Distribution and dispersal of freshwater animals in North America and Eurasia (Vol. 2). AULA-Verlag.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19, 455-477.

Bartoš, O., Röslein, J., Kotusz, J., Paces, J., Pekárik, L., Petrtýl, M., Halačka, K., Štefková, K. E., Mendel, J., Boroń, A., Juchno, D., Leska, A., Jablonska, O., Benes, V., Šídová, M., & Janko, K. (2019). The legacy of sexual ancestors in phenotypic variability, gene expression, and Homoeolog regulation of asexual hybrids and Polyploids. Molecular Biology and Evolution, 36, 1902-1920.

Bi, K., Vanderpool, D., Singhal, S., Linderoth, T., Moritz, C., & Good, J. M. (2012). Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales. BMC Genomics, 13, 403.

Bohlen, J., Li, F., & Šlechtová, V. (2019). Phylogenetic position of the genus Bibarba as revealed from molecular genetic data (Teleostei: Cobitidae). Ichthyological Exploration of Freshwaters, 29, 297-304.

Bohlen, J., Perdices, A., Doadrio, I., & Economidis, P. S. (2006). Vicariance, colonisation, and fast local speciation in Asia minor and the Balkans as revealed from the phylogeny of spined loaches (Osteichthyes; Cobitidae). Molecular Phylogenetics and Evolution, 39, 552-561.

Bohlen, J., & Rab, P. (2001). Species and hybrid richness in spined loaches of the genus Cobitis (Teleostei: Cobitidae), with a checklist of European forms and suggestions for conservation. Journal of Fish Biology, 59, 75-89.

Borowiec, M. L. (2016). AMAS: A fast tool for alignment manipulation and computing of summary statistics. PeerJ, 4, e1660.

Bouckaert, R. R. (2010). DensiTree: Making sense of sets of phylogenetic trees. Bioinformatics, 26, 1372-1373.

Bragg, J. G., Potter, S., Bi, K., & Moritz, C. (2016). Exon capture phylogenomics: Efficacy across scales of divergence. Molecular Ecology Resources, 16, 1059-1068.

Brandt, D. Y. C., Aguiar, V. R. C., Bitarello, B. D., Nunes, K., Goudet, J., & Meyer, D. (2015). Mapping bias overestimates reference allele frequencies at the HLA genes in the 1000 genomes project phase I data. G3: Genes|Genomes|Genetics, 5, 931-941.

Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34, i884-i890.

Chen, Y.-X., & Chen, Y.-F. (2007). Bibarba bibarba: A new genus and species of Cobitinae (Pisces: Cypriniformes: Cobitidae) from Guangxi Province (China). Zoologischer Anzeiger, 246, 103-113.

Choquet, M., Smolina, I., Dhanasiri, A. K., Blanco-Bercial, L., Kopp, M., Jueterbock, A., Sundaram, A. Y. M., & Hoarau, G. (2019). Towards population genomics in non-model species with large genomes: A case study of the marine zooplankton Calanus finmarchicus. Royal Society Open Science, 6(2), 180608.

Comito, R., Darbyshire, I., Kiel, C., McDade, L., & Fisher, A. E. (2022). A RADseq phylogeny of Barleria (Acanthaceae) resolves fine-scale relationships. Molecular Phylogenetics and Evolution, 169, 107428.

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., & 1000 Genomes Project Analysis Group. (2011). The variant call format and VCFtools. Bioinformatics, 27, 2156-2158.

Du, K., Stöck, M., Kneitz, S., Klopp, C., Woltering, J. M., Adolfi, M. C., & Schartl, M. (2020). The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nature Ecology & Evolution, 4(6), 841-852.

Edwards, S. V. (2009). Is a new and general theory of molecular systematics emerging? Evolution, 63, 1-19.

Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32, 3047-3048.

Gautier, M., Gharbi, K., Cezard, T., Foucaud, J., Kerdelhué, C., Pudlo, P., Cornuet, J.-M., & Estoup, A. (2013). The effect of RAD allele dropout on the estimation of genetic variation within and between populations. Molecular Ecology, 22, 3165-3178.

Giarla, T. C., & Esselstyn, J. A. (2015). The challenges of resolving a rapid, recent radiation: Empirical and simulated phylogenomics of Philippine shrews. Systematic Biology, 64, 727-740.

Glon, H., Quattrini, A., Rodríguez, E., Titus, B. M., & Daly, M. (2021). Comparison of sequence-capture and ddRAD approaches in resolving species and populations in hexacorallian anthozoans. Molecular Phylogenetics and Evolution, 163, 107233.

Harvey, M. G., Smith, B. T., Glenn, T. C., Faircloth, B. C., & Brumfield, R. T. (2016). Sequence capture versus restriction site associated DNA sequencing for shallow systematics. Systematic Biology, 65, 910-924.

Henning, F., Lee, H. J., Franchini, P., & Meyer, A. (2014). Genetic mapping of horizontal stripes in Lake Victoria cichlid fishes: Benefits and pitfalls of using RAD markers for dense linkage mapping. Molecular Ecology, 23, 5224-5240.

Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518-522.

Hwang, S., Kim, E., Lee, I., & Marcotte, E. M. (2015). Systematic comparison of variant calling pipelines using gold standard personal exome variants. Scientific Reports, 5, 17875.

Janko, K., Bartoš, O., Kočí, J., Roslein, J., Drdová, E. J., Kotusz, J., Eisner, J., & Štefková-Kašparová, E. (2021). Genome fractionation and loss of heterozygosity in hybrids and polyploids: Mechanisms, consequences for selection, and link to gene function. Molecular Biology and Evolution, 38(12), 5255-5274.

Janko, K., Flajšhans, M., Choleva, L., Bohlen, J., Šlechtová, V., Rábová, M., Lajbner, Z., Šlechta, V., Ivanova, P., Dobrovolov, I., Culling, M., Persat, H., Kotusz, J., & Ráb, P. (2007). Diversity of European spined loaches (genus Cobitis L.): An update of the geographic distribution of the Cobitis taenia hybrid complex with a description of new molecular tools for species and hybrid determination. Journal of Fish Biology, 71, 387-408.

Janko, K., Kotusz, J., De Gelas, K., Šlechtová, V., Opoldusová, Z., Drozd, P., Choleva, L., Popiołek, M., & Baláž, M. (2012). Dynamic formation of asexual diploid and polyploid lineages: Multilocus analysis of Cobitis reveals the mechanisms maintaining the diversity of clones. PLoS One, 7, e45384.

Janko, K., Pačes, J., Wilkinson-Herbots, H., Costa, R. J., Roslein, J., Drozd, P., Iakovenko, N., Rídl, J., Hroudová, M., Kočí, J., Reifová, R., Šlechtová, V., & Choleva, L. (2018). Hybrid asexuality as a primary postzygotic barrier between nascent species: On the interconnection between asexuality, hybridization and speciation. Molecular Ecology, 27, 248-263.

Jiang, J., Yuan, H., Zheng, X., Wang, Q., Kuang, T., Li, J., Liu, J., Song, S., Wang, W., Cheng, F., Li, H., Huang, J., & Li, C. (2019). Gene markers for exon capture and phylogenomics in ray-finned fishes. Ecology and Evolution, 9, 3973-3983.

Jiménez-Mena, B., Flávi, H., Henriques, R., Manuzzi, A., Ramos, M., Meldrup, D., Edson, J., Palsson, S., Ólafsdóttir, G. A., Ovenden, J. R., & Nielsen, E. E. (2022). Fishing for DNA? Designing baits for population genetics in target enrichment experiments: Guidelines, considerations and the new tool supeRbaits. Molecular Ecology Resources, 22(5), 2105-2119.

Johnson, M. G., Pokorny, L., Dodsworth, S., Botigue, L. R., Cowan, R. S., Devault, A., Eiserhardt, W. L., Epitawalage, N., Forest, F., Kim, J. T., Leebens-Mack, J. H., Leitch, I. J., Maurin, O., Soltis, D. E., Soltis, P. S., Wong, G. K., Baker, W. J., & Wickett, N. J. (2019). A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Systematic Biology, 68(4), 594-606.

Jones, M. R., & Good, J. M. (2016). Targeted capture in evolutionary and ecological genomics. Molecular Ecology, 25, 185-202.

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587-589.

Kočí, J., Röslein, J., Pačes, J., Kotusz, J., Halačka, K., Koščo, J., Fedorčák, J., Iakovenko, N., & Janko, K. (2020). No evidence for accumulation of deleterious mutations and fitness degradation in clonal fish hybrids: Abandoning sex without regrets. Molecular Ecology, 29(16), 3038-3055.

Kottelat, M. (1990). Indochinese nemacheilines. A revision of nemacheiline loaches (Pisces: Cypriniformes) of Thailand, Burma, Laos, Cambodia and southern Viet Nam. Verlag Dr. Friedrich Pfeil, München, 1-262.

Kottelat, M. (2012). Conspectus cobitidum: An inventory of the loaches of the world (Teleostei: Cypriniformes: Cobitoidei). Raffles Bulletin of Zoology Supplement, 26, 1-199.

Kottelat, M., & Freyhof, J. (2007). Handbook of European freshwater fishes (p. 646). Kottelat & Freyhof.

Kotusz, J. (2008). Morphological relationships between Polyploid hybrid Spined loaches of the GenusCobitis(Teleostei: Cobitidae) and their parental species. Annales Zoologici, 58, 891-905.

Kriventseva, E. V., Kuznetsov, D., Tegenfeldt, F., Manni, M., Dias, R., Simão, F. A., & Zdobnov, E. M. (2019). OrthoDB v10: Sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Research, 47, D807-D811.

Ku, C.-S., Wu, M., Cooper, D. N., Naidoo, N., Pawitan, Y., Pang, B., Iacopetta, B., & Soong, R. (2012). Exome versus transcriptome sequencing in identifying coding region variants. Expert Review of Molecular Diagnostics, 12, 241-251.

Kuroda, M., Fujimoto, T., Murakami, M., Yamaha, E., & Arai, K. (2018). Clonal reproduction assured by sister chromosome pairing in dojo loach, a teleost fish. Chromosome Research, 26, 243-253.

Laczkó, L., Jordán, S., & Sramkó, G. (2022). The RadOrgMiner pipeline: Automated genotyping of organellar loci from RADseq data. Methods in Ecology and Evolution, 13(9), 1962-1975.

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics, 25, 1754-1760.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078-2079.

Li, W., & Godzik, A. (2006). Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22, 1658-1659.

Lien, S., Koop, B. F., Sandve, S. R., Miller, J. R., Kent, M. P., Nome, T., & Davidson, W. S. (2016). The Atlantic salmon genome provides insights into rediploidization. Nature, 533(7602), 200-205.

Lu, M., Li, Z., Zhu, Z. Y., Peng, F., Wang, Y., Li, X. Y., Wang, Z. W., Zhang, X. J., Zhou, L., & Gui, J. F. (2022). Changes in ploidy drive reproduction transition and genomic diversity in a polyploid fish complex. Molecular Biology and Evolution, 39(9), msac188.

Majtánová, Z., Choleva, L., Symonová, R., Ráb, P., Kotusz, J., Pekárik, L., & Janko, K. (2016). Asexual reproduction does not apparently increase the rate of chromosomal evolution: Karyotype stability in diploid and triploid clonal hybrid fish (Cobitis, Cypriniformes, Teleostei). PLoS One, 11, e0146872.

Mamanova, L., Coffey, A. J., Scott, C. E., Kozarewa, I., Turner, E. H., Kumar, A., Howard, E., Shendure, J., & Turner, D. J. (2010). Target-enrichment strategies for next-generation sequencing. Nature Methods, 7, 111-118.

Mastretta-Yanes, A., Arrigo, N., Alvarez, N., Jorgensen, T. H., Piñero, D., & Emerson, B. C. (2015). Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference. Molecular Ecology Resources, 15, 28-41.

Minh, B. Q., Hahn, M. W., & Lanfear, R. (2020). New methods to calculate concordance factors for phylogenomic datasets. Molecular Biology and Evolution, 37(9), 2727-2733.

Molloy, E., & Warnow, T. (2017). To include or not to include: The impact of gene filtering on species tree estimation methods. Systematic Biology, 67(2), 285-303.

Mu, W., Li, B., Wu, S., Chen, J., Sain, D., Xu, D., Black, M. H., Karam, R., Gillespie, K., Hagman, K. D. F., Guidugli, L., Pronold, M., Elliott, A., & Lu, H. M. (2019). Detection of structural variation using target captured next-generation sequencing data for genetic diagnostic testing. Genetics in Medicine, 21(7), 1603-1610.

Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268-274.

Paradis, E., & Schliep, K. (2019). Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526-528.

Perdices, A., Bohlen, J., Šlechtová, V., & Doadrio, I. (2016). Molecular evidence for multiple origins of the European Spined loaches (Teleostei, Cobitidae). PLoS One, 11, e0144628.

Portik, D. M., Smith, L. L., & Bi, K. (2016). An evaluation of transcriptome-based exon capture for frog phylogenomics across multiple scales of divergence (class: Amphibia, order: Anura). Molecular Ecology Resources, 16, 1069-1083.

Powell, J. H., Amish, S. J., Haynes, G. D., Luikart, G., & Latch, E. K. (2016). Candidate adaptive genes associated with lineage divergence: Identifying SNPs via next-generation targeted resequencing in mule deer (Odocoileus hemionus). Molecular Ecology Resources, 16, 1165-1172.

Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 26, 841-842.

R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/

Rosenquist, R., Cuppen, E., Buettner, R., Caldas, C., Dreau, H., Elemento, O., Frederix, G., Grimmond, S., Haferlach, T., Jobanputra, V., Meggendorfer, M., Mullighan, C. G., Wordsworth, S., & Schuh, A. (2022). Clinical utility of whole-genome sequencing in precision oncology. Seminars in Cancer Biology, 84, 32-39.

Sarver, B. A. J., Keeble, S., Cosart, T., Tucker, P. K., Dean, M. D., & Good, J. M. (2017). Phylogenomic insights into mouse evolution using a Pseudoreference approach. Genome Biology and Evolution, 9, 726-739.

Schadt, E. E., Turner, S., & Kasarskis, A. (2011). A window into third generation sequencing. Human Molecular Genetics, 20, 853.

Schwarze, K., Buchanan, J., Taylor, J. C., & Wordsworth, S. (2018). Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genetics in Medicine, 20(10), 1122-1130.

Šlechtová, V., Bohlen, J., & Perdices, A. (2008). Molecular phylogeny of the freshwater fish family Cobitidae (Cypriniformes: Teleostei): Delimitation of genera, mitochondrial introgression and evolution of sexual dimorphism. Molecular Phylogenetics and Evolution, 47, 812-831.

Šlechtová, V., Bohlen, J., & Tan, H. H. (2007). Families of Cobitoidea (Teleostei; Cypriniformes) as revealed from nuclear genetic data and the position of the mysterious genera Barbucca, Psilorhynchus, Serpenticobitis and Vaillantella. Molecular Phylogenetics and Evolution, 44, 1358-1365. https://doi.org/10.1016/j.ympev.2007.12.018

Smith, H. E., & Yun, S. (2017). Evaluating alignment and variant-calling software for mutation identification in C. elegans by whole-genome sequencing. PLoS One, 12, e0174446.

Stothard, P. (2000). The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques, 28, 1102-1104.

Therkildsen, N. O., & Palumbi, S. R. (2017). Practical low-coverage genomewide sequencing of hundreds of individually barcoded samples for population and evolutionary genomics in nonmodel species. Molecular Ecology Resources, 17, 194-208.

Westphalen, C. B., Fine, A. D., André, F., Ganesan, S., Heinemann, V., Rouleau, E., Turnbull, C., Palacios, L. G., Lopez, J.-A., Sokol, E. S., & Mateo, J. (2022). Pan-cancer analysis of homologous recombination repair-associated gene alterations and genome-wide loss-of-heterozygosity ScorePan-cancer gLOH and HRR-associated gene alterations. Clinical Cancer Research, 28, 1412-1421.

Xi, Z., Liu, L., & Davis, C. C. (2016). The impact of missing data on species tree estimation. Molecular Biology and Evolution, 33, 838-860.

Yoo, M. J., Liu, X., Pires, J. C., Soltis, P. S., & Soltis, D. E. (2014). Nonadditive gene expression in polyploids. Annual Review of Genetics, 48, 485-517.

Zhang, C., Rabiee, M., Sayyari, E., & Mirarab, S. (2018). ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics, 19, 153.

Zhang, F., Ding, Y., Zhu, C., Zhou, X., Orr, M. C., Scheu, S., & Luan, Y. (2019). Phylogenomics from low-coverage whole-genome sequencing. Methods in Ecology and Evolution, 10, 507-517.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...