Design, Synthesis, Biological Evaluation, and Crystallographic Study of Novel Purine Nucleoside Phosphorylase Inhibitors

. 2023 May 25 ; 66 (10) : 6652-6681. [epub] 20230503

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37134237

Purine nucleoside phosphorylase (PNP) is a well-known molecular target with potential therapeutic applications in the treatment of T-cell malignancies and/or bacterial/parasitic infections. Here, we report the design, development of synthetic methodology, and biological evaluation of a series of 30 novel PNP inhibitors based on acyclic nucleoside phosphonates bearing a 9-deazahypoxanthine nucleobase. The strongest inhibitors exhibited IC50 values as low as 19 nM (human PNP) and 4 nM (Mycobacterium tuberculosis (Mt) PNP) and highly selective cytotoxicity toward various T-lymphoblastic cell lines with CC50 values as low as 9 nM. No cytotoxic effect was observed on other cancer cell lines (HeLa S3, HL60, HepG2) or primary PBMCs for up to 10 μM. We report the first example of the PNP inhibitor exhibiting over 60-fold selectivity for the pathogenic enzyme (MtPNP) over hPNP. The results are supported by a crystallographic study of eight enzyme-inhibitor complexes and by ADMET profiling in vitro and in vivo.

Zobrazit více v PubMed

GEORGIEV V. S. Enzymes of the Purine Metabolism: Inhibition and Therapeutic Potential. Ann. N. Y. Acad. Sci. 1993, 685, 207–216. 10.1111/J.1749-6632.1993.TB35868.X. PubMed DOI

Montgomery J. A. Purine Nucleoside Phosphorylase: A Target for Drug Design. Med. Res. Rev. 1993, 13, 209–228. 10.1002/MED.2610130302. PubMed DOI

Kyu Kim B.; Cha S.; Parks R. E. Puke Nucleoside Phosphorylase from Human Erythocytes I. PURIFICATION AND PROPER.TIES. J. Biol. Chem. 1968, 243, 1763–1770. 10.1016/S0021-9258(18)93509-X. PubMed DOI

Basso L. A.; Santos D. S.; Shi W.; Furneaux R. H.; Tyler P. C.; Schramm V. L.; Blanchard J. S. Purine Nucleoside Phosphorylase from Mycobacterium Tuberculosis. Analysis of Inhibition by a Transition-State Analogue and Dissection by Parts. Biochemistry 2001, 40, 8196–8203. 10.1021/BI010584X. PubMed DOI

Nolasco D. O.; Canduri F.; Pereira J. H.; Cortinóz J. R.; Palma M. S.; Oliveira J. S.; Basso L. A.; de Azevedo W. F.; Santos D. S. Crystallographic Structure of PNP from Mycobacterium Tuberculosis at 1.9 Å Resolution. Biochem. Biophys. Res. Commun. 2004, 324, 789–794. 10.1016/J.BBRC.2004.09.137. PubMed DOI

Madrid D. C.; Ting L. M.; Waller K. L.; Schramm V. L.; Kim K. Plasmodium Falciparum Purine Nucleoside Phosphorylase Is Critical for Viability of Malaria Parasites. J. Biol. Chem. 2008, 283, 35899.10.1074/JBC.M807218200. PubMed DOI PMC

Evans G. B.; Tyler P. C.; Schramm V. L. Immucillins in Infectious Diseases. Infect Dis. 2018, 4, 107–117. 10.1021/acsinfecdis.7b00172. PubMed DOI PMC

Dalberto P. F.; Rodrigues-Junior V.; Almeida Falcão V. C.; Pinto A. F. M.; Abbadi B. L.; Bizarro C. V.; Basso L. A.; Villela A. D.; Santos D. S. Assessing the Role of DeoD Gene in Mycobacterium Tuberculosis in Vitro Growth and Macrophage Infection. Microbiol. Pathog. 2018, 119, 60–64. 10.1016/j.micpath.2018.03.056. PubMed DOI

Stoop J. W.; Zegers B. J. M.; Hendrickx G. F. M.; Siegenbeek van Heukelom L. H.; Staal G. E. J.; de Bree P. K.; Wadman S. K.; Ballieux R. E. Purine Nucleoside Phosphorylase Deficiency Associated with Selective Cellular Immunodeficiency. N. Engl. J. Med. 1977, 296, 651–655. 10.1056/NEJM197703242961203. PubMed DOI

Cohen A.; Doyle D.; Martin D. W. Jr.; Ammann A. J. Abnormal Purine Metabolism and Purine Overproduction in a Patient Deficient in Purine Nucleoside Phosphorylase. N. Engl. J. Med. 1976, 295, 1449–1454. 10.1056/NEJM197612232952603. PubMed DOI

Kazmers I. S.; Mitchell B. S.; Dadonna P. E.; Wotring L. L.; Townsend L. B.; Kelley W. N. Inhibition of Purine Nucleoside Phosphorylase by 8-Aminoguanosine: Selective Toxicity for T Lymphoblasts. Science 1981, 214, 1137–1139. 10.1126/SCIENCE.6795718. PubMed DOI

Eriksson S.; Thelander L.; Akerman M. Allosteric Regulation of Calf Thymus Ribonucleoside Diphosphate Reductase. Biochemistry 1979, 18, 2948–2952. 10.1021/BI00581A005. PubMed DOI

Abt E. R.; Lok V.; Le T. M.; Poddar S.; Kim W.; Capri J. R.; Abril-Rodriguez G.; Czernin J.; Donahue T. R.; Mehling T.; Ribas A.; Radu C. G. Defective Nucleotide Catabolism Defines a Subset of Cancers Sensitive to Purine Nucleoside Phosphorylase Inhibition. bioRxiv 2019, 810093.10.1101/810093. DOI

Davenne T.; Rehwinkel J.. PNP Inhibitors Selectively Kill Cancer Cells Lacking SAMHD1. 2020, 7 ( (6), ), 10.1080/23723556.2020.1804308. PubMed DOI PMC

Bantia S.Purine Nucleoside Phosphorylase Inhibitors as Novel Immuno-Oncology Agent and Vaccine Adjuvant. Int. J. Immunol. Immunother. 2020, 7 (). 10.23937/2378-3672/1410043. DOI

Morris J.; Montgomery J. A. Inhibitors of the Enzyme Purine Nucleoside Phosphorylase. Expert Opin. Ther. Pat. 2005, 8, 283–299. 10.1517/13543776.8.3.283. DOI

Kim B. K.; Cha S.; Parks R. E. Purine Nucleoside Phosphorylase from Human Erythocytes: II. KINETIC ANALYSIS AND SUBSTRATE-BINDING STUDIES. J. Biol. Chem. 1968, 243, 1771–1776. 10.1016/S0021-9258(18)93510-6. PubMed DOI

Agarwal R. P.; Parks R. E. Purine Nucleoside Phosphorylase from Human Erythocytes. IV. Crystallization and Some Properties. J. Biol. Chem. 1969, 244, 644–647. 10.1016/S0021-9258(18)94403-0. PubMed DOI

Agarwal R. P.; Parks R. E. Purine Nucleoside Phosphorylase from Human Erythocytes. V. Content and Behavior of Sulfhydryl Groups. J. Biol. Chem. 1971, 246, 3763–3768. 10.1016/S0021-9258(18)62194-5. PubMed DOI

Sheen M. R.; Kim B. K.; Parks R. E.. Purine Nucleoside Phosphorylase from Human Erythocytes III. Inhibition by the Inosine Analog Formycin B of the Isolated Enzyme and of Nucleoside Metabolism in Intact Erythocytes and Sarcoma 180 Cells. Mol. Pharmacol. 1968, 4 (). PubMed

Pogosian L. H.; Nersesova L. S.; Gazariants M. G.; Mkrtchian Z. S.; Akopian J. I. Some Inhibitors of Purine Nucleoside Phosphorylase. Biochem. Mosc. Suppl B Biomed. Chem. 2011, 5, 60–64. 10.1134/S1990750811010094. PubMed DOI

Krenitsky T. A.; Tuttle J. V.; Miller W. H.; Moorman A. R.; Orr G. F.; Beauchamp L. Nucleotide Analogue Inhibitors of Purine Nucleoside Phosphorylase. J. Biol. Chem. 1990, 265, 3066–3069. 10.1016/S0021-9258(19)39734-0. PubMed DOI

Yokomatsu T.; Hayakawa Y.; Kihara T.; Koyanagi S.; Soeda S.; Shimeno H.; Shibuya S. Synthesis and Evaluation of Multisubstrate Analogue Inhibitors of Purine Nucleoside Phosphorylases. Bioorg. Med. Chem. 2000, 8, 2571–2579. 10.1016/S0968-0896(00)00192-9. PubMed DOI

Kelley J. L.; Linn J. A.; Mclean E. W.; Tuttle1 J. V.. 9-[(PhosphonoaIkyl)Benzyl]Guanines. Multisubstrate Analogue Inhibitors of Human Erythocyte Purine Nucleoside Phosphorylase; 1993; Vol. 36. https://pubs.acs.org/sharingguidelines (accessed 2019-04-08). PubMed

Halazy S.; Ehhard A.; Danzin C. 9-(Difluorophosphonoalkyl)Guanines as a New Class of Multisubstrate Analogue Inhibitors of Purine Nucleoside Phosphorylase. J. Am. Chem. Soc. 1991, 113, 315–317. 10.1002/chin.199115269. DOI

Halazy S.; Ehhard A.; Eggenspiller A.; Berges-Gross V.; Danzin C. Fluorophosphonate Derivatives of N9-Benzylguanine as Potent, Slow-Binding Multisubstrate Analogue Inhibitors of Purine Nucleoside Phosphorylase. Tetrahedron 1996, 52, 177–184. 10.1016/0040-4020(95)00891-B. DOI

Stoeckler J. D.; Ryden J. B.; Parks R. E.; Chu M.-Y.; Lim M.-I.; Ren W.-Y.; Klein R. S. Inhibitors of Furine Nucleoside Phosphorylase: Effects of 9-Deazapurine Ribonucleosides and Synthesis of 5’-Deoxy-5’-Iodo-9-Deazainosine. Cancer Res. 1986, 46, 1774–1778. PubMed

Gilbertsen R. B.; Scott M. E.; Dong M. K.; Kossarek L. M.; Bennett M. K.; Schier D. J.; Sircar J. C. Preliminary Report on 8-Amino-9-(2-Thienylmethyl)Guanine (PD 119,229), a Novel and Potent Purine Nucleoside Phosphorylase Inhibitor. Agents Actions 1987, 21, 272–274. 10.1007/BF01966488. PubMed DOI

Gilbertsen R. B.; Dong M. K.; Kossarek L. M. Aspects of the Purine Nucleoside Phosphorylase (PNP) Deficient State Produced in Normal Rats Following Oral Administration of 8-Amino-9-(2-Thienylmethyl)Guanine (PD 119,229), a Novel Inhibitor of PNP. Agents Actions 1987, 22, 379–384. 10.1007/BF02009087. PubMed DOI

Ealick S. E.; Babu Y. S.; Bugg C. E.; Erion M. D.; Guida W. C.; Montgomery J. A.; Secrist J. A. III Application of Crystallographic and Modeling Methods in the Design of Purine Nucleoside Phosphorylase Inhibitors. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 11540–11544. 10.1073/pnas.89.20.9974c. PubMed DOI PMC

Bantia S.; Montgomery J. A.; Johnson H. G.; Walsh G. M. In Vivo and in Vitro Pharmacologic Activity of the Purine Nucleoside Phosphorylase Inhibitor BCX-34: The Role of GTP and DGTP. Immunopharmacology 1996, 35, 53–63. 10.1016/0162-3109(96)00123-3. PubMed DOI

Viegas T. X.; Omura G. A.; Stoltz R. R.; Kisicki J. Pharmacokinetics and Pharmacodynamics of Peldesine (BCX-34), a Purine Nucleoside Phosphorylase Inhibitor, Following Single and Multiple Oral Doses in Healthy Volunteers. J. Clin. Pharmacol. 2000, 40, 410–420. 10.1177/00912700022008991. PubMed DOI

Duvic M.; Olsen E. A.; Omura G. A.; Maize J. C.; Vonderheid E. C.; Elmets C. A.; Shupack J. L.; Demierre M.-F.; Kuzel T. M.; Sanders D. Y. A Phase III, Randomized, Double-Blind, Placebo-Controlled Study of Peldesine (BCX-34) Cream as Topical Therapy for Cutaneous T-Cell Lymphoma. J. Am. Acad. Dermatol. 2001, 44, 940–947. 10.1067/mjd.2001.113478. PubMed DOI

Sudhakar Babu Y.; Ealickt S. E.; Bugg C. E.; Erion M. D.; Guida W. C.; Montgomery J. A.; Secrist J. A. S. Iii. Structure-Based Design of Inhibitors of Purine Nucleoside Phosphorylase; 1995; Vol. 51. http://journals.iucr.org/d/issues/1995/04/00/gr0515/gr0515.pdf(accessed 2019-04-08). PubMed

Morris P. E. Jr.; Elliott A. J.; Walton S. P.; Williams C. H.; Montgomery J. A. Synthesis and Biological Activity of a Novel Class of Purine Nucleoside Phosphorylase Inhibitors. Nucleosides, Nucleotides Nucleic Acids 2000, 19, 379–404. 10.1080/15257770008033016. PubMed DOI

Montgomery J. A.; Niwas S.; Rose J. D.; Secrist J. A. III; Babu Y. S.; Bugg C. E.; Erion M. D.; Guida W. C.; Ealick S. E. Structure-Based Design of Inhibitors of Purine Nucleoside Phosphorylase. 1. 9-(Arylmethyl) Derivatives of 9-Deazaguanine. J. Med. Chem. 1993, 36, 55–69. 10.1021/jm00053a008. PubMed DOI

Erion M. D.; Niwas S.; Rose J. D.; Ananthan S.; Allen M.; Secrist J. A.; Babu Y. S.; Bugg C. E.; Guida W. C.; Ealick S. E. Structure-Based Design of Inhibitors of Purine Nucleoside Phosphorylase. 3. 9-Arylmethyl Derivatives of 9-Deazaguanine Substituted on the Methylene Group. J. Med. Chem. 1993, 36, 3771–3783. 10.1021/jm00076a004. PubMed DOI

Miles R. W.; Tyler P. C.; Furneaux R. H.; Bagdassarian C. K.; Schramm V. L.. One-Third-the-Sites Transition-State Inhibitors for Purine Nucleoside Phosphorylase; 1998. https://pubs.acs.org/sharingguidelines (accessed 2019-12-16). PubMed

Ho M. C.; Shi W.; Rinaldo-Matthis A.; Tyler P. C.; Evans G. B.; Clinch K.; Almo S. C.; Schramm V. L. Four Generations of Transition-State Analogues for Human Purine Nucleoside Phosphorylase. Proc. Natl. Acad Sci. 2010, 107, 4805–4812. 10.1073/PNAS.0913439107. PubMed DOI PMC

Al-Kali A.; Gandhi V.; Ayoubi M.; Keating M.; Ravandi F. Forodesine: Review of Preclinical and Clinical Data. Future Oncol. 2010, 6, 1211–1217. 10.2217/fon.10.83. PubMed DOI

Lewis D. J.; Duvic M. Forodesine in the Treatment of Cutaneous T-Cell Lymphoma. Expert Opin. Invest. Drugs 2017, 26, 771.10.1080/13543784.2017.1324569. PubMed DOI

Gandhi V.; Kilpatrick J. M.; Plunkett W.; Ayres M.; Harman L.; Du M.; Bantia S.; Davisson J.; Wierda W. G.; Faderl S.; Kantarjian H.; Thomas D. A Proof-of-Principle Pharmacokinetic, Pharmacodynamic, and Clinical Study with Purine Nucleoside Phosphorylase Inhibitor Immucillin-H (BCX-1777, Forodesine). Blood 2005, 106, 4253–4260. 10.1182/blood-2005-03-1309. PubMed DOI PMC

Makita S.; Maeshima A. M.; Maruyama D.; Izutsu K.; Tobinai K. Forodesine in the Treatment of Relapsed/Refractory Peripheral T-Cell Lymphoma: An Evidence-Based Review. Onco. Targets Ther. 2018, Volume 11, 2287–2293. 10.2147/OTT.S140756. PubMed DOI PMC

Kaiser M. M.; Baszczyňski O.; Hocková D.; Poštová-Slavětínská L.; Dračínský M.; Keough D. T.; Guddat L. W.; Janeba Z. Acyclic Nucleoside Phosphonates Containing 9-Deazahypoxanthine and a Five-Membered Heterocycle as Selective Inhibitors of Plasmodial 6-Oxopurine Phosphoribosyltransferases. ChemMedChem 2017, 12, 1133–1141. 10.1002/cmdc.201700293. PubMed DOI

de Clercq E.; Holý A. Acyclic Nucleoside Phosphonates: A Key Class of Antiviral Drugs. Nat. Rev. Drug Discovery 2005, 4, 928–940. 10.1038/nrd1877. PubMed DOI

Groaz E.; de Jonghe S. Overview of Biologically Active Nucleoside Phosphonates. Front. Chem. 2021, 8, 1212.10.3389/FCHEM.2020.616863/BIBTEX. PubMed DOI PMC

Glenmark Pharmaceuticals S.A .; Atmaram G. L.; Dnyandeo M. N. P.; Neelima K.-J.; Manish S. D.; Kadam S. R.. Alkyne Compounds as S-Nitrosoglutathion Reductase Inhibitors. WO2016/55947, 2016.

Ray A. S.; Fordyce M. W.; Hitchcock M. J. M. Tenofovir Alafenamide: A Novel Prodrug of Tenofovir for the Treatment of Human Immunodeficiency Virus. Antiviral Res. 2016, 125, 63–70. 10.1016/J.ANTIVIRAL.2015.11.009. PubMed DOI

Callebaut C.; Stepan G.; Tian Y.; Miller M. D.. In Vitro Virology Profile of Tenofovir Alafenamide, a Novel Oral Prodrug of Tenofovir with Improved Antiviral Activity Compared to That of Tenofovir Disoproxil Fumarate. 2015, 5909, 10.1128/AAC.01152-15. PubMed DOI PMC

Šmídková M.; Dvoráková A.; Tloušt’ová E.; Cesnek M.; Janeba Z.; Mertlíková-Kaiserová H. Amidate Prodrugs of 9-[2-(Phosphonomethoxy)Ethyl]Adenine as Inhibitors of Adenylate Cyclase Toxin from Bordetella Pertussis. Antimicrob. Agents Chemother. 2014, 58, 664–671. 10.1128/AAC.01685-13/SUPPL_FILE/ZAC001142449SO1.PDF. PubMed DOI PMC

Kicska G. A.; Long L.; Hörig H.; Fairchild C.; Tyler P. C.; Furneaux R. H.; Schramm V. L.; Kaufman H. L. Immucillin H, a Powerful Transition-State Analog Inhibitor of Purine Nucleoside Phosphorylase, Selectively Inhibits Human T Lymphocytes. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 4593–4598. 10.1073/pnas.071050798. PubMed DOI PMC

Krissinel E.; Henrick K. Inference of Macromolecular Assemblies from Crystalline State. J. Mol. Biol. 2007, 372, 774–797. 10.1016/J.JMB.2007.05.022. PubMed DOI

Gorrec F. The MORPHEUS Protein Crystallization Screen. J. Appl. Crystallogr. 2009, 42, 1035–1042. 10.1107/S0021889809042022. PubMed DOI PMC

Bijelic A.; Rompel A. Ten Good Reasons for the Use of the Tellurium-Centered Anderson-Evans Polyoxotungstate in Protein Crystallography. Acc. Chem. Res. 2017, 50, 1441–1448. 10.1021/ACS.ACCOUNTS.7B00109. PubMed DOI PMC

Mueller U.; Förster R.; Hellmig M.; Huschmann F. U.; Kastner A.; Malecki P.; Pühinger S.; Röwer M.; Sparta K.; Steffien M.; Ühlein M.; Wilk P.; Weiss M. S. The Macromolecular Crystallography Beamlines at BESSY II of the Helmholtz-Zentrum Berlin: Current Status and Perspectives. Euro. Phys. J. Plus 2015, 130, 1–10. 10.1140/EPJP/I2015-15141-2. DOI

Kabsch W. Integration, Scaling, Space-Group Assignment and Post-Refinement. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 133–144. 10.1107/S0907444909047374. PubMed DOI PMC

Vagin A.; Teplyakov A. MOLREP: An Automated Program for Molecular Replacement. J. Appl. Crystallogr. 1997, 30, 1022–1025. 10.1107/S0021889897006766. DOI

Shi W.; Basso L. A.; Santos D. S.; Tyler P. C.; Furneaux R. H.; Blanchard J. S.; Almo S. C.; Schramm V. L. Structures of Purine Nucleoside Phosphorylase from Mycobacterium Tuberculosis in Complexes with Immucillin-H and Its Pieces. Biochemistry 2001, 40, 8204–8215. 10.1021/bi010585p. PubMed DOI

Murshudov G. N.; Skubák P.; Lebedev A. A.; Pannu N. S.; Steiner R. A.; Nicholls R. A.; Winn M. D.; Long F.; Vagin A. A. REFMAC5 for the Refinement of Macromolecular Crystal Structures. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 355–367. 10.1107/S0907444911001314. PubMed DOI PMC

Winn M. D.; Ballard C. C.; Cowtan K. D.; Dodson E. J.; Emsley P.; Evans P. R.; Keegan R. M.; Krissinel E. B.; Leslie A. G.; McCoy A.; McNicholas S. J.; Murshudov G. N.; Pannu N. S.; Potterton E. A.; Powell H. R.; Read R. J.; Vagin A.; Wilson K. S. Overview of the CCP4 Suite and Current Developments. Acta Crystallogr. D Biol. Crystallogr 2011, 67, 235–242. 10.1107/S0907444910045749. PubMed DOI PMC

Emsley P.; Cowtan K. Coot: Model-Building Tools for Molecular Graphics. Acta crystallogr. D, Struct. Biol 2004, 60, 2126–2132. 10.1107/S0907444904019158. PubMed DOI

Williams C. J.; Headd J. J.; Moriarty N. W.; Prisant M. G.; Videau L. L.; Deis L. N.; Verma V.; Keedy D. A.; Hintze B. J.; Chen V. B.; Jain S.; Lewis S. M.; Arendall W. B.; Snoeyink J.; Adams P. D.; Lovell S. C.; Richardson J. S.; Richardson D. C. MolProbity: More and Better Reference Data for Improved All-Atom Structure Validation. Protein Sci. 2018, 27, 293–315. 10.1002/PRO.3330. PubMed DOI PMC

Laskowski R. A.; Swindells M. B. LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. 10.1021/CI200227U. PubMed DOI

Zhou N.; Wang L.; Thompson D. W.; Zhao Y. H-Shaped OPE/OPV Oligomers: A New Member of 2D-Conjugated Fluorophore Cores. Org. Lett. 2008, 10, 3001–3004. 10.1021/ol8009623. PubMed DOI

Caruso A.; Tovar J. D. Functionalized Dibenzoborepins as Components of Small Molecule and Polymeric π-Conjugated Electronic Materials. J. Org. Chem 2011, 76, 2227–2239. 10.1021/jo2001726. PubMed DOI

Chinta B. S.; Baire B. Formal Total Synthesis of Selaginpulvilin D. Org. Biomol. Chem. 2017, 15, 5908–5911. 10.1039/c7ob00950j. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...