Design, Synthesis, Biological Evaluation, and Crystallographic Study of Novel Purine Nucleoside Phosphorylase Inhibitors
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37134237
PubMed Central
PMC10226123
DOI
10.1021/acs.jmedchem.2c02097
Knihovny.cz E-zdroje
- MeSH
- inhibitory enzymů * chemie MeSH
- krystalografie MeSH
- lidé MeSH
- purinnukleosidfosforylasa * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inhibitory enzymů * MeSH
- purinnukleosidfosforylasa * MeSH
Purine nucleoside phosphorylase (PNP) is a well-known molecular target with potential therapeutic applications in the treatment of T-cell malignancies and/or bacterial/parasitic infections. Here, we report the design, development of synthetic methodology, and biological evaluation of a series of 30 novel PNP inhibitors based on acyclic nucleoside phosphonates bearing a 9-deazahypoxanthine nucleobase. The strongest inhibitors exhibited IC50 values as low as 19 nM (human PNP) and 4 nM (Mycobacterium tuberculosis (Mt) PNP) and highly selective cytotoxicity toward various T-lymphoblastic cell lines with CC50 values as low as 9 nM. No cytotoxic effect was observed on other cancer cell lines (HeLa S3, HL60, HepG2) or primary PBMCs for up to 10 μM. We report the first example of the PNP inhibitor exhibiting over 60-fold selectivity for the pathogenic enzyme (MtPNP) over hPNP. The results are supported by a crystallographic study of eight enzyme-inhibitor complexes and by ADMET profiling in vitro and in vivo.
Faculty of Science Charles University Prague Hlavova 2030 8 Prague 2 12843 Czech Republic
University of Chemistry and Technology Technická 5 Prague 16628 Czech Republic
Zobrazit více v PubMed
GEORGIEV V. S. Enzymes of the Purine Metabolism: Inhibition and Therapeutic Potential. Ann. N. Y. Acad. Sci. 1993, 685, 207–216. 10.1111/J.1749-6632.1993.TB35868.X. PubMed DOI
Montgomery J. A. Purine Nucleoside Phosphorylase: A Target for Drug Design. Med. Res. Rev. 1993, 13, 209–228. 10.1002/MED.2610130302. PubMed DOI
Kyu Kim B.; Cha S.; Parks R. E. Puke Nucleoside Phosphorylase from Human Erythocytes I. PURIFICATION AND PROPER.TIES. J. Biol. Chem. 1968, 243, 1763–1770. 10.1016/S0021-9258(18)93509-X. PubMed DOI
Basso L. A.; Santos D. S.; Shi W.; Furneaux R. H.; Tyler P. C.; Schramm V. L.; Blanchard J. S. Purine Nucleoside Phosphorylase from Mycobacterium Tuberculosis. Analysis of Inhibition by a Transition-State Analogue and Dissection by Parts. Biochemistry 2001, 40, 8196–8203. 10.1021/BI010584X. PubMed DOI
Nolasco D. O.; Canduri F.; Pereira J. H.; Cortinóz J. R.; Palma M. S.; Oliveira J. S.; Basso L. A.; de Azevedo W. F.; Santos D. S. Crystallographic Structure of PNP from Mycobacterium Tuberculosis at 1.9 Å Resolution. Biochem. Biophys. Res. Commun. 2004, 324, 789–794. 10.1016/J.BBRC.2004.09.137. PubMed DOI
Madrid D. C.; Ting L. M.; Waller K. L.; Schramm V. L.; Kim K. Plasmodium Falciparum Purine Nucleoside Phosphorylase Is Critical for Viability of Malaria Parasites. J. Biol. Chem. 2008, 283, 35899.10.1074/JBC.M807218200. PubMed DOI PMC
Evans G. B.; Tyler P. C.; Schramm V. L. Immucillins in Infectious Diseases. Infect Dis. 2018, 4, 107–117. 10.1021/acsinfecdis.7b00172. PubMed DOI PMC
Dalberto P. F.; Rodrigues-Junior V.; Almeida Falcão V. C.; Pinto A. F. M.; Abbadi B. L.; Bizarro C. V.; Basso L. A.; Villela A. D.; Santos D. S. Assessing the Role of DeoD Gene in Mycobacterium Tuberculosis in Vitro Growth and Macrophage Infection. Microbiol. Pathog. 2018, 119, 60–64. 10.1016/j.micpath.2018.03.056. PubMed DOI
Stoop J. W.; Zegers B. J. M.; Hendrickx G. F. M.; Siegenbeek van Heukelom L. H.; Staal G. E. J.; de Bree P. K.; Wadman S. K.; Ballieux R. E. Purine Nucleoside Phosphorylase Deficiency Associated with Selective Cellular Immunodeficiency. N. Engl. J. Med. 1977, 296, 651–655. 10.1056/NEJM197703242961203. PubMed DOI
Cohen A.; Doyle D.; Martin D. W. Jr.; Ammann A. J. Abnormal Purine Metabolism and Purine Overproduction in a Patient Deficient in Purine Nucleoside Phosphorylase. N. Engl. J. Med. 1976, 295, 1449–1454. 10.1056/NEJM197612232952603. PubMed DOI
Kazmers I. S.; Mitchell B. S.; Dadonna P. E.; Wotring L. L.; Townsend L. B.; Kelley W. N. Inhibition of Purine Nucleoside Phosphorylase by 8-Aminoguanosine: Selective Toxicity for T Lymphoblasts. Science 1981, 214, 1137–1139. 10.1126/SCIENCE.6795718. PubMed DOI
Eriksson S.; Thelander L.; Akerman M. Allosteric Regulation of Calf Thymus Ribonucleoside Diphosphate Reductase. Biochemistry 1979, 18, 2948–2952. 10.1021/BI00581A005. PubMed DOI
Abt E. R.; Lok V.; Le T. M.; Poddar S.; Kim W.; Capri J. R.; Abril-Rodriguez G.; Czernin J.; Donahue T. R.; Mehling T.; Ribas A.; Radu C. G. Defective Nucleotide Catabolism Defines a Subset of Cancers Sensitive to Purine Nucleoside Phosphorylase Inhibition. bioRxiv 2019, 810093.10.1101/810093. DOI
Davenne T.; Rehwinkel J.. PNP Inhibitors Selectively Kill Cancer Cells Lacking SAMHD1. 2020, 7 ( (6), ), 10.1080/23723556.2020.1804308. PubMed DOI PMC
Bantia S.Purine Nucleoside Phosphorylase Inhibitors as Novel Immuno-Oncology Agent and Vaccine Adjuvant. Int. J. Immunol. Immunother. 2020, 7 (). 10.23937/2378-3672/1410043. DOI
Morris J.; Montgomery J. A. Inhibitors of the Enzyme Purine Nucleoside Phosphorylase. Expert Opin. Ther. Pat. 2005, 8, 283–299. 10.1517/13543776.8.3.283. DOI
Kim B. K.; Cha S.; Parks R. E. Purine Nucleoside Phosphorylase from Human Erythocytes: II. KINETIC ANALYSIS AND SUBSTRATE-BINDING STUDIES. J. Biol. Chem. 1968, 243, 1771–1776. 10.1016/S0021-9258(18)93510-6. PubMed DOI
Agarwal R. P.; Parks R. E. Purine Nucleoside Phosphorylase from Human Erythocytes. IV. Crystallization and Some Properties. J. Biol. Chem. 1969, 244, 644–647. 10.1016/S0021-9258(18)94403-0. PubMed DOI
Agarwal R. P.; Parks R. E. Purine Nucleoside Phosphorylase from Human Erythocytes. V. Content and Behavior of Sulfhydryl Groups. J. Biol. Chem. 1971, 246, 3763–3768. 10.1016/S0021-9258(18)62194-5. PubMed DOI
Sheen M. R.; Kim B. K.; Parks R. E.. Purine Nucleoside Phosphorylase from Human Erythocytes III. Inhibition by the Inosine Analog Formycin B of the Isolated Enzyme and of Nucleoside Metabolism in Intact Erythocytes and Sarcoma 180 Cells. Mol. Pharmacol. 1968, 4 (). PubMed
Pogosian L. H.; Nersesova L. S.; Gazariants M. G.; Mkrtchian Z. S.; Akopian J. I. Some Inhibitors of Purine Nucleoside Phosphorylase. Biochem. Mosc. Suppl B Biomed. Chem. 2011, 5, 60–64. 10.1134/S1990750811010094. PubMed DOI
Krenitsky T. A.; Tuttle J. V.; Miller W. H.; Moorman A. R.; Orr G. F.; Beauchamp L. Nucleotide Analogue Inhibitors of Purine Nucleoside Phosphorylase. J. Biol. Chem. 1990, 265, 3066–3069. 10.1016/S0021-9258(19)39734-0. PubMed DOI
Yokomatsu T.; Hayakawa Y.; Kihara T.; Koyanagi S.; Soeda S.; Shimeno H.; Shibuya S. Synthesis and Evaluation of Multisubstrate Analogue Inhibitors of Purine Nucleoside Phosphorylases. Bioorg. Med. Chem. 2000, 8, 2571–2579. 10.1016/S0968-0896(00)00192-9. PubMed DOI
Kelley J. L.; Linn J. A.; Mclean E. W.; Tuttle1 J. V.. 9-[(PhosphonoaIkyl)Benzyl]Guanines. Multisubstrate Analogue Inhibitors of Human Erythocyte Purine Nucleoside Phosphorylase; 1993; Vol. 36. https://pubs.acs.org/sharingguidelines (accessed 2019-04-08). PubMed
Halazy S.; Ehhard A.; Danzin C. 9-(Difluorophosphonoalkyl)Guanines as a New Class of Multisubstrate Analogue Inhibitors of Purine Nucleoside Phosphorylase. J. Am. Chem. Soc. 1991, 113, 315–317. 10.1002/chin.199115269. DOI
Halazy S.; Ehhard A.; Eggenspiller A.; Berges-Gross V.; Danzin C. Fluorophosphonate Derivatives of N9-Benzylguanine as Potent, Slow-Binding Multisubstrate Analogue Inhibitors of Purine Nucleoside Phosphorylase. Tetrahedron 1996, 52, 177–184. 10.1016/0040-4020(95)00891-B. DOI
Stoeckler J. D.; Ryden J. B.; Parks R. E.; Chu M.-Y.; Lim M.-I.; Ren W.-Y.; Klein R. S. Inhibitors of Furine Nucleoside Phosphorylase: Effects of 9-Deazapurine Ribonucleosides and Synthesis of 5’-Deoxy-5’-Iodo-9-Deazainosine. Cancer Res. 1986, 46, 1774–1778. PubMed
Gilbertsen R. B.; Scott M. E.; Dong M. K.; Kossarek L. M.; Bennett M. K.; Schier D. J.; Sircar J. C. Preliminary Report on 8-Amino-9-(2-Thienylmethyl)Guanine (PD 119,229), a Novel and Potent Purine Nucleoside Phosphorylase Inhibitor. Agents Actions 1987, 21, 272–274. 10.1007/BF01966488. PubMed DOI
Gilbertsen R. B.; Dong M. K.; Kossarek L. M. Aspects of the Purine Nucleoside Phosphorylase (PNP) Deficient State Produced in Normal Rats Following Oral Administration of 8-Amino-9-(2-Thienylmethyl)Guanine (PD 119,229), a Novel Inhibitor of PNP. Agents Actions 1987, 22, 379–384. 10.1007/BF02009087. PubMed DOI
Ealick S. E.; Babu Y. S.; Bugg C. E.; Erion M. D.; Guida W. C.; Montgomery J. A.; Secrist J. A. III Application of Crystallographic and Modeling Methods in the Design of Purine Nucleoside Phosphorylase Inhibitors. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 11540–11544. 10.1073/pnas.89.20.9974c. PubMed DOI PMC
Bantia S.; Montgomery J. A.; Johnson H. G.; Walsh G. M. In Vivo and in Vitro Pharmacologic Activity of the Purine Nucleoside Phosphorylase Inhibitor BCX-34: The Role of GTP and DGTP. Immunopharmacology 1996, 35, 53–63. 10.1016/0162-3109(96)00123-3. PubMed DOI
Viegas T. X.; Omura G. A.; Stoltz R. R.; Kisicki J. Pharmacokinetics and Pharmacodynamics of Peldesine (BCX-34), a Purine Nucleoside Phosphorylase Inhibitor, Following Single and Multiple Oral Doses in Healthy Volunteers. J. Clin. Pharmacol. 2000, 40, 410–420. 10.1177/00912700022008991. PubMed DOI
Duvic M.; Olsen E. A.; Omura G. A.; Maize J. C.; Vonderheid E. C.; Elmets C. A.; Shupack J. L.; Demierre M.-F.; Kuzel T. M.; Sanders D. Y. A Phase III, Randomized, Double-Blind, Placebo-Controlled Study of Peldesine (BCX-34) Cream as Topical Therapy for Cutaneous T-Cell Lymphoma. J. Am. Acad. Dermatol. 2001, 44, 940–947. 10.1067/mjd.2001.113478. PubMed DOI
Sudhakar Babu Y.; Ealickt S. E.; Bugg C. E.; Erion M. D.; Guida W. C.; Montgomery J. A.; Secrist J. A. S. Iii. Structure-Based Design of Inhibitors of Purine Nucleoside Phosphorylase; 1995; Vol. 51. http://journals.iucr.org/d/issues/1995/04/00/gr0515/gr0515.pdf(accessed 2019-04-08). PubMed
Morris P. E. Jr.; Elliott A. J.; Walton S. P.; Williams C. H.; Montgomery J. A. Synthesis and Biological Activity of a Novel Class of Purine Nucleoside Phosphorylase Inhibitors. Nucleosides, Nucleotides Nucleic Acids 2000, 19, 379–404. 10.1080/15257770008033016. PubMed DOI
Montgomery J. A.; Niwas S.; Rose J. D.; Secrist J. A. III; Babu Y. S.; Bugg C. E.; Erion M. D.; Guida W. C.; Ealick S. E. Structure-Based Design of Inhibitors of Purine Nucleoside Phosphorylase. 1. 9-(Arylmethyl) Derivatives of 9-Deazaguanine. J. Med. Chem. 1993, 36, 55–69. 10.1021/jm00053a008. PubMed DOI
Erion M. D.; Niwas S.; Rose J. D.; Ananthan S.; Allen M.; Secrist J. A.; Babu Y. S.; Bugg C. E.; Guida W. C.; Ealick S. E. Structure-Based Design of Inhibitors of Purine Nucleoside Phosphorylase. 3. 9-Arylmethyl Derivatives of 9-Deazaguanine Substituted on the Methylene Group. J. Med. Chem. 1993, 36, 3771–3783. 10.1021/jm00076a004. PubMed DOI
Miles R. W.; Tyler P. C.; Furneaux R. H.; Bagdassarian C. K.; Schramm V. L.. One-Third-the-Sites Transition-State Inhibitors for Purine Nucleoside Phosphorylase; 1998. https://pubs.acs.org/sharingguidelines (accessed 2019-12-16). PubMed
Ho M. C.; Shi W.; Rinaldo-Matthis A.; Tyler P. C.; Evans G. B.; Clinch K.; Almo S. C.; Schramm V. L. Four Generations of Transition-State Analogues for Human Purine Nucleoside Phosphorylase. Proc. Natl. Acad Sci. 2010, 107, 4805–4812. 10.1073/PNAS.0913439107. PubMed DOI PMC
Al-Kali A.; Gandhi V.; Ayoubi M.; Keating M.; Ravandi F. Forodesine: Review of Preclinical and Clinical Data. Future Oncol. 2010, 6, 1211–1217. 10.2217/fon.10.83. PubMed DOI
Lewis D. J.; Duvic M. Forodesine in the Treatment of Cutaneous T-Cell Lymphoma. Expert Opin. Invest. Drugs 2017, 26, 771.10.1080/13543784.2017.1324569. PubMed DOI
Gandhi V.; Kilpatrick J. M.; Plunkett W.; Ayres M.; Harman L.; Du M.; Bantia S.; Davisson J.; Wierda W. G.; Faderl S.; Kantarjian H.; Thomas D. A Proof-of-Principle Pharmacokinetic, Pharmacodynamic, and Clinical Study with Purine Nucleoside Phosphorylase Inhibitor Immucillin-H (BCX-1777, Forodesine). Blood 2005, 106, 4253–4260. 10.1182/blood-2005-03-1309. PubMed DOI PMC
Makita S.; Maeshima A. M.; Maruyama D.; Izutsu K.; Tobinai K. Forodesine in the Treatment of Relapsed/Refractory Peripheral T-Cell Lymphoma: An Evidence-Based Review. Onco. Targets Ther. 2018, Volume 11, 2287–2293. 10.2147/OTT.S140756. PubMed DOI PMC
Kaiser M. M.; Baszczyňski O.; Hocková D.; Poštová-Slavětínská L.; Dračínský M.; Keough D. T.; Guddat L. W.; Janeba Z. Acyclic Nucleoside Phosphonates Containing 9-Deazahypoxanthine and a Five-Membered Heterocycle as Selective Inhibitors of Plasmodial 6-Oxopurine Phosphoribosyltransferases. ChemMedChem 2017, 12, 1133–1141. 10.1002/cmdc.201700293. PubMed DOI
de Clercq E.; Holý A. Acyclic Nucleoside Phosphonates: A Key Class of Antiviral Drugs. Nat. Rev. Drug Discovery 2005, 4, 928–940. 10.1038/nrd1877. PubMed DOI
Groaz E.; de Jonghe S. Overview of Biologically Active Nucleoside Phosphonates. Front. Chem. 2021, 8, 1212.10.3389/FCHEM.2020.616863/BIBTEX. PubMed DOI PMC
Glenmark Pharmaceuticals S.A .; Atmaram G. L.; Dnyandeo M. N. P.; Neelima K.-J.; Manish S. D.; Kadam S. R.. Alkyne Compounds as S-Nitrosoglutathion Reductase Inhibitors. WO2016/55947, 2016.
Ray A. S.; Fordyce M. W.; Hitchcock M. J. M. Tenofovir Alafenamide: A Novel Prodrug of Tenofovir for the Treatment of Human Immunodeficiency Virus. Antiviral Res. 2016, 125, 63–70. 10.1016/J.ANTIVIRAL.2015.11.009. PubMed DOI
Callebaut C.; Stepan G.; Tian Y.; Miller M. D.. In Vitro Virology Profile of Tenofovir Alafenamide, a Novel Oral Prodrug of Tenofovir with Improved Antiviral Activity Compared to That of Tenofovir Disoproxil Fumarate. 2015, 5909, 10.1128/AAC.01152-15. PubMed DOI PMC
Šmídková M.; Dvoráková A.; Tloušt’ová E.; Cesnek M.; Janeba Z.; Mertlíková-Kaiserová H. Amidate Prodrugs of 9-[2-(Phosphonomethoxy)Ethyl]Adenine as Inhibitors of Adenylate Cyclase Toxin from Bordetella Pertussis. Antimicrob. Agents Chemother. 2014, 58, 664–671. 10.1128/AAC.01685-13/SUPPL_FILE/ZAC001142449SO1.PDF. PubMed DOI PMC
Kicska G. A.; Long L.; Hörig H.; Fairchild C.; Tyler P. C.; Furneaux R. H.; Schramm V. L.; Kaufman H. L. Immucillin H, a Powerful Transition-State Analog Inhibitor of Purine Nucleoside Phosphorylase, Selectively Inhibits Human T Lymphocytes. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 4593–4598. 10.1073/pnas.071050798. PubMed DOI PMC
Krissinel E.; Henrick K. Inference of Macromolecular Assemblies from Crystalline State. J. Mol. Biol. 2007, 372, 774–797. 10.1016/J.JMB.2007.05.022. PubMed DOI
Gorrec F. The MORPHEUS Protein Crystallization Screen. J. Appl. Crystallogr. 2009, 42, 1035–1042. 10.1107/S0021889809042022. PubMed DOI PMC
Bijelic A.; Rompel A. Ten Good Reasons for the Use of the Tellurium-Centered Anderson-Evans Polyoxotungstate in Protein Crystallography. Acc. Chem. Res. 2017, 50, 1441–1448. 10.1021/ACS.ACCOUNTS.7B00109. PubMed DOI PMC
Mueller U.; Förster R.; Hellmig M.; Huschmann F. U.; Kastner A.; Malecki P.; Pühinger S.; Röwer M.; Sparta K.; Steffien M.; Ühlein M.; Wilk P.; Weiss M. S. The Macromolecular Crystallography Beamlines at BESSY II of the Helmholtz-Zentrum Berlin: Current Status and Perspectives. Euro. Phys. J. Plus 2015, 130, 1–10. 10.1140/EPJP/I2015-15141-2. DOI
Kabsch W. Integration, Scaling, Space-Group Assignment and Post-Refinement. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 133–144. 10.1107/S0907444909047374. PubMed DOI PMC
Vagin A.; Teplyakov A. MOLREP: An Automated Program for Molecular Replacement. J. Appl. Crystallogr. 1997, 30, 1022–1025. 10.1107/S0021889897006766. DOI
Shi W.; Basso L. A.; Santos D. S.; Tyler P. C.; Furneaux R. H.; Blanchard J. S.; Almo S. C.; Schramm V. L. Structures of Purine Nucleoside Phosphorylase from Mycobacterium Tuberculosis in Complexes with Immucillin-H and Its Pieces. Biochemistry 2001, 40, 8204–8215. 10.1021/bi010585p. PubMed DOI
Murshudov G. N.; Skubák P.; Lebedev A. A.; Pannu N. S.; Steiner R. A.; Nicholls R. A.; Winn M. D.; Long F.; Vagin A. A. REFMAC5 for the Refinement of Macromolecular Crystal Structures. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 355–367. 10.1107/S0907444911001314. PubMed DOI PMC
Winn M. D.; Ballard C. C.; Cowtan K. D.; Dodson E. J.; Emsley P.; Evans P. R.; Keegan R. M.; Krissinel E. B.; Leslie A. G.; McCoy A.; McNicholas S. J.; Murshudov G. N.; Pannu N. S.; Potterton E. A.; Powell H. R.; Read R. J.; Vagin A.; Wilson K. S. Overview of the CCP4 Suite and Current Developments. Acta Crystallogr. D Biol. Crystallogr 2011, 67, 235–242. 10.1107/S0907444910045749. PubMed DOI PMC
Emsley P.; Cowtan K. Coot: Model-Building Tools for Molecular Graphics. Acta crystallogr. D, Struct. Biol 2004, 60, 2126–2132. 10.1107/S0907444904019158. PubMed DOI
Williams C. J.; Headd J. J.; Moriarty N. W.; Prisant M. G.; Videau L. L.; Deis L. N.; Verma V.; Keedy D. A.; Hintze B. J.; Chen V. B.; Jain S.; Lewis S. M.; Arendall W. B.; Snoeyink J.; Adams P. D.; Lovell S. C.; Richardson J. S.; Richardson D. C. MolProbity: More and Better Reference Data for Improved All-Atom Structure Validation. Protein Sci. 2018, 27, 293–315. 10.1002/PRO.3330. PubMed DOI PMC
Laskowski R. A.; Swindells M. B. LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. 10.1021/CI200227U. PubMed DOI
Zhou N.; Wang L.; Thompson D. W.; Zhao Y. H-Shaped OPE/OPV Oligomers: A New Member of 2D-Conjugated Fluorophore Cores. Org. Lett. 2008, 10, 3001–3004. 10.1021/ol8009623. PubMed DOI
Caruso A.; Tovar J. D. Functionalized Dibenzoborepins as Components of Small Molecule and Polymeric π-Conjugated Electronic Materials. J. Org. Chem 2011, 76, 2227–2239. 10.1021/jo2001726. PubMed DOI
Chinta B. S.; Baire B. Formal Total Synthesis of Selaginpulvilin D. Org. Biomol. Chem. 2017, 15, 5908–5911. 10.1039/c7ob00950j. PubMed DOI