Evolution of large Aβ16-22 aggregates at atomic details and potential of mean force associated to peptide unbinding and fragmentation events

. 2023 Aug ; 91 (8) : 1152-1162. [epub] 20230503

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37139594

Atomic characterization of large nonfibrillar aggregates of amyloid polypeptides cannot be determined by experimental means. Starting from β-rich aggregates of Y and elongated topologies predicted by coarse-grained simulations and consisting of more than 100 Aβ16-22 peptides, we performed atomistic molecular dynamics (MD), replica exchange with solute scaling (REST2), and umbrella sampling simulations using the CHARMM36m force field in explicit solvent. Here, we explored the dynamics within 3 μs, the free energy landscape, and the potential of mean force associated with either the unbinding of one single peptide in different configurations within the aggregate or fragmentation events of a large number of peptides. Within the time scale of MD and REST2, we find that the aggregates experience slow global conformational plasticity, and remain essentially random coil though we observe slow beta-strand structuring with a dominance of antiparallel beta-sheets over parallel beta-sheets. Enhanced REST2 simulation is able to capture fragmentation events, and the free energy of fragmentation of a large block of peptides is found to be similar to the free energy associated with fibril depolymerization by one chain for longer Aβ sequences.

Zobrazit více v PubMed

Dobson CM. Protein folding and misfolding. Nature. 2003;426:884-890.

Nguyen PH, Ramamoorthy A, Sahoo BR, et al. Amyloid oligomers: a joint experimental/computational perspective on alzheimer's disease, parkinson's disease, type ii diabetes, and amyotrophic lateral sclerosis. Chem Rev. 2021;121:2545-2647.

Jeon J, Blake Wilson C, Yau WM, Thurber KR, Tycko R. Time-resolved solid state nmr of biomolecular processes with millisecond time resolution. J Magn Reson. 2022;342:107285.

Scalone E, Broggini L, Visentin C, et al. Multi-eGO: an in silico lens to look into protein aggregation kinetics at atomic resolution. Proc Natl Acad Sci. 2022;119:e2203181119.

Bunce SJ, Wang Y, Radford SE, Wilson AJ, Hall CK. Structural insights into peptide self-assembly using photo-induced crosslinking experiments and discontinuous molecular dynamics. AIChE J. 2021;67:e17101.

Nasica-Labouze J, Meli M, Derreumaux P, Colombo G, Mousseau N. A multiscale approach to characterize the early aggregation steps of the amyloid-forming peptide gnnqqny from the yeast prion sup-35. PLoS Comput Biol. 2011;7:1-18.

Li DW, Mohanty S, Irbäck A, Huo S. Formation and growth of oligomers: a Monte Carlo study of an amyloid tau fragment. PLoS Comput Biol. 2008;4:1-12.

Nguyen PH, Sterpone F, Derreumaux P. Self-assembly of amyloid-beta (Aβ) peptides from solution to near in vivo conditions. J Phys Chem B. 2022;126:10317-10326.

Sterpone F, Melchionna S, Tuffery P, et al. The OPEP protein model: from single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems. Chem Soc Rev. 2014;43:4871-4893.

Sterpone F, Derreumaux P, Melchionna S. Protein simulations in fluids: coupling the OPEP coarse-grained force field with hydrodynamics. J. Chem. Theory Comput. 2015;11:1843-1853.

Chiricotto M, Melchionna S, Derreumaux P, Sterpone F. Hydrodynamic effects on β-amyloid (16-22) peptide aggregation. J Chem Phys. 2016;145:035102.

Chiricotto M, Melchionna S, Derreumaux P, Sterpone F. Multiscale aggregation of the amyloid  Aβ 16-22 peptide: from disordered coagulation and lateral branching to amorphous Prefibrils. J Phys Chem Lett. 2019;10:1594-1599.

Nguyen HL, Linh HQ, Matteini P, La Penna G, Li MS. Emergence of barrel motif in amyloid-trimer: a computational study. J Phys Chem B. 2020;124:10617-10631.

Lu Y, Derreumaux P, Guo Z, Mousseau N, Wei G. Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent. Proteins. 2009;75:954-963.

Ge X, Sun Y, Ding F. Structures and dynamics of β-barrel oligomer intermediates of amyloid-beta16-22 aggregation. Biochim Biophys Acta Biomembr. 2018;1860:1687-1697.

Barz B, Liao Q, Strodel B. Pathways of amyloid-aggregation depend on oligomer shape. J Am Chem Soc. 2018;140:319-327.

Liu Y, Wang Y, Zhang Y, et al. Structural perturbation of monomers determines the amyloid aggregation propensity of calcitonin variants. J. Chem. Inf. Model. 2023;63:308-320.

Illig AM, Strodel B. Performance of markov state models and transition networks on characterizing amyloid aggregation pathways from md data. J Chem Theo Comput. 2020;16:7825-7839.

Samantray S, Schumann W, Illig AM, et al. Molecular dynamics simulations of protein aggregation: protocols for simulation setup and analysis with markov state models and transition networks. Methods Mol Biol. 2022;2340:235-279.

Ur Rahaman M, Song K, Da LT, Chen HF. Early aggregation mechanism of ab1622 revealed by markov state models. Int J Biol Macromol. 2022;204:606-616.

Barz B, Wales DJ, Strodel B. A kinetic approach to the sequence-aggregation relationship in disease-related protein assembly. J Phys Chem B. 2014;118:1003-1011.

Lemkul JA, Bevan DR. Assessing the stability of alzheimer's amyloid protofibrils using molecular dynamics. J Phys Chem B. 2010;114:1652-1660.

Han W, Schulten K. Fibril elongation by Aβ(17-42): kinetic network analysis of hybridresolution molecular dynamics simulations. J Am Chem Soc. 2014;136:12450-12460.

Wang Z, Huang W, Liu M, Kennel SJ, Wall JS, Cheng X. Computational investigation of the binding of a designed peptide to light chain amyloid fibril. Phys Chem Chem Phys. 2021;23:20634-20644.

Ilie IM, Caflisch A. Simulation studies of amyloidogenic polypeptides and their aggregates. Chem Rev. 2019;119:6956-6993.

Schwierz N, Frost CV, Geissler PL, Zacharias M. Dynamics of seeded Aβ40-fibril growth from atomistic molecular dynamics simulations: kinetic trapping and reduced water mobility in the locking step. J Am Chem Soc. 2016;138:527-539.

Schwierz N, Frost CV, Geissler PL, Zacharias M. From afilament to fibril: molecular mechanism of surface-activated secondary nucleation from all-atom md simulations. J Phys Chem B. 2017;121:671-682.

Šarić A, Chebaro YC, Knowles TPJ, Frenkel D. Crucial role of nonspecific interactions in amyloid nucleation. Proc Natl Acad Sci. 2014;111:17869-17874.

Zheng W, Tsai MY, Wolynes PG. Comparing the aggregation free energy landscapes of amyloid beta(1-42) and amyloid beta(1-40). J Am Chem Soc. 2017;139:16666-16676.

Bunce SJ, Wang Y, Stewart KL, et al. Molecular insights into the surface-catalyzed secondary nucleation of amyloid-β40 by the peptide fragment Aβ16-22. Sci Adv. 2019;5:eaav8216.

Luiken JA, Bolhuis PG. Primary nucleation kinetics of short fibril-forming amyloidogenic peptides. J Phys Chem B. 2015;119:12568-12579.

Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19-25.

Robustelli P, Piana S, Shaw DE. Developing a molecular dynamics force field for both folded and disordered protein states. Proc Natl Acad Sci. 2018;115:E4758-E4766.

BK S, Samantray F, Yin B. Strodel, different force fields give rise to different amyloid aggregation pathways in molecular dynamics simulations. J Chem Inf Model. 2020;60:6462-6475.

Huang J, Rauscher S, Nawrocki G, et al. Charmm36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods. 2017;14:71-73.

Darden T, York D, Pedersen L. Particle mesh Ewald-an N.log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089-10092.

Hess B, Bekker H, Berendsen HJC, Fraaije J. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463-1472.

Miyamoto S, Kollman PA. Settle-an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem. 1992;13:952-962.

Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126:14101.

Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52:7182-7190.

Stirnemann G, Sterpone F. Recovering protein thermal stability using all-atom Hamiltonian replica-exchange simulations in explicit solvent. J Chem Theory Comput. 2015;11:5573-5577.

Patriksson A, van der Spoel D. A temperature predictor for parallel tempering simulations. Phys Chem Chem Phys. 2008;10:2073-2077.

Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA. ThE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem. 1992;13:1011-1021.

Hub JS, de Groot BL, van der Spoel D. G wham-a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J. Chem. Theory Comput. 2010;6:3713-3720.

Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577-2637.

Reddy AS, Wang L, Singh S, et al. Stable and metastable states of human amylin in solution. Biophys J. 2010;99:2208-2216.

Rivera E, Straub J, Thirumalai D. Sequence and crowding effects in the aggregation of a 10-residue fragment derived from islet amyloid polypeptide. Biophys J. 2009;96:4552-4560.

van der Munnik NP, Sajib MSJ, Moss MA, Wei T, Uline MJ. Determining the potential of mean force for amyloid-dimerization: combining self-consistent field theory with molecular dynamics simulation. J. Chem. Theory Comput. 2018;14:2696-2704.

Rodriguez RA, Chen LY, Plascencia-Villa G, Perry G. Thermodynamics of amyloid-fibril elongation: atomistic details of the transition state. ACS Chem Nerosci. 2018;9:783-789.

Nguyen PH, Li MS, Stock G, Straub JE, Thirumalai D. Monomer adds to preformed structured oligomers of aβ-peptides by a two-stage dock-lock mechanism. PNAS. 2007;104:111-116.

Hasegawa K, Ono K, Yamada M, Naiki H. Kinetic modeling and determination of reaction constants of alzheimer's beta-amyloid fibril extension and dissociation using surface plasmon resonance. Biochemistry. 2002;41:13489-13498.

Young LJ, Kaminski GS, Kaminski CF. Kaminski Schierle GS, imaging  Aβ (1-42) fibril elongation reveals strongly polarised growth and growth incompetent states. Phys Chem Chem Phys. 2017;19:27987-27996.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...