Inhibition of casein kinase 2 induces cell death in tyrosine kinase inhibitor resistant chronic myelogenous leukemia cells
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37141212
PubMed Central
PMC10159124
DOI
10.1371/journal.pone.0284876
PII: PONE-D-22-27194
Knihovny.cz E-zdroje
- MeSH
- apoptóza MeSH
- bcr-abl fúzové proteiny metabolismus MeSH
- buněčná smrt MeSH
- chemorezistence MeSH
- chronická myeloidní leukemie * farmakoterapie MeSH
- dasatinib farmakologie MeSH
- imatinib mesylát farmakologie MeSH
- inhibitory proteinkinas farmakologie MeSH
- inhibitory tyrosinkinasy MeSH
- kaseinkinasa II * MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bcr-abl fúzové proteiny MeSH
- dasatinib MeSH
- imatinib mesylát MeSH
- inhibitory proteinkinas MeSH
- inhibitory tyrosinkinasy MeSH
- kaseinkinasa II * MeSH
Chronic myelogenous leukemia (CML) is a myeloproliferative disease characterized by the BCR-ABL oncogene. Despite the high performance of treatment with tyrosine kinase inhibitors (TKI), about 30% of patients develop resistance to the therapy. To improve the outcomes, identification of new targets of treatment is needed. Here, we explored the Casein Kinase 2 (CK2) as a potential target for CML therapy. Previously, we detected increased phosphorylation of HSP90β Serine 226 in patients non-responding to TKIs imatinib and dasatinib. This site is known to be phosphorylated by CK2, which was also linked to CML resistance to imatinib. In the present work, we established six novel imatinib- and dasatinib-resistant CML cell lines, all of which had increased CK2 activation. A CK2 inhibitor, CX-4945, induced cell death of CML cells in both parental and resistant cell lines. In some cases, CK2 inhibition also potentiated the effects of TKI on the cell metabolic activity. No effects of CK2 inhibition were observed in normal mononuclear blood cells from healthy donors and BCR-ABL negative HL60 cell line. Our data indicate that CK2 kinase supports CML cell viability even in cells with different mechanisms of resistance to TKI, and thus represents a potential target for treatment.
Clinical Division Institute of Hematology and Blood Transfusion Prague 2 Czech Republic
Department of Cytogenetics Institute of Hematology and Blood Transfusion Prague 2 Czech Republic
Department of Proteomics Institute of Hematology and Blood Transfusion Prague 2 Czech Republic
Zobrazit více v PubMed
Rowley JD. NEW CONSISTENT CHROMOSOMAL ABNORMALITY IN CHRONIC MYELOGENOUS LEUKEMIA IDENTIFIED BY QUINACRINE FLUORESCENCE AND GIEMSA STAINING. Nature. 1973;243:290–293 ST-NEW CONSISTENT CHROMOSOMAL ABNORMALI. PubMed
Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, et al.. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med. 2002;346:645–652 ST-Hematologic and cytogenetic response. doi: 10.1056/NEJMoa011573 PubMed DOI
Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, et al.. Efficacy and Safety of a Specific Inhibitor of the BCR-ABL Tyrosine Kinase in Chronic Myeloid Leukemia. N Engl J Med [Internet]. 2001. Apr 5 [cited 2021 Jan 6];344(14):1031–7. Available from: www.nejm.org. doi: 10.1056/NEJM200104053441401 PubMed DOI
Özgür Yurttaş N, Eşkazan AE. Novel therapeutic approaches in chronic myeloid leukemia. Vol. 91, Leukemia Research. Elsevier Ltd; 2020. p. 106337. PubMed
Hochhaus A, Breccia M, Saglio G, García-Gutiérrez V, Réa D, Janssen J, et al.. Expert opinion—management of chronic myeloid leukemia after resistance to second-generation tyrosine kinase inhibitors [Internet]. Vol. 34, Leukemia. Springer Nature; 2020. [cited 2021 Jan 6]. p. 1495–502. Available from: doi: 10.1038/s41375-020-0842-9 PubMed DOI PMC
García-Gutiérrez V, Hernández-Boluda JC. Current Treatment Options for Chronic Myeloid Leukemia Patients Failing Second-Generation Tyrosine Kinase Inhibitors. J Clin Med [Internet]. 2020. Jul 15 [cited 2021 Jan 6];9(7):2251. Available from: https://www.mdpi.com/2077-0383/9/7/2251. doi: 10.3390/jcm9072251 PubMed DOI PMC
Némethová V, Rázga F. Chronic myelogenous leukemia on target. Cancer Med [Internet]. 2018. Jul 1 [cited 2021 Jan 6];7(7):3406–10. Available from: http://doi.wiley.com/10.1002/cam4.1604 PubMed DOI PMC
Pietarinen PO, Pemovska T, Kontro M, Yadav B, Mpindi JP, Andersson EI, et al.. Novel drug candidates for blast phase chronic myeloid leukemia from high-throughput drug sensitivity and resistance testing. Blood Cancer J [Internet]. 2015. May 1 [cited 2021 Jan 6];5(5):e309. Available from: www.nature.com/bcj. doi: 10.1038/bcj.2015.30 PubMed DOI PMC
Morotti A, Carrà G, Panuzzo C, Crivellaro S, Taulli R, Guerrasio A, et al.. Protein Kinase CK2: A Targetable BCR-ABL Partner in Philadelphia Positive Leukemias. Vol. 2015, Advances in Hematology. Hindawi Limited; 2015. PubMed PMC
Ahmed K, Gerber DA, Cochet C. Joining the cell survival squad: An emerging role for protein kinase CK2. Vol. 12, Trends in Cell Biology. Elsevier Current Trends; 2002. p. 226–30. PubMed
Litchfield DW. Protein kinase CK2: Structure, regulation and role in cellular decisions of life and death [Internet]. Vol. 369, Biochemical Journal. Portland Press; 2003. [cited 2021 Jan 6]. p. 1–15. Available from: /biochemj/article/369/1/1/39752/Protein-kinase-CK2-structure-regulation-and-role. PubMed PMC
St-Denis NA, Litchfield DW. From birth to death: The role of protein kinase CK2 in the regulation of cell proliferation and survival [Internet]. Vol. 66, Cellular and Molecular Life Sciences. Springer; 2009. [cited 2021 Jan 6]. p. 1817–29. Available from: https://link.springer.com/article/10.1007/s00018-009-9150-2. PubMed DOI PMC
Ahmad KA, Wang G, Unger G, Slaton J, Ahmed K. Protein kinase CK2—A key suppressor of apoptosis. Adv Enzyme Regul [Internet]. 2008. [cited 2021 Jan 6];48(1):179–87. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593134/. doi: 10.1016/j.advenzreg.2008.04.002 PubMed DOI PMC
Borgo C, Ruzzene M. Role of protein kinase CK2 in antitumor drug resistance. J Exp Clin Cancer Res [Internet]. 2019. Jul 5 [cited 2019 Sep 16];38(1):287. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31277672. doi: 10.1186/s13046-019-1292-y PubMed DOI PMC
Franchin C, Borgo C, Zaramella S, Cesaro L, Arrigoni G, Salvi M, et al.. Exploring the CK2 paradox: Restless, dangerous, dispensable [Internet]. Vol. 10, Pharmaceuticals. MDPI AG; 2017. [cited 2021 Jan 6]. p. 11. Available from: http://www.mdpi.com/1424-8247/10/1/11. PubMed PMC
Duncan JS, Litchfield DW. Too much of a good thing: The role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Vol. 1784, Biochimica et Biophysica Acta—Proteins and Proteomics. Elsevier; 2008. p. 33–47. PubMed
Ruzzene M, Pinna LA. Addiction to protein kinase CK2: A common denominator of diverse cancer cells? Biochim Biophys Acta—Proteins Proteomics [Internet]. 2010. Mar [cited 2020 Oct 19];1804(3):499–504. Available from: https://pubmed.ncbi.nlm.nih.gov/19665589/. doi: 10.1016/j.bbapap.2009.07.018 PubMed DOI
Stolarczyk EI, Reiling CJ, Pickin KA, Coppage R, Knecht MR, Paumi CM. Casein kinase 2α regulates multidrug resistance-associated protein 1 function via phosphorylation of Thr249. Mol Pharmacol [Internet]. 2012. Sep 1 [cited 2021 Jan 6];82(3):488–99. Available from: https://molpharm.aspetjournals.org/content/82/3/488. PubMed PMC
Di Maira G, Brustolon F, Bertacchini J, Tosoni K, Marmiroli S, Pinna LA, et al.. Pharmacological inhibition of protein kinase CK2 reverts the multidrug resistance phenotype of a CEM cell line characterized by high CK2 level. Oncogene [Internet]. 2007. Oct 18 [cited 2021 Jan 6];26(48):6915–26. Available from: www.nature.com/onc. doi: 10.1038/sj.onc.1210495 PubMed DOI
Chua MMJ, Ortega CE, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn KL, et al.. CK2 in cancer: Cellular and biochemical mechanisms and potential therapeutic target [Internet]. Vol. 10, Pharmaceuticals. MDPI AG; 2017. [cited 2021 Jan 6]. p. 18. Available from: http://www.mdpi.com/1424-8247/10/1/18. PubMed PMC
Chon HJ, Bae KJ, Lee Y, Kim J. The casein kinase 2 inhibitor, CX-4945, as an anti-cancer drug in treatment of human hematological malignancies. Vol. 6, Frontiers in Pharmacology. 2015. doi: 10.3389/fphar.2015.00070 PubMed DOI PMC
D’amore C, Borgo C, Sarno S, Salvi M. Role of CK2 inhibitor CX-4945 in anti-cancer combination therapy–potential clinical relevance. Available from: doi: 10.1007/s13402-020-00566-w PubMed DOI PMC
Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F, et al.. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia [Internet]. Vol. 34, Leukemia. Springer Nature; 2020. [cited 2021 Jan 6]. p. 966–84. Available from: 10.1038/s41375-020-0776-2. PubMed DOI PMC
Lees-Miller SP, Anderson CW. Two human 90-kDa heat shock proteins are phosphorylated in vivo at conserved serines that are phosphorylated in vitro by casein kinase II. J Biol Chem [Internet]. 1989. [cited 2021 Jan 6];264(5):2431–7. Available from: https://www.jbc.org/content/264/5/2431.short. PubMed
Mollapour M, Neckers L. Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Vol. 1823, Biochimica et Biophysica Acta—Molecular Cell Research. Elsevier; 2012. p. 648–55. PubMed PMC
Zanin S, Borgo C, Girardi C, O’Brien SE, Miyata Y, Pinna LA, et al.. Effects of the CK2 Inhibitors CX-4945 and CX-5011 on Drug-Resistant Cells. Ljubimov A V., editor. PLoS One [Internet]. 2012. Nov 8 [cited 2021 Jan 6];7(11):e49193. Available from: https://dx.plos.org/10.1371/journal.pone.0049193. doi: 10.1371/journal.pone.0049193 PubMed DOI PMC
Borgo C, Cesaro L, Salizzato V, Ruzzene M, Massimino ML, Pinna LA, et al.. Aberrant signalling by protein kinase CK2 in imatinib-resistant chronic myeloid leukaemia cells: Biochemical evidence and therapeutic perspectives. Mol Oncol [Internet]. 2013. Dec 1 [cited 2019 Sep 16];7(6):1103–15. Available from: http://doi.wiley.com/10.1016/j.molonc.2013.08.006. PubMed DOI PMC
Manni S, Brancalion A, Mandato E, Tubi LQ, Colpo A, Pizzi M, et al.. Protein Kinase CK2 Inhibition Down Modulates the NF-κB and STAT3 Survival Pathways, Enhances the Cellular Proteotoxic Stress and Synergistically Boosts the Cytotoxic Effect of Bortezomib on Multiple Myeloma and Mantle Cell Lymphoma Cells. Richards KL, editor. PLoS One [Internet]. 2013. Sep 27 [cited 2021 Jan 6];8(9):e75280. Available from: https://dx.plos.org/10.1371/journal.pone.0075280. PubMed DOI PMC
Intemann J, Saidu NEB, Schwind L, Montenarh M. ER stress signaling in ARPE-19 cells after inhibition of protein kinase CK2 by CX-4945. Cell Signal. 2014. Jul 1;26(7):1567–75. doi: 10.1016/j.cellsig.2014.03.014 PubMed DOI
Hériché JK, Chambaz EM. Protein kinase CK2alpha is a target for the Abl and Bcr-Abl tyrosine kinases. Oncogene [Internet]. 1998. Jul 9 [cited 2019 Sep 16];17(1):13–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9671309. doi: 10.1038/sj.onc.1201900 PubMed DOI
Mishra S, Reichert A, Cunnick J, Oncogene DS-, 2003 undefined. Protein kinase CKII α interacts with the Bcr moiety of Bcr/Abl and mediates proliferation of Bcr/Abl-expressing cells. nature.com [Internet]. [cited 2020 Sep 2]; Available from: https://www.nature.com/articles/1207156. PubMed
Žáčková M, Moučková D, Lopotová T, Ondráčková Z, Klamová H, Moravcová J. Hsp90—a potential prognostic marker in CML. Blood Cells, Mol Dis. 2013. Mar 1;50(3):184–9. doi: 10.1016/j.bcmd.2012.11.002 PubMed DOI
Kurokawa M, Zhao C, Reya T, Kornbluth S. Inhibition of Apoptosome Formation by Suppression of Hsp90 Phosphorylation in Tyrosine Kinase-Induced Leukemias. Mol Cell Biol [Internet]. 2008. [cited 2020 Sep 10];28(17):5494–506. Available from: http://mcb.asm.org/. PubMed PMC
Bachman AB, Keramisanou Di, Xu W, Beebe K, Moses MA, Vasantha Kumar M V., et al.. Phosphorylation induced cochaperone unfolding promotes kinase recruitment and client class-specific Hsp90 phosphorylation. Nat Commun [Internet]. 2018. Dec 1 [cited 2021 Jan 6];9(1):1–14. Available from: www.nature.com/naturecommunications. PubMed PMC
Prodromou C. Mechanisms of Hsp90 regulation [Internet]. Vol. 473, Biochemical Journal. Portland Press Ltd; 2016. [cited 2021 Jan 6]. p. 2439–52. Available from: http://portlandpress.com/biochemj/article-pdf/473/16/2439/686530/bj4732439.pdf. PubMed PMC
Miyata Y, Nishida E. CK2 binds, phosphorylates, and regulates its pivotal substrate Cdc37, an Hsp90-cochaperone. Mol Cell Biochem [Internet]. 2005. Jun [cited 2020 Oct 5];274(1–2):171–9. Available from: https://pubmed.ncbi.nlm.nih.gov/16335536/. doi: 10.1007/s11010-005-2949-8 PubMed DOI
Cortes J, Lang F. Third-line therapy for chronic myeloid leukemia: current status and future directions [Internet]. Vol. 14, Journal of Hematology and Oncology. BioMed Central Ltd; 2021. [cited 2021 Jun 28]. p. 44. Available from: 10.1186/s13045-021-01055-9. PubMed DOI PMC
Soverini S, Branford S, Nicolini FE, Talpaz M, Deininger MWN, Martinelli G, et al.. Implications of BCR-ABL1 kinase domain-mediated resistance in chronic myeloid leukemia. Vol. 38, Leukemia Research. Pergamon; 2014. p. 10–20. PubMed
Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al.. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science (80-). 2001;293:876–880 ST-Clinical resistance to STI-571 cance. doi: 10.1126/science.1062538 PubMed DOI
HRDINOVA T, TOMAN O, DRESLER J, KLIMENTOVA J, SALOVSKA B, PAJER P, et al.. Exosomes released by imatinib-resistant K562 cells contain specific membrane markers, IFITM3, CD146 and CD36 and increase the survival of imatinib-sensitive cells in the presence of imatinib. Int J Oncol. 2021;58(2):238–50. PubMed
Noel BM, Ouellette SB, Marholz L, Dickey D, Navis C, Yang TY, et al.. Multiomic Profiling of Tyrosine Kinase Inhibitor-Resistant K562 Cells Suggests Metabolic Reprogramming to Promote Cell Survival. J Proteome Res [Internet]. 2019. Apr 5 [cited 2021 Jun 28];18(4):1842–56. Available from: https://pubmed.ncbi.nlm.nih.gov/30730747/. doi: 10.1021/acs.jproteome.9b00028 PubMed DOI PMC
Donato NJ, Wu JY, Talpaz M. Src kinases and tyrosine phosphatases as regulators of imatinib mesylate sensitivity in chronic melogenous leukemia. Blood. 2003;102:598A–598A ST-Src kinases and tyrosine phosphata.
Obr A, Röselová P, Grebeňová D, Kuželová K. Real-time analysis of imatinib- and dasatinib-induced effects on chronic myeloid leukemia cell interaction with fibronectin. PLoS One. 2014;9(9). PubMed PMC
Yokoyama T, Kamata Y, Ohtsuki K. Casein kinase 2 (CK2)-mediated reduction of the activities of Src family tyrosine kinases in vitro. Biol Pharm Bull. 2004;27(12):1895–9. doi: 10.1248/bpb.27.1895 PubMed DOI
Donella-Deana A, Cesaro L, Sarno S, Ruzzene M, Brunati AM, Marin O, et al.. Tyrosine phosphorylation of protein kinase CK2 by Src-related tyrosine kinases correlates with increased catalytic activity. Biochem J. 2003;372(3):841–9. doi: 10.1042/BJ20021905 PubMed DOI PMC
Faber E, Mojzikova R, Plachy R, Rozmanova S, Stastny M, Divoka M, et al.. Major molecular response achieved with dasatinib in a CML patient with F317L BCR-ABL kinase domain mutation [Internet]. Vol. 34, Leukemia Research. Leuk Res; 2010. [cited 2021 Jan 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/19811824/. PubMed
White D, Saunders V, Lyons AB, Branford S, Grigg A, To LB, et al.. In vitro sensitivity to imatinib-induced inhibition of ABL kinase activity is predictive of molecular response in patients with de novo CML. Blood [Internet]. 2005. Oct 1 [cited 2021 Jan 6];106(7):2520–6. Available from: http://ashpublications.org/blood/article-pdf/106/7/2520/1635191/zh801905002520.pdf. doi: 10.1182/blood-2005-03-1103 PubMed DOI
Žáčková M, Macháčková-Lopotová T, Ondráčková Z, Kuželová K, Klamová H, Moravcová J. Simplifying procedure for prediction of resistance risk in CML patients—Test of sensitivity to TKI ex vivo. Blood Cells, Mol Dis. 2016. May 1;58:67–75. doi: 10.1016/j.bcmd.2016.03.005 PubMed DOI
Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM, Melo JV. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood. 2000. Aug 1;96(3):1070–9. . PubMed
McGowan-Jordan J. ISCN 2016: An International System for Human Cytogenomic Nomenclature (2016); Recommendations of the International Standing Human Committee on Human Cytogenomic Nomenclature Including New Sequence-based Cytogenomic. Karger; 2016.